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Abstract6

We study the distributed controller synthesis problem in a parameterised setting. We search for7

strategies that guarantee that no error state is reached, no matter the number of processes involved.8

In the model at hand, processes communicate through unreliable broadcasts. Additionally, messages9

are signed with data from an infinite alphabet, representing identifiers. Processes have local registers,10

with which they can compare and store those data. Our main result is that controller synthesis is11

decidable for this model. We also characterise the complexity of the problem for each number of12

registers per process.13
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1 Introduction17

Distributed synthesis is a famously difficult problem, with many undecidability results on a18

variety of models [19, 21, 12, 6]. The difficulty can be attributed to the presence of multiple19

players with partial information. In order to find relevant models where the problem is20

decidable, we take inspiration from the parameterised approach to distributed verification:21

instead of verifying systems with large numbers of components, we abstract away that22

number, and ask whether a property holds for any number of components. This is also useful23

to verify protocols which are supposed to work on arbitrarily large networks.24

In this paper we present a parameterised approach to distributed controller synthesis.25

We first study one of the most popular parameterised models, reconfigurable broadcast26

networks [9]. Then we go further and study the extension of those systems with data, as27

introduced in [8]. In this extension, agents have unique identifiers which they can use to sign28

messages and local registers which let them store and compare the signatures of received29

messages. This considerably extends the expressivity of the model. Each agent possesses two30

primary operations: broadcasting a letter from a finite alphabet along with the content of31

one of its registers or receiving a message, and comparing its datum with its registers and/or32

storing it in them. Broadcasts are lossy: when an agent sends a message, each other agent33

may or may not receive it; the set of agents receiving the broadcast is non-deterministic. A34

fundamental problem on such models is the coverability problem, which asks if a system has35

a run from an initial configuration to one with at least one agent in a given state.36

We formalise the controller synthesis problem as follows: processes have controllable37

states, from which they can choose the next action, and uncontrollable ones, from which an38

adversary may decide the next step. The question is whether there exists a local strategy39

that chooses actions from controllable states so that for all N , a system made of N processes40

applying this strategy cannot reach an error state. We establish the decidability of this41

problem, and show tight complexity bounds on the problem, depending on the number of42

registers that each agent has access to.43
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Related work This paper extends the work on verification of broadcast networks with44

data done in [8] and [13]. This model follows a recent effort to enrich parameterised models45

with data, usually to represent identifiers. For instance, the classic framework of population46

protocols has recently been extended with data [7], and some first decidability results have47

been established [26]. Let us also mention Petri nets with data [18]. The decidability of48

reachability in this model is an important open question, which saw some recent progress [16].49

The relation between those models is still blurry, but we can draw hope from the known50

relations between these models without data: population protocols are tightly linked to Petri51

nets [10] and a common restriction of population protocols, called immediate observation,52

can be encoded in reconfigurable broadcast networks [2].53

The problem we consider here fits in a family of what could be called parameterised games,54

which involve one player against an arbitrary number of opponents. Some other instances55

are concurrent parameterised games [3], where players choose their actions in parallel, and56

population control models, a full-information turn-based formalism [4]. In this work, we57

focus on distributed strategies: we want each process to act based only on its local history.58

Similar ideas have been explored in [5] and [24, Chapter 11].59

Structure Section 2 describes the model and the main problem. The central result of this60

work is the decidability of controller synthesis for broadcast networks of register automata.61

We present it incrementally: In Section 3 we use the much simpler case of broadcast networks62

without data to illustrate our approach. In Section 4 we extend this proof to the subclass63

of systems called signature BGR where processes can only send messages with their initial64

identifier. Finally, we present the main decidability result in Section 5. We highlight the65

common structure between these sections by using similar sequences of definitions and66

lemmas. For instance, Definition 11, Lemma 12, and Theorem 13 have counterparts in67

Section 4: Definition 17, Lemma 18, and Theorem 24.68

In Section 6 we discuss a different choice of definition of local strategies, and argue that69

the problem is unaffected by this choice. To complete the picture, in Section 7 we show tight70

complexity bounds for the SafeStrat problems when each process has a single register.71

Problem
Nb of registers

r = 0 r = 1 r ≥ 2

Coverability P [9] NP [13] Fωω [13]
Safe strategy synthesis NP (Thm 13) NExpTime (Thm 33) Fωω (Thm 16)

Table 1 Complexity of Cover and SafeStrat, depending on the number of registers. All
problems are complete for the indicated class. The results of the last column hold for any fixed
r ≥ 2 and when r is part of the input.

This paper uses hyperlinks. Occurrences of a term are linked to its definition. The reader can72

click on words and symbols (or just hover over them on some PDF readers) to see the definition.73

2 Preliminaries74

2.1 Register transducers75

We start by describing the transition system of individual processes, which are register76

transducers. Then, in Section 2.2 we will define our broadcast network model as the77

composition of a finite but arbitrary number of those processes.78
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We fix an infinite set of data D. We define a notion of register transducer that is well-suited79

for the definition of our distributed systems. They receive and send messages, which are80

pairs (m, d) made of a letter m from a finite alphabet and a datum d from D.81

▶ Definition 1 (Register transducer). A register transducer with r registers over domain D is
82

given by a tuple R = (Q,M, qinit,∆) with Q a finite set of states, with qinit the initial state,83

M a finite alphabet, and ∆ a set of transitions which are of three kinds:84

q
br(m,i)−−−−→ q′ broadcast transitions that broadcast a message (m, d) with d the content of85

register i,86

q
rec(m,=i)−−−−−−→ q′ equality transitions that read a message (m, d) and check that d is in87

register i,88

q
rec(m,↓i)−−−−−−→ q′ record transitions that read a message (m, d) where d is not in any register89

and put d in register i.90

Transitions of the two last kinds are called reception transitions. The size of R, written |R|,91

is |Q| + |∆| + r.92

A local configuration of R is an element of Q× Dr, describing the current state and the
93

content of each register. A local configuration (q, c) is initial if q = qinit and all registers94

have the same content, i.e., there exists d ∈ D such that c(i) = d for all i ∈ [1, r].95

Given a record transition q rec(m,↓i)−−−−−−→ q′ and a datum d , we can apply δ to go from (q, c)
96

to (q′, c′) by reading (m, d) if for all j ∈ [1, r], c(j) ̸= d and c′(i) = d, and for all j ̸= i,97

c′(j) = c(j).98

Given an equality transition q
rec(m,=i)−−−−−−→ q′ and a datum d , we can apply δ to go from

99

(q, c) to (q′, c′) by reading (m, d) if c(i) = d and c′ = c.100

If one of those cases applies, we write (q, c) rec(m,d)−−−−−−→δ (q′, c′) and call it a reception step.101

Given a broadcast transition δ = q
br(m,i)−−−−−→ q′ and a datum d, we can apply δ to go from

102

(q, c) to (q′, c′) by broadcasting (m, d) if c(i) = d and c′ = c. If those conditions are met we103

write (q, c) br(m,d)−−−−−→δ (q′, c′) and call it a broadcast step.104

A local step (q, c) op(m,d)−−−−−→δ (q′, c′) between two local configurations is either a re-
105

ception step or a broadcast step. A local run u of R is a sequence of local steps u =106

(q0, c0) op1(m1,d1)−−−−−−−→δ1 (q1, c1) op2(m2,d2)−−−−−−−→δ2 · · · opn(mn,dn)−−−−−−−−→δn
(qn, cn). It is initial if (q0, c0) is107

an initial configuration. In that case the common datum d of registers in c0 is called is called108

the initial datum of u. Its input In(u) ∈ (M ×D)∗ is the sequence of messages received by in-
109

put transitions (qi−1, ci−1) rec(mi,di)−−−−−−−→δi (qi, ci) in u. Similarly, its output Out(u) ∈ (M×D)∗
110

is the sequence of messages sent by output transitions (qi−1, ci−1) br(mi,di)−−−−−−→δi (qi, ci) in u.111

Its d-input Ind(u) ∈ M∗ is the sequence of letters associated to datum d in In(u), and112

its d-output Outd(u) ∈ M∗ is the sequence of letters associated to datum d in Out(u).113

▶ Remark 2. Record transitions can only be taken if the received value is not already in the114

registers. This is not a restriction on the expressivity: instead of storing the same datum in115

several registers, the system use its registers to store each datum once, and use a function116

[1, r] → [1, r], stored in the states, to assign registers to their content.117

2.2 Broadcast Networks and Games with Registers118

Let r ∈ N and let R = (Q,M, qinit,∆) be a register transducer with r registers. The119

broadcast network of register automata (BNRA for short) described by R is the infinite120

CVIT 2016
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transition system described below. We call register transducer protocols when we use them121

to define BNRA.122

A configuration is a function γ : A → Q× Dr with A a finite set of agents. It maps each123

agent to a local configuration.124

We write st(γ) for the state component of γ and data(γ) for its register component. A125

configuration γ is initial if for all a ∈ A, st(γ)(a) = qinit, data(γ)(a, i) = data(γ)(a, i′) for all126

i, i′ and data(γ)(a, i) ̸= data(γ)(a′, i′) for all a ̸= a′ and i, i′. Intuitively, each agents starts127

with a unique identifier that is contained in all of its registers.128

Given two configurations γ, γ′ over A, a step γ −→ γ′ is defined when there exist a0 ∈ A,
129

m ∈ M, d ∈ D and a transition δ0 ∈ ∆O such that γ(a0) br(m,d)−−−−−→δ0 γ
′(a0), and for all a ̸= a0,130

either γ′(a) = γ(a), or there is a transition δ ∈ ∆I such that γ(a) rec(m,d)−−−−−−→δ γ
′(a).131

A (global) run ϱ is a sequence of steps γ0 −→ γ1 −→ γ2 · · · γn−1 −→ γn. It is initial if γ0 is132

an initial configuration. The projection of ϱ on an agent a is the local run πa(ϱ) made of all133

transitions taken by a in ϱ. We write ϱ : γ ∗−→ γ′ when ϱ is a run from γ to γ′.134

br(a, 1)rec(b,= 2) br(b, 1)rec(b,= 2)

br(start, 1)

rec(stop,= 1)

br(start, ↓ 2)

rec(stop, 2)

Figure 1 A protocol which can do two things: On the left, it receives start and a sequence of a

and b while checking that they carry the same datum (i.e. come from the same sender). At any
point it may stop by sending stop with the received datum, to confirm that the communication
has been received. In the right part, it broadcasts a start message with its initial identifier, then a
sequence of messages a and b with that same identifier. When it receives it back with the letter
stop, it terminates.

▶ Definition 3 (Coverability problem). The coverability problem Cover asks, given a protocol135

R and a message merr, whether there is an initial run in which merr is broadcast.136

If there is an initial run ϱ in which an agent broadcasts merr, then we say that ϱ covers
137

merr, and that merr is coverable.138

▶ Remark 4. The coverability problem is usually defined with an error state qerr: is there a139

an initial run where an agent reaches qerr? We define it with a message as it will be more140

convenient for some definitions, and the two versions are easily inter-reducible.141

We will examine the controller synthesis problem on this model. The Cover problem142

defined earlier is the particular case in which no state is controllable.143

▶ Definition 5 (Broadcast Game with Registers). A Broadcast Game with Registers with r re-144

gisters G = (R, Qctrl, Qenv,merr) is defined by a protocol with r registers R = (Q,M, qinit,∆),145

a partition of its states Q = Qctrl ⊔Qenv, and an error letter merr.146

A control strategy for G is a function σ : ∆∗ → ∆ observing a sequence of transitions and
147

choosing the next one 1.148

1 We choose to not give access to the data to Controller, as we want to be able to rename data at will.
We will discuss the version of the game where Controller can see the data in Section 6.
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A σ-local run is an initial local run u = (q0, c0) op1(m1,d1)−−−−−−−→δ1 · · · opn(mn,dn)−−−−−−−−→δn (qn, cn)
149

such that for all i ∈ [1, n], if qi−1 ∈ Qctrl then σ(δ1 · · · δi−1) = δi. A σ-run is an initial run150

whose projection on every agent a is a σ-local run.151

A control strategy is winning if no σ-run covers merr. In this game and all games we
152

construct from it the player trying to construct a winning control strategy will be called153

Controller and her opponent Environment.154

▶ Definition 6 (Controller synthesis problem). The safe strategy problem SafeStrat takes
155

as input a BGR G, and asks whether there is a winning control strategy for G.156

E C

br(a,1) br(b,1)

br(b,1) br(a,1)

rec(a,↓ 2) rec(a,=2) br(merr,1)

rec(b,↓ 2)
rec(b,=2) br(a,2)

Figure 2 A BGR. The round state C belongs to Controller, square states to Environment.

▶ Example 7. In the BGR displayed in Figure 2, Controller has a single winning control157

strategy, which is to always choose a different letter from the one chosen by Environment158

from E. Indeed, doing otherwise would let an agent broadcast either aa or bb with its initial159

datum. In the first case, Environment could send an agent in the second row to receive aa160

and then broadcast merr. In the second case, Environment could send two agents to the161

third row, who receive bb and broadcast a with the same datum. An agent in the second row162

could then receive both a broadcasts and then broadcast merr. By contrast, it is easy to163

check that if Controller always picks a different letter from the one chosen by Environment164

in E, there cannot be two broadcasts of a or of b with the same datum. Hence agents sent165

to the second and third row will be unable to broadcast anything.166

2.3 Subword order toolbox167

A well quasi-order is a set equipped with a preorder relation (S,⪯) such that in every infinite168

sequence s0, s1, . . . there exist i < j such that si ⪯ sj .169

Given two words v = a1 · · · am and w = b1 · · · bn in Σ∗, we say that v is a subword of170

w and write v⊑ w if v can be obtained from w by removing letters, i.e., there are indices171

i1 < · · · < im such that v = bi1 · · · bim
.172

Given a set of words W , we define its upward-closure W ↑ = {u ∈ Σ∗ | ∃w ∈ W,w⊑ u}
173

and its downward-closure similarly W ↓ = {u ∈ Σ∗ | ∃w ∈ W,u⊑ w}. We say that W is
174

downward-closed if W = W ↓, and upward-closed if W = W ↑. The set of minimal elements175

of an upward-closed set I is called its basis. Given a finite basis B, we define its norm as the176

maximum length of its words: ||B|| = max{|w| | w ∈ B}.177

A seminal result in the study of well quasi-orders is Higman’s lemma [15, 14], which states178

that (Σ∗,⊑ ) is a well quasi-order for all finite alphabet Σ. As a corollary, we obtain that179

every upward-closed set of words I ⊆ Σ∗ has a finite basis B such that I = B ↑. Another180

CVIT 2016



23:6 Controller Synthesis for Broadcast Networks with Data

corollary is that the upward-closure of any language over a finite alphabet is regular. This is181

a consequence of the previous property, along with the following fact.182

▶ Lemma 8 (Folklore). Given a finite set of words B over a finite alphabet Σ, one can183

construct a deterministic automaton AB↑ recognising B ↑ with at most (||B|| + 1)|B| states.184

In this work we will show that our main problem is Fωω -complete, meaning that it is
185

decidable but with a very high complexity, much higher than the Ackermann function for186

instance. For a formal definition of this complexity class Fωω (and the related class of187

functions Fωω ), see [22]. For our purpose, we will only use the Length function theorem,188

stated below.189

A finite or infinite sequence of words w0, w1, . . . is good if there exist i < j such that190

wi⊑ wj , and bad otherwise. Higman’s lemma states that every bad sequence of words over191

a finite alphabet is finite, but we do not have a bound on their size. However, if we add a192

constraint so that each word can only have finitely many successors, then a uniform bound193

exists. Given a function g : N → N and an integer n ∈ N, we say that a sequence of words194

w1, . . . is (g, n)-controlled if |wi| ≤ g(i)(n) for all i ≥ 1 (where g(i) denotes g applied i times).195

▶ Theorem 9 (Length Function Theorem [23]). Let Σ be a finite alphabet and g : N → N a196

primitive recursive function. There exists a function f ∈ Fω|Σ|−1 such that, for all n ∈ N,197

every (g, n)-controlled bad sequence w1, w2, . . . has at most f(n) terms.198

2.4 Games toolbox199

We assume familiarity with automata and regular games, and simply fix some terms notations200

(see [11, Chapter 2] for an in-depth presentation). A two-player game G is given by a directed201

graph G = (V,E) called the arena, along with a partition of V in two, V = V0 ⊔V1, an initial202

vertex vinit, a colouring function c : V → C mapping vertices to a finite set of colours C,203

and a language L ⊆ Cω of infinite sequences of colours, called the objective. There are two204

players, called P0 and P1205

A (finite or infinite path) in G starting in vinit is called a play. A play v0 → v1 → · · · is206

winning for P0 if c(v0)c(v1) · · · ∈ L, and losing for P0 otherwise.207

A strategy for player Pi is a function σG : V ∗Vi → V . A σG-play is a path v0 → v1 → · · ·208

in G such that for all j ≥ 1, if vj−1 ∈ Vi then vj = σG(v0 · · · vj−1). A strategy for P0 (resp.209

P1) is winning if all infinite σG-plays are winning (resp. losing) for P0.210

We call G a reachability game (resp. safety game), when the objective is of the form LV ω
211

(resp. V ω \ LV ω) with L a regular language of finite words (represented by a deterministic212

finite automaton). It is well-known that those games are determined, i.e., in every game one213

of the two players has a winning strategy.214

▶ Proposition 10 (Folklore). One can compute the winner of a finite reachability game in215

polynomial time. Furthermore if P0 has a winning strategy, then she has one that guarantees216

that she wins in at most |V | · |A| steps.217

3 An introductory case: Broadcast networks without data218

We start by showing the proof principles in an easy case, when processes do not have registers.219

In that case communication is made only through letters of M. In this section we will forget220

the data in messages, and only consider letters. We simplify notations: we write br(m) for a221

broadcast of letter m and rec(m) for a reception of m. We obtain Reconfigurable Broadcast222

Networks, as introduced in [9]. From now on we will use the term RBN for this model.223

https://en.wikipedia.org/wiki/Primitive_recursive_function
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Cover has been shown decidable and P-complete for those systems [9]. We could not224

find a result in the literature stating that SafeStrat is NP-complete, but closely-related225

results were proven in [5] and [24]. We prove it to illustrate our method.226

To begin with, we show that we can characterise winning control strategies as the ones227

which force the set of letters sent to stay within some set I ⊆ M\{merr}, called an invariant.228

▶ Definition 11 (Invariants for RBN). An invariant for an RBN over alphabet M is a set of229

letters I ⊆ M. We say that it is sufficient for a control strategy σ if:230

merr /∈ I, and231

If a σ-local run receives only messages of I then it broadcasts only messages of I.232

▶ Lemma 12 (Invariants characterise winning control strategies). A control strategy σ is233

winning if and only if there exists a sufficient invariant I ⊆ M for it.234

Proof sketch. Suppose σ is winning. Let I be the set of messages such that there exists a235

σ-run in which they are broadcast. As σ is winning, merr /∈ I. If a σ-local run u receives236

only messages of I, then we can build a σ-run where an agent follows u: for each letter m237

received in u, we make other agents execute a σ-run where m is broadcast: this is possible238

as m ∈ I. We match this broadcast with the reception in u. We obtain a σ-run where all239

letters broadcast in u are broadcast.240

For the other direction, suppose by contradiction that σ has a sufficient invariant I and241

that there is a σ-run ϱ in which merr is broadcast. Let m be the first message broadcast in242

ϱ that is not in I, and a the agent broadcasting it. Those are well-defined as merr /∈ I. Let243

ϱ′ be the prefix of ϱ stopping right after that broadcast. The projection πa(ϱ′) of ϱ′ on agent244

a contains a broadcast of m but no reception of any m′ /∈ I, a contradiction. ◀245

This lets us turn the distributed game into a sequential one: If we are given an invariant246

I, checking whether there is a strategy that maintains it comes down to a two-player safety247

game. We obtain an algorithm for strategy synthesis: guess an invariant, and then solve the248

resulting safety game, which can be done in polynomial time.249

▶ Theorem 13. Deciding the winner of a BGR without registers is NP-complete.250

Proof. For the upper bound, by Lemma 12, it suffices to guess a set I ⊆ Σ such that merr /∈ I251

and then check if there is a strategy that guarantees that we can only broadcast a message252

outside of I if we received one beforehand. This is easily encoded into a safety game: Take253

the states and transitions of the BGR, without the operations, add a sink state with no254

outgoing transitions, and redirect every reception of a message m /∈ I to it. The objective of255

the first player is to avoid transitions broadcasting letters of Σ \ I.256

Clearly there is a winning control strategy for the BGR if and only if there is an invariant257

I and a strategy avoiding transitions broadcasting messages outside of I in this safety game.258

This can be checked in polynomial time, by Proposition 10.259

The lower bound is shown in Appendix A ◀260

To conclude this section, we present an argument in favour of parameterized distributed261

synthesis. The fact that we have an arbitrary amount of agents makes the existence of a262

winning control strategy less likely. One might wonder what happens if we simply want263

a strategy that works for a bounded, or even fixed amount of agents. We show that the264

problem becomes undecidable in this case, even for 3 agents. Hence considering arbitrary265

numbers of agents can be a good approximation as it spectacularly reduces the difficulty of266

the problem.267

CVIT 2016
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▶ Theorem 14. Given a BGR G = (R, Qctrl, Qenv,merr), it is undecidable whether there is a268

control strategy such that no σ-run with 3 agents covers merr.269

4 Signature BGR270

In this section we establish decidability of SafeStrat in a subcase of interest, that illustrates271

well the decidability proof for the general case, while requiring less technical complications.272

▶ Definition 15. A signature protocol is one where every broadcast is made with the value273

of register 1, and all receptions are made on other registers. The associated BGR are called274

signature BGR.275

In other words, there are no transitions of the form br(m,i)−−−−−→ with i ≥ 2 or rec(m,↓1)−−−−−−→ or276

rec(m,=1)−−−−−−−→. Such a protocol keeps its initial datum in register 1 and uses it for broadcasts,277

while the other registers are used to store and compare received values. An interesting278

property of those systems is that the datum of a message identifies its sender: Each agent279

only sends messages with its initial datum, and since those are unique, messages containing280

the same datum necessarily come from the same agent. In this section we will call output the281

d-output of a local run u with d its initial datum, and write it Outsign(u).282

▶ Theorem 16. The SafeStrat problem is decidable Fωω -complete for signature BGR.283

The lower bound is provided by [13], as they show Fωω -hardness already for Cover284

with r = 2 registers. Fix G = (R, Qctrl, Qenv,merr) a BGR with r registers. To prove the285

theorem, we once again use a characterisation of winning strategies in terms of invariants.286

Here an invariant is a downward-closed set of words of M∗. A witness for non-coverability287

of a message merr is a downward-closed set I of words that contains ε and not merr and288

such that an agent whose d-inputs are all in I has an output in I2. Intuitively, if all agents289

respect that condition, then we can only obtain runs where all agents output words in the290

invariant, and thus no-one broadcasts merr.291

The downward-closed property comes from the fact that if an agent outputs a word w,292

then other agents can receive any subsequence of letters of that word, as broadcasts can be293

lost. It is crucial as it gives us a finite representation of invariants, their basis.294

▶ Definition 17 (Invariants for signature BGR). An invariant for a signature BGR over an295

alphabet M is a downward-closed set I ⊆ M∗. We say that it is sufficient for a control296

strategy σ if it satisfies the following conditions:297

1. ε ∈ I and merr /∈ I298

2. For all σ-local run u, if Ind(u) ∈ I for all d ∈ D then Outsign(u) ∈ I.299

The next step is to show that a winning strategy always comes with a sufficient invariant.300

▶ Lemma 18 (Invariants characterise winning strategies). A control strategy σ is winning if301

and only if there exists a sufficient invariant I ⊆ M∗ for it.302

Recall that, as a corollary of Higman’s lemma, upward-closed sets of words can be finitely303

described by their finite basis.304

To solve SafeStrat, we cannot enumerate potential strategies as there are uncountably305

many. Instead, our algorithm enumerates invariants (represented by the basis of their306

2 As I is downward-closed, ε ∈ I is synonymous with I being non-empty.
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complement) and checks for each one whether there is a strategy such that the conditions307

listed in Lemma 18 are satisfied. While the first item is straightforward to check, the second308

is not. To verify it, we design a game in which the two players construct a local run, and the309

received data are chosen by Environment.310

4.1 Invariant game for signature BGR311

Intuitively, the two players construct a local run by picking the transitions from their312

respective states, and Environment picks the data received at each step, when they are not313

already determined by the chosen transition. If at some point the d-input gets out of I for314

some d then the game stops and Controller wins. If the output gets out of I then the game315

stops and Environment wins. If none of the two happen and the game goes on forever then316

Controller wins. This characterises the capacity of Controller to keep outputs within a given317

invariant, but if we made the choice of data explicit this game would be infinite.318

We reduce it to a finite reachability game, called the invariant game which we can solve319

by a simple fix-point computation.320

A first observation is that it is always in Environment’s best interest to choose fresh data321

that were never seen before, as they come with the smallest d-input. Thus whenever we322

receive a datum that is not in the registers we can assume that the associated d-input is323

empty. This means that we do not need to remember the d-inputs associated to every datum324

of the local run, but only those that are currently in the registers.325

To formalise this, we need to define the inputs and output of sequences of transitions.
326

The idea is that we can assume that every datum that disappears from the registers will327

never appear again. In order to check whether some d-input gets out of I, we only need to328

keep track of the sequences of letters received with the data currently in the registers. We329

call those the recent inputs. Furthermore, in our model of register transducers, a received330

datum always appears in at most one register at a time, and while it is not forgotten, it331

stays in that one register. This will let us read the recent inputs directly from the sequence332

of transitions.333

Given a sequence of transitions δ1 · · · δk of R, we define its output as the sequence of
334

letters sent by broadcasts. For all registers i ∈ [1, r], we also define its recent input on i as335

the sequence of letters received with an equality transition with register i since it was last336

updated. Formally, the output of δ1 · · · δk is defined inductively as Out(ε) = ε and337

Out(δ1 · · · δk+1) =
{

Out(δ1 · · · δk) if δk+1 is a reception,
Out(δ1 · · · δk)m if δk+1 = br(m,1)−−−−−→for some m.

338

The recent input on i is defined as recentIni(ε) = ε and:339

recentIni(δ1 · · · δk+1) =


m if δk+1 = rec(m,↓i)−−−−−−→ for some m and i,
recentIni(δ1 · · · δk)m if δk+1 = rec(m,=i)−−−−−−→ for some m and i,
recentIni(δ1 · · · δk) otherwise.

340

Note that we always have recentIn1(δ1 · · · δk) = ε, as we assumed that no reception is341

made using register 1.342

The invariant game IG(G, I) goes as follows. The set of vertices is simply QR. From
343

each vertex q ∈ QR, players choose a transition from q in ∆R.. Controller chooses the next344

transition when the current vertex is in Qctrl, Environment when it is in Qenv.345
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If at some point the play π = δ1 · · · δk is such that recentIni(π) /∈ I for some i ≥ 2 then346

Controller wins.347

If at some point the play π = δ1 · · · δk is such that Out(π) /∈ I then Environment wins.348

If the play goes on forever without any of those things happening then Controller wins.349

We start by showing that we can solve this game by considering it as a regular safety350

game. We obtain as a corollary that if Environment wins then he can win in a bounded351

number of steps. Define φ(R, B) := |R|(||B|| + 1)|R|(|B|+1)
352

▶ Lemma 19 (Decidability of the invariant game). Given a BGR over protocol R and a finite353

set of words B, we can decide in exponential time whether Controller has a winning strategy354

in IG(G, (B ↑)c). Furthermore, if Environment has a winning strategy then he has a strategy355

to win in at most φ(R, B) steps.356

Proof. By Lemma 8, B ↑ is a regular language, recognised by a deterministic finite automaton357

AB↑ = (QB ,M,∆B , q
B
0 , FB) with (||B|| + 1)(|B|+1) states.358

We can construct a deterministic automaton B over the alphabet ∆R that reads plays359

δ1 · · · δk of IG(G, (B ↑)c) and accepts exactly the winning plays for Environment. Its set of360

states is (QB)r, plus a rejecting sink state ⊥ and an accepting sink state ⊤, which is the361

only accepting state. The first component keeps track of the state reached in AB↑ by the362

output of the sequence of transitions. The others keep track, for each register i ≥ 2, of the363

state reached by the recent input on i in AB↑. Transitions of that automaton are easy to364

infer from the definition of output and recent input on i. The automaton goes to ⊥ if the365

recent input on i is in B ↑ for some i, or if it sees a reception transition of a message m ∈ B ↑.366

It goes to ⊤ if the output is in B ↑.367

By Proposition 10, we can solve this game in polynomial time in the size of the automaton368

B and the size of the arena of IG(G, (B ↑)c) (i.e., |R|), that is, in exponential time in369

||B|| + |B| + |R|. Furthermore, if Environment has a winning strategy then he has one that370

guarantees that he wins in at most φ(R, B) = |AB↑|r|R| steps. ◀371

We have two things to prove: First that a winning strategy for Controller in IG(G, I)372

yields a control strategy σ for which I is a sufficient invariant. Then, that a winning strategy373

for Environment in IG(G, I) implies that there is no control strategy for which I is a sufficient374

invariant.375

▶ Lemma 20. Let I ⊆ M∗ be a downward-closed set of words containing ε and not merr. If376

Controller wins the invariant game IG(G, I) then there is a control strategy σ such that I is377

a sufficient invariant for σ.378

▶ Lemma 21. Let σ be a control strategy. Let I ⊆ M∗ be a downward-closed set of words379

containing ε and not merr, and let B be the basis of Ic.380

If Environment wins the invariant game IG(G, I) then there is a σ-local run of length at381

most φ(R, B) with an output not in I and all d-inputs in I.382

Proof. By Proposition 10 there exists τIG a winning strategy τIG for Environment in the383

invariant game IG(G, I) such that Environment always wins in at most φ(R, B) steps.384

We construct a σ-local run of length at most φ(R, B) with an output not in I and all385

d-inputs in I. To do so, we apply τIG to choose transitions and we choose data by always386

picking a datum never seen before in the run, when the datum is not determined by the387

transition.388

Let (s0, c0) be an initial configuration of R. We define iteratively a sequence of steps389

(sk−1, ck−1) opk(mk,dk)−−−−−−−−→δk
(sk, ck) as follows. Suppose we defined them up to (sk−1, ck−1),390
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and let uk−1 be the local run defined so far. We first choose δk: If sk−1 ∈ Qctrl then391

δk = σ(uk−1), otherwise δk = τIG(δ1 · · · δk−1).392

We then choose dk:393

If δk is a broadcast transition of letter m, we set dk = ck(1) (the initial datum of the394

local run).395

If δk is a record transition, we pick a datum dk that does not appear in uk−1 before.396

If δk = sk−1
rec(m,=i)−−−−−−→ sk is an equality transition of letter m, we set dk = ck−1(i).397

Clearly we maintain the fact that uk is a σ-local run and δ1 · · · δk is a τIG-play in IG(G, I).398

We stop when δ1 · · · δk is winning for Environment in IG(G, I), which happens for some399

K ≤ φ(R, B). Let u = uK be the local run obtained at the end.400

It remains to show that the output of u is not in I while all its d-inputs are in I. To do401

so, we rely on the following claim:402

▷ Claim 22. For all register i and index k, recentIni(δ1 · · · δk) = Inuk
(ck(i)). Furthermore,403

Out(δ1 · · · δk) = Outsign(uk)404

Proof. By a straightforward induction on k. ◀405

By definition δ1 · · · δK is a winning τIG-play for Environment, hence its output is not406

in I, thus Outsign(u) = Outsign(uK) is not in I either. Let d ∈ D a datum appearing in407

u, and let k be such that (sk, ck) is the last configuration in which d appears. Let i be the408

register such that ck(i) = d. Then we have Inu(d) = Inuk
(ck(i)) = recentIni(δ1 · · · δk). As409

τIG is winning for Environment, recentIni(δ1 · · · δk) ∈ I, and thus Inu(d) ∈ I.410

We have found a σ-local run of length at most φ(R, B) whose output is not in I while all411

its d-inputs are. ◀412

Our next step is to bound the minimal size of a sufficient invariant for some winning413

control strategy σ when there is one. The idea is as follows: Take an invariant I such414

that the basis {w1, . . . , wk} of Ic has as few elements as possible. We can assume that415

|w1| ≤ · · · ≤ |wk|. Then we know that, for all i, {w1, . . . , wi} is not a sufficient invariant416

for σ. Hence by Lemma 21 we get a σ-local run of bounded size breaking the invariant417

{w1, . . . , wi}, which forces {wi+1, . . . , wk} to contain a word of bounded size. This bounds418

the size of wi+1 with respect to w1, . . . , wi, as stated in the lemma below.419

Define ψ(n) = |R|(n+ 1)|M|n+1+1
420

▶ Lemma 23 (Bounding the size of the invariant). Let G a signature BGR. There is a winning421

control strategy for G if and only if there is a sequence of words w0, . . . , wk ∈ M∗ such that422

Controller wins IG(G, {w1, . . . , wk}↑c),423

and for all i ∈ [1, k], |wi| ≤ ψ(|wi−1|).424

We will can now leverage the Length Function Theorem to bound the size of the basis of425

Ic in Lemma 23.426

▶ Theorem 24. SafeStrat is decidable and in Fωω for signature BGR.427

Proof. Let G a BGR. We apply the Length Function Theorem with Σ = M and g(n) =428

n(n + 1)nn+1+1. We obtain a function f ∈ Fω|M|−1 such that every (g, n)-controlled bad429

sequence of words w0, w1, ..., wk has at most f(n) terms.430

We use a non-deterministic algorithm that guesses a sequence of words w1, ..., wk such431

that w1 = merr and |wi| ≤ |wi+1| ≤ ψ(|wi|) for all i. One can straightforwardly check that432

then we have |wi| ≤ g(i)(|R| + |M| + 1) for all i.433
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Let B = {w0, w1, ..., wk}. The algorithm checks that there exists a strategy σ such that434

the complement of {w0, w1, ..., wk}↑ is a sufficient invariant for σ, by solving the invariant435

game IG(G, ({w0, w1, ..., wk}↑)c). This can be done in exponential time in |R| + k+ |wk|, by436

Lemma 19. We accept if there is such a strategy and reject otherwise.437

By Lemma 23, this algorithm is correct. We can make it deterministic with an exponential438

blow-up in the time complexity. The time required by this algorithm is therefore h(f(|R| +439

|M|+1)) with h a primitive recursive function. As Fω|M|−1 is closed under composition with440

primitive recursive functions, the algorithm takes a time bounded by a function of Fω|M|−1 .441

As a consequence, the problem is in Fωω (see [22] for details). ◀442

5 General case443

In this section we generalise the previous result to all BGR.444

▶ Theorem 25. The SafeStrat problem is decidable in Fωω for general BGR.445

We fix a BGR G = (R, Qctrl, Qenv,merr) for the rest of this section.446

The general structure of the proof is the same as before, but the removal of the signature447

hypothesis makes it significantly more technical. The main difference between the signature448

and general models is that in the latter a process can send acknowledgements to a process it449

received messages from, as in the right protocol in Figure 1.450

We make the following observation: Say an agent receives a message (m, d) with d its451

initial datum; this is possible in general BGR but not in signature ones. Then this means452

that other agents, which did not have this datum initially, received enough messages with453

datum d to be able to broadcast (m, d). Intuitively, we can copy these agents many times,454

which allows us to assume that we have an unlimited supply of messages (m, d). In sum, we455

will show that if an agent sends a message (m, d) with d that is not its initial datum, then456

from this point on we can assume that messages (m, d) are for free. This intuition justifies457

the definition of decomposition, which summarises the sequence of letters sent with a given458

datum during a run. It details the sequence of letters sent by the agent with that datum459

initially, and the points at which each letter is first broadcast with that datum by another460

agent. These decompositions were already used for the verification of those systems [13].461

▶ Definition 26. A decomposition is a tuple dec = (v0,m1, . . . , vk−1,mk, vk) with m0, . . . ,mk462

distinct letters of M and vi ∈ M∗ for all i.463

A word w ∈ M∗ matches dec if w = w0 · · ·wk where each wi can be obtained by inserting464

letters from {m1, . . . ,mi} in vi.465

▶ Example 27. Let M = {a, b, c}. Then dec = (abba, a, cbc, b, cc) is a decomposition. The466

word abbacabaacbabcbca matches dec as we can cut in in three parts abbacabaacbabcbca, and467

cabaac can be obtained by adding some a to cbc and babcbca can be obtained by adding468

some a and b to cc.469

We write Ldec for the language of words that match dec. Given a family of upward-closed
470

sets of words (Jm)m∈M, we define D((Jm)m∈M) as the set of decompositions471

D((Jm)m∈M) = {(v0,m1, . . . , vk−1,mk, vk) | ∀i,L(v0,m1,...,vi−1) ∩ Jmi
̸= ∅}.472

With an additional downward-closed set I, we also define473

D(I, (Jm)m∈M) = {(v0,m1, . . . , vk−1,mk, vk) | v0 · · · vk ∈ I, ∀i,L(v0,m1,...,vi−1) ∩Jmi
̸= ∅}.474
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Finally, the set of words producible by I, (Jm)m∈M is475

L(I, (Jm)m∈M) =
⋃

dec∈D(I,(Jm)m∈M)

Ldec.476

We say that a local run u with initial datum d is compatible with a decomposition dec =
477

(v0,m1, . . . , vk−1,mk, vk) if u = u0 · · ·uk where vi⊑ Outd(ui) and Ind(ui) ∈ {m1, . . . ,mi}∗
478

for all i.479

Here I should be thought of as the set of words over M that can be broadcast by an480

agent with its initial datum. Meanwhile, Jm represents the set of words w over M such that481

an agent can broadcast (m, d) with d not its initial datum while having received before only482

(a subword of) w with that datum. It can be read as the “cost” of a message m: in order to483

receive a message (m, d) you should first broadcast a sequence of letters of Jm with datum d.484

A decomposition (v0,m1, . . . , vk) is a scenario of the sequence of letters broadcast over485

a datum d during a run: The agent who has d as initial datum broadcasts v0 · · · vk with486

it, while m1, . . . ,mk mark the points at which each of those letters is first broadcast with487

datum d by another agent.488

Then, we can see D(I, (Jm)m∈M) as the set of decompositions (v0,m1, . . . , vk) that are489

compatible with the invariant I, (Jm)m∈M. The condition v0 · · · vk ∈ I means that an agent490

with d as initial datum should be able to broadcast v0 · · · vk with it. The other condition491

says that for all i there is a word w ∈ L(v0,m1,...,vi−1) ∩ Jmi
. This should be read as follows:492

w ∈ Jmi
means that if we can broadcast the sequence w with datum d, we can make an493

agent broadcast (mi, d)494

w ∈ L(v0,m1,...,vi−1) means that we can broadcast the sequence w with datum d, as we495

can obtain it from v0 · · · vi−1 by adding enough m1, . . . ,mi−1.496

5.1 Characterisation of winning strategies with invariants497

An invariant for general BGR is made of a downward-closed set of words I ⊆ M∗ (the498

sequences of letters that may be produced over some datum) and an upward-closed set of499

words Jm ⊆ M∗ for each letter m (the sequences of letters that allow an agent to send a500

message (m, d) with d that is not its initial datum).501

▶ Definition 28 (Invariants for BGR). An invariant for general BGR is a pair (I, (Jm)m∈M)502

with I ⊆ M∗ a downward-closed set of words and, for all m, Jm ⊆ M∗ an upward-closed set503

of words. We say that it is sufficient for a control strategy σ if the following conditions hold.504

1. ε ∈ I, merr /∈ I and Jmerr
∩ I = ∅505

2. L(I, (Jm)m∈M)) ⊆ I506

3. For all initial σ-local run u with initial datum d, if:507

(i) u is compatible with a decomposition dec ∈ D((Jm)m∈M), and508

(ii) for all d′ ̸= d, Ind′(u) ∈ I,509

then we have that510

(a) Outd(u) ∈ I511

(b) for all m ∈ M and d′ ̸= d, if u contains a broadcast of (m, d′) then Ind′(u) ∈ Jm.512

We once again prove that every winning control strategy has a sufficient invariant. The513

proof is presented in Appendix C514

▶ Lemma 29 (Invariants characterise winning strategies). A control strategy σ is winning if515

and only if there exists a sufficient invariant (I, (Jm)m∈M) for it.516
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5.2 The invariant game517

We have characterised winning control strategies using invariants.The next step is to consider518

an invariant (I, (Jm)m∈M) and show that we can construct a game in which the two players519

determine whether there is a control strategy for which this invariant is sufficient.520

We proceed as in Section 4. First we consider a game played on R where players pick a521

sequence of transitions (the next transition is chosen by the player owning the current state),522

and Environment picks the data when needed. The goal of Environment is to eventually523

obtain a local run u that satisfies either 3a or 3b but neither 3i nor 3ii, i.e., contradicting the524

invariant. The goal of Controller is to avoid this forever.525

We define formally the invariant game IG(G, I, (Jm)m∈M) for general BGR in Appendix C.526

We show that Controller wins that game if and only if she has a control strategy in G for527

which (I, (Jm)m∈M) is sufficient. Furthermore, we show that when Environment wins we528

can obtain a local run contradicting the invariant of bounded size with respect to G, I and529

(Jm)m∈M. This lets us bound the size of a sufficient invariant when it exists, using the530

Length Function Theorem.531

▶ Theorem 30 (Main theorem). SafeStrat is decidable and Fωω -complete.532

6 Allowing agents to see data533

So far we only considered control strategies that chose transitions based on the previous534

sequence of transitions, and not the sequence of data received. It is natural to wonder what535

happens if we use strategies of the form σ : (∆Dr)∗ → ∆. For this section we will only536

consider the signature case to make things easier. We conjecture that the following proof537

can be adapted to the general case.538

A central ingredient in this proof is Ramsey’s theorem on infinite hypergraphs, which539

extends naturally Ramsey’s theorem on graphs [20]. It states that if we colour every subset540

of size k of an infinite set while using finitely many colours, then there is an infinite subset541

in which every k-subset has the same colour.542

We now define data-aware control strategies. They are functions σ : D(∆ × D)∗ → ∆.
543

The next transition is chosen based on the local run taken so far, including the initial datum544

and the data received. Notions of σ-local runs and σ-runs are extended naturally.545

▶ Theorem 31. There is a winning data-aware control strategy for G if and only if there is546

a winning control strategy for G.547

Proof sketch. We show that there is a function h such that whenever a strategy is losing548

there is a losing σ-run of a certain shape where each agent has a local run of length at most549

h(|G|). Assume we have a winning data-aware control strategy. We then colour every set550

of h(|G|) data according to the behaviour of that strategy on local runs of length ≤ h(|G|)551

where those data appear. We apply Ramsey’s theorem to obtain an infinite set of data on552

which the strategy behaves the same on “short” local runs. This defines a control strategy553

which does not fail on runs where local runs are of length ≤ h(|G|). By definition of h, the554

resulting strategy is winning. ◀555

By combining this with Theorem 16, we obtain the following result.556

▶ Corollary 32. The existence of a winning data-aware control strategy for a BGR is decidable557

and Fωω -complete.558
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7 The case of one register559

The construction of [13] for the Fωω lower bound only requires two registers. We studied560

in Section 3 the complexity of those problems when protocols do not have registers. The561

remaining gap is for protocols with one register. We call them 1BGR. They offer an
562

intermediate step in terms of tractability and expressivity between the protocols without563

registers and the general case. Those protocols can sign messages with their initial identifier,564

and check that several messages have the same datum, but not simultaneously. They relate565

to Petri nets and population protocols with data, as those only allow each process to store566

one datum. In particular, the subclass of IO population protocols with data can be seen as a567

particular case of BGR with one register.568

We investigate the complexity of SafeStrat for 1BGR. In this case, a record transition569

essentially resets the memory of the process. This lets us split the invariant game used in570

the general case into simpler games: the output game and the echo games.571

▶ Theorem 33. SafeStrat is NExpTime-complete for 1BGR.572

A strategy σ : V ∗ → V for a two-player game is positional if its output only depends
573

on the current state, that is, for all w,w′ ∈ V ∗ and v ∈ V we have σ(wv) = σ(w′v). We574

rely on the following criterion, which can be used to show that a player can win with a575

positional strategy. A language L is submixing (or concave) if whenever we have words
576

u0, u1, . . . and v0, v1, · · · such that u0u1 · · · /∈ L and v0v1 · · · /∈ L then u0v0u1v1 · · · /∈ L. It577

was shown in [17] that if an objective is submixing then player P0 has a positional optimal578

strategy in all games with this objective.579

We rely on the characterisation of winning control strategies by the invariant game, as580

stated in Lemma 45 and 48. It turns out that for 1BGR, the invariant game can be split into581

several simpler games. Essentially, we consider the recording of a new value in the register as582

a reset of the game. We define two different games: in the output game the players build the583

part of the local run before the first record transition. In the echo game the players build an584

interval of the local run between two record transitions.585

We show that in the first game Controller can always use a positional strategy (Lemma 57)586

while in the second one it is Environment who can stick to positional strategies (Lemma 58).587

In both cases we use the submixing property of their objectives to prove it.588

We also prove that the winners of those games determine the winner of the 1BGR589

(Lemma 59). The positionality of Environment’s strategy in the echo game then lets us590

bound the size of the invariants necessary to witness the existence of a winning control591

strategy for Controller (Lemma 62). We exhibit an NExpTime algorithm, in which the592

non-deterministic guess is the invariant and a positional strategy for Controller in the output593

game. The lower bound follows from a reduction from the exponential grid tiling problem.594

8 Conclusion595

We showed decidability of SafeStrat for a powerful parameterised distributed model. We596

showcased a method for distributed controller synthesis through invariants by using it for597

increasingly complex versions of the model. We also match every resulting complexity class598

with a lower bound, which tends to show that this method makes sense for this model.599

The most promising future direction is to develop invariants for other models of distributed600

systems in order to obtain more decidability results. We can also investigate the relation601

between other distributed models with data and BGR, especially 1BGR.602
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A Missing proof from Section 3712

▶ Lemma 12 (Invariants characterise winning control strategies). A control strategy σ is713

winning if and only if there exists a sufficient invariant I ⊆ M for it.714

Proof. ⇒ Suppose σ is winning. Let I be the set of messages such that there exists a σ-run715

in which they are broadcast. We show that I is a sufficient invariant for σ.716

As σ is winning, merr can never be broadcast, thus merr /∈ I. Suppose by contradiction717

that we have a σ-local run s0
op1(m1)−−−−−→δ1 s1

op2(m2)−−−−−→δ2 · · · opk(mk)−−−−−−→δk
sk with s0 = sinit718

broadcasting some mout /∈ I and only receiving messages of I. Then we can construct a719

σ-run in which mout is broadcast.720

We proceed by induction: for all i ∈ [0, k], we show that there is a run ϱi whose projection721

on some agent a is s0
op1(m1)−−−−−→δ1 · · · opi(mi)−−−−−→δi si. For i = 0 this is immediate. Let i > 0,722

suppose we constructed ϱi−1, and let us construct ϱi. Let Ai−1 be the set of agents of ϱi−1.723

If si−1
opi(mi)−−−−−→δi

si is a broadcast step, then we simply execute ϱi−1 and then make a724

apply that broadcast, which no other agent receives.725

If si−1
opi(mi)−−−−−→δi si is a reception step, in which a message type m is received, then we726

have m ∈ I, by construction of the σ-local run. Hence there exists a σ-run ϱm over a set727

of agents Am in which m is broadcast. Up to renaming agents, we can assume that Ai−1728

and Am are disjoint. We then define ϱi over Ai−1 ⊔ Am by executing ϱi−1 over Ai−1,729

then executing ϱm over Am up to the point before an agent am broadcasts m. Finally,730

we make am broadcast m and a receive it.731

In both cases we obtain a σ-run in which the local run of a is s0
op1(m1)−−−−−→δ1 · · · opi(mi)−−−−−→δi

si.732

In particular, for i = k, we get a σ-run in which mout is broadcast. As mout /∈ I, this733

contradicts the definition of I. Hence I satisfies both items of the lemma.734

⇐ Suppose there exists I ⊆ M satisfying the conditions of the lemma. Suppose by735

contradiction that there is a σ-run ϱ in which merr is broadcast. Let m be the first message736

broadcast in ϱ that is not in I, and a the agent broadcasting it. Those are well-defined as737

merr /∈ I. Let ϱ′ be the prefix of ϱ stopping right after that broadcast. The projection πa(ϱ′)738

of ϱ′ on a contains a broadcast of m but no reception of any m′ /∈ I, a contradiction. ◀739

▶ Lemma 34. The SafeStrat problem is NP-hard for BGR without registers.740

We reduce from the graph 3-colouring problem [25].741

v1 v2 vn q· · ·

e, c

qerr...

for each e = (v, v′) ∈ E and
c ∈ {1, 2, 3}

br(v1, 1)

br(v1, 2)

br(v1, 3)

br(vn, 1)

br(vn, 2)

br(vn, 3)

rec(v, c) rec(v′, c)

merr

Figure 3 Illustration of the lower bound proof from Theorem 13.
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Consider an undirected graph G = (V,E) with V = {v1, . . . , vn}. We build a BGR with742

no registers as in Figure 3. From the initial state Controller chooses one of (vi, 1), (vi, 2), (vi, 3)743

for each i ∈ [1, n] and broadcasts it. Then Environment picks an edge e = (v, v′) ∈ E and744

c ∈ {1, 2, 3} and tries to reach qerr by receiving (v, c) and (v′, c).745

A strategy for Controller comes down to a colouring of V . It is winning if Environment746

can find an edge e and c such that both ends of e are coloured with c. In other words,747

Controller wins if and only if the selected colouring of V is a valid 3-colouring of G.748

B Missing proofs from Section 4749

We show that the invariants defined for signature BGR are accurate witnesses for winning750

control strategies. The idea behind this construction already existed in [13].751

▶ Lemma 18 (Invariants characterise winning strategies). A control strategy σ is winning if752

and only if there exists a sufficient invariant I ⊆ M∗ for it.753

Proof. ⇒ Suppose σ is winning. Let I be the set of words such that there exists a σ-run, an754

agent a and a datum d such that w is a subword of the d-output of the projection of that run755

on a. The empty word is in I as it is the output of a local run of length 0, which is a σ-run. As756

σ is winning, merr can never be broadcast, thus merr /∈ I. For the other condition, consider757

a σ-local run u = (s0, c0) op1(m1,d1)−−−−−−−→δ1 (s1, c1) op2(m2,d2)−−−−−−−→δ2 · · · opk(mk,dk)−−−−−−−−→δk
(sk, ck) whose758

d-input is in I for every datum d.759

Then we can construct a σ-run in which some agent has output Outsign(u), thus proving760

that Outsign(u) ∈ I. This construction is illustrated in Figure 4.761

Let D be the set of data appearing in u. For each datum d ∈ D, let wd be the d-input of762

u. As wd ∈ I, there exists a σ-run ϱd such that wd is a subword of the output of an agent ad.763

Let Ad be the set of agents of that σ-run.764

Up to renaming data and agents, we can assume that the initial datum of ad in ϱd is d,765

and that the σ-runs (ϱd)d∈D operate over disjoint sets of data and agents.766

We take a fresh agent a. We construct a σ-run ϱ over {a} ⊔
⊔

d∈D Ad as follows. We make767

a follow the local run u. Whenever a needs to receive a message (m, d), we run ϱd over Ad768

until a message (m, d) is broadcast by ad, and make a receive it. Then we continue running769

u. As Ind(u) is a subword of the output of πad
(ϱd) for all d ∈ D, we eventually run u in full.770

This yields a valid σ-run in which u is fully executed by a. Hence we have a σ-run in771

which agent a outputs Outsign(u). By definition of I, we thus have Outsign(u) ∈ I.772

⇐ Suppose there exists I ⊆ M∗ satisfying the conditions of the lemma. Suppose by773

contradiction that there is a σ-run ϱ in which merr is broadcast.774

Let ϱ− be the maximal prefix of ϱ such that the output of each agent is in I. It is775

well-defined as ε ∈ I, thus the prefix of ϱ with no step satisfies that condition. As merr /∈ I776

and I is downward-closed, I does not contain any word containing merr. Hence the output777

of ϱ is not in I, and thus ϱ− is a strict prefix of ϱ.778

Let a be the agent making the broadcast of the step right after ϱ− in ϱ, and let m be the779

message it broadcasts. Let ϱ+ be the prefix of ϱ made of ϱ− and that extra step.780

Let w− be the output of a in ϱ−. For all d ∈ D, the d-input of a in ϱ− must be a subword781

of the output of another agent. By definition of ϱ−, the d-input of a in ϱ− is thus in I for all782

d. As the d-input of a in ϱ− and ϱ+ is the same, the d-input of a in ϱ+ is in I for all d. By783

maximality of ϱ−, the output of a in ϱ+ is not in I.784

This contradicts the second condition on I given by the lemma. ◀785
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ρ1 :
br(a, d) br(a, d) br(b, d)

ρ2 :
br(b, d) br(a, d)

u :
br(b, d) br(a, d)br(a, d) br(a, d)

br(b, d)br(b, d)

ρ :

br(b, d) br(a, d)br(a, d) br(a, d)
br(b, d)br(b, d)

br(a, d) br(a, d) br(b, d)

br(b, d) br(a, d)

Figure 4 Illustration of the proof of Lemma 18. Most information is omitted, we only represent
schematically the relevant broadcasts and receptions. Data are represented by colours. If we have a
local run u outputting bb and for each d a run in which an agent outputs the d-input of u, then we
can rename some data and compose those runs to form a run in which an agent outputs bb. Local
runs of relevant agents are coloured with their initial datum.

▶ Lemma 20. Let I ⊆ M∗ be a downward-closed set of words containing ε and not merr. If786

Controller wins the invariant game IG(G, I) then there is a control strategy σ such that I is787

a sufficient invariant for σ.788

Proof. Let σIG be a winning strategy for Controller in IG(G, I). We define σ as the control789

strategy in which Controller follows σIG . That is, given a local run u = (s0, c0) op1(m1,d1)−−−−−−−→δ1790

· · · opk(mk,dk)−−−−−−−−→δk
(sk, ck), we set σ(u) = σIG(δ1 · · · δk).791

We show that I is a sufficient invariant for σ. Assume by contradiction that we have792

a σ-local run u = (s0, c0) op1(m1,d1)−−−−−−−→δ1 · · · opk(mk,dk)−−−−−−−−→δk
(sk, ck) such that u has an output793

outside of I, and its d-input is in I for all d ∈ D. We then show that π = δ1 · · · δk is a losing794

σIG-play for Controller in IG(G, I). As u is a σ-local run, by definition of σ, δ1 · · · δk is a795

σIG-play.796

For all j ∈ [0, k] let uj be the prefix of u up to (sj , cj) and πj = δ1 · · · δj .797

▷ Claim 35. For all j ∈ [0, k] and i ∈ [2, r] we have recentIni(πj)⊑ Inuj
(cj(i)) and798

Out(πj) = Outsign(uj).799

Proof. By a straightforward induction on j. ◁800

We can instantiate the previous claim with j = k to obtain Out(π) = Outsign(u). As we801

assumed that Outsign(u) /∈ I, we have Out(π) /∈ I. As the d-input of u is in I for all d ∈ D,802

and I is downward-closed, the letters of all messages received in u are in I. Moreover, by the803

previous claim, for all j ∈ [0, k], we have recentIni(πj)⊑ Inuj (cj(i))⊑ Inu(cj(i)) ∈ I. As I is804

downward-closed, we have recentIni(πj) ∈ I for all i, j.805
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As a result, π is a losing σIG-play for Controller. This contradicts the assumption that806

σIG is a winning strategy for IG(G, I). In consequence, there is no σ-local run u whose807

output is outside of I, and whose d-input is in I for all d ∈ D.808

This means that I is a sufficient invariant for σ. ◀809

▶ Lemma 23 (Bounding the size of the invariant). Let G a signature BGR. There is a winning810

control strategy for G if and only if there is a sequence of words w0, . . . , wk ∈ M∗ such that811

Controller wins IG(G, {w1, . . . , wk}↑c),812

and for all i ∈ [1, k], |wi| ≤ ψ(|wi−1|).813

Proof. Suppose there is a winning control strategy σ. By Lemma 18 there is a downward-814

closed sufficient invariant I ⊆ M∗ for σ. By Lemma 21, Controller wins IG(G, I), so the815

first condition is satisfied.816

For the second condition, as Ic is upward-closed it has a finite basis B. Let w0, w1, ..., wk817

be the elements of B sorted by length. We can assume that we took I so that k is minimal. For818

all j ∈ [1, k], we define Bj = {wi | i < j} and Ij = Bj ↑c. Note that we have I ⊆ Ik ⊆ . . . ⊆ I0.819

As I contains ε and not merr, we can assume w0 = merr. By minimality of k, for all j ∈ [1, k]820

the set Ij is not a sufficient invariant for σ.821

By Lemma 21, there is a σ-local run of length at most φ(R, Bj) whose output is not in822

Ij and whose d-inputs are all in Ij . As I is a sufficient invariant for σ, one of those d-inputs823

must not be in I. We choose one of those and call it w. As a consequence, there exists wℓ824

with ℓ ≥ j such that wℓ⊑ w, and thus |wℓ| ≤ |w| ≤ φ(R, Bj). As |wi| ≤ |wi+1| for all i, this825

implies |wj | ≤ φ(R, Bj) = |R|(||Bj || + 1)(|Bj |+1). As wj−1 is of maximal length among words826

of Bj , we have ||Bj || = |wj−1| and |Bj | ≤ |M||wj−1|+1.827

As a result, |wj | ≤ |R|(|wj−1| + 1)|M||wj−1|+1+1 = ψ(|wj−1|). Thus the second condition828

of the lemma is also satisfied.829

The other direction follows by Lemma 20 and Lemma 18. ◀830

C Missing proofs from Section 5831

C.1 Characterisation of winning strategies (Section 5)832

▶ Lemma 29 (Invariants characterise winning strategies). A control strategy σ is winning if833

and only if there exists a sufficient invariant (I, (Jm)m∈M) for it.834

This section is dedicated to the proof of this lemma. To do so, we need an argument835

that resembles the construction illustrated in Figure 4. However, the construction gets more836

involved in this case.837

We can start by proving the easier direction of the equivalence, given by the following838

lemma. The general structure of this construction already existed in [13]. However, the839

different nature of the objects used here and there make it difficult to use their proof as a840

black box. We have to go through all the steps here.841

▶ Lemma 36. If there exists a sufficient invariant (I, (Jm)m∈M) for a control strategy σ842

then σ is winning.843

Proof. Suppose σ has a sufficient invariant (I, (Jm)m∈M). Suppose by contradiction that844

there is a σ-run ϱ in which merr is broadcast.845

Let a be an agent broadcasting merr in ϱ, let u be its local run.846

We first show that the local run of a in ϱ does not satisfy 3a and 3b.847
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If merr is broadcast in u with its initial datum then, as merr /∈ I and I is downward-closed,848

we cannot have Outd(u) ∈ I. On the other hand, if merr is broadcast in u with another849

datum d′ then as Jmerr
= ∅, Ind′(u) /∈ Jmerr

. Hence u does not satisfy 3a and 3b.850

Let ϱ− be the maximal prefix of ϱ such that the local runs of all agents satisfy 3a and 3b.851

It is well-defined: we saw that the full run ϱ does not satisfy this requirement, and as ε ∈ I,852

the prefix of ϱ with no step satisfies it. Furthermore ϱ− must be a strict prefix of ϱ.853

Let a be the agent making the broadcast of the step right after ϱ− in ϱ, and let m be the854

message it broadcasts. Let ϱ+ be the prefix of ϱ made of ϱ− and that extra step.855

By maximality of ϱ−, there must be an agent whose local run in ϱ+ does not satisfy 3a856

and 3b. This agent can only be a: all agents satisfied both conditions in ϱ−, an agent cannot857

switch from satisfying to not satisfying those conditions without making a broadcast (for858

3b, this is due to the fact that all Jm are upward-closed), and a is the only one who made a859

broadcast in the last step.860

As a consequence, the local run u+ of a in ϱ+ must dissatisfy either 3a or 3b. It remains861

to show that u+ satisfies both 3i and 3ii to obtain a contradiction.862

We start by showing that the local run u− of a in ϱ− satisfies 3i and 3ii.863

Let d be the initial datum of u−. Let m1, . . . ,mk be the letters such that (mi, d) is864

broadcast by an agent that is not a during ϱ−. Let us cut ϱ− into sections ϱ0 · · · ϱk such865

that ϱ0 · · · ϱi is the maximal prefix of ϱ− in which (mi, d) has not been broadcast by866

any agent apart from a. For each i let ui be the projection of ϱi on a. We thus have867

u− = u0 · · ·uk. Let ami be the first agent different from a who broadcasts (mi, d) and let868

umi
be the projection of ϱ− on ami

. Let wi be the sequence of letters broadcast in ϱi869

with datum d.870

Consider the decomposition dec = (v0,m1, . . . , vk−1,mk, vk) where vi = Outd(ui). By871

definition u− must be compatible with it. Let i ∈ [1, k]. As umi satisfies 3b, we872

have Ind(umi
) ∈ Jmi

. By definition, we must have Ind(umi
)⊑ w0 · · ·wi−1 and thus873

w0 · · ·wi−1 ∈ Jmi as Jmi is upward-closed. Furthermore, each wj (the letters sent874

in ϱj with datum d) can be obtained from vj (the ones sent by a) by adding letters875

of {m1, . . . ,mj} (the broadcasts of other agents). As a result, we have w0 · · ·wi−1 ∈876

L(v0,m1,...,vi−1). We obtain that w0 · · ·wi−1 ∈ Jmi∩L(v0,m1,...,vi−1), thus Jmi∩L(v0,m1,...,vi−1)877

is not empty. In conclusion, dec ∈ D((Jm)m∈M).878

We now show that u− satisfies 3ii.879

Let d′ ̸= d. If d′ does not appear in ϱ− then Ind′(u−) = ε ∈ L(I, (Jm)m∈M)). Otherwise,880

let a′ be the agent whose initial datum in ϱ is d′. We set w′ the sequence of letters881

broadcast with datum d′ in ϱ−. Clearly Ind′(u−)⊑ w′. In order to show that Ind′(u−),882

it suffices to show that w′ ∈ L(I, (Jm)m∈M)).883

We use the same arguments as for the previous item: we cut ϱ− into sections ϱ′
0 · · · ϱ′

k884

according to the times at which new letters are broadcast with d′ by agents other than885

a. We then construct a decomposition dec′ = (v′
0,m

′
1, . . . , v

′
k−1,m

′
k, v

′
k) where m′

i is the886

message broadcast with d′ at the start of ϱ′
i and v′

i is the sequence of letters broadcast by887

a′ in ϱ′
i.888

We argue as before that w′ ∈ Ldec′ and dec′ ∈ D(I, (Jm)m∈M).889

We have shown that u− satisfied 3i and 3ii. To obtain a contradiction, we must show that890

u+ satisfies them as well. By definition, u+ is u− with an additional broadcast at the end.891

Let dec = (v0,m0, . . . , vk) ∈ D((Jm)m∈M) be a decomposition such that u− is compatible892

with dec. We have u− = u0 · · ·uk where vi⊑ Outd(ui) and Ind(ui) ∈ {m1, . . . ,mi}∗
893

for all i. Let u+
k be uk to which we append the last broadcast in u+. We obtain894
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u− = u0 · · ·uk−1u
+
k . Since vk⊑ Outd(uk)⊑ Outd(u+

k ) and Ind(uk) = Ind(u+
k ) ∈895

{m1, . . . ,mk}∗, we conclude that u+ is compatible with dec. Hence u+ satisfies 3i.896

As Ind′(u−) = Ind′(u+) for all d′ ∈ D, u+ satisfies 3ii.897

In conclusion, we have constructed a σ-local run u+ such that u+ satisfies 3i and 3ii but898

not 3a and 3b, yielding a contradiction.899

◀900

We must now prove the other implication of Lemma 29. Intuitively, the argument goes901

as follows.902

We define a notion of partial run. This is a run of a set of agents, but some messages can903

be received without being broadcast. They are called unmatched receptions. A local run is a904

particular case of partial run, with a single agent.905

We assume that σ is winning. We take I as the downward-closure of the set of words906

w ∈ M∗ such that there is a σ-run ϱ in which the sequence of messages w is broadcast,907

all with the same datum. For each m, we set Jm to be the upward-closure of the set of908

words w = m1 · · ·mn such that there is a σ-partial run in which the sequence of unmatched909

receptions is of the form (m1, d) · · · (mn, d) for some d ∈ D, and (m, d) is broadcast at some910

point. This should be understood as follows: if we have a run in which (m1, d) · · · (mn, d)911

is broadcast, then we can compose it with the partial run above, match all the unmatched912

receptions and obtain an extra broadcast of m.913

The difficulty is to show that those sets form a sufficient invariant for σ. In particular,914

we need to take a σ-local run u satisfying 3i and 3ii and show that it satisfies 3a and 3b.915

We do that by building σ-runs in which the local run of some agent is u.916

We rely on several technical lemmas. Lemma 38, 39 and 40. Their statements are involved917

but they come with illustrations that should give helpful intuition. Before reading the details918

of those lemma we recommend that the reader reads the proof of Theorem 29 at the end of919

this section, to better understand how those lemmas are used.920

C.1.1 Definitions for partial runs921

For the following proof we need to introduce the notion of partial run, which describes the
922

projection of a run on a subset of agents. We then show a key technical lemma that allows923

us to construct a run from a local run and a set of suitable partial runs.924

We will use this lemma to prove a characterisation of winning control strategies using925

some invariants, like in the previous sections.926

▶ Definition 37. Let γ, γ′ two configurations.927

A partial step γ −→p γ
′ is defined if either γ −→ γ′ (normal step) or there exist m ∈ M,928

d ∈ D such that for all agent a either γ(a) = γ′(a) or γ(a) rec(m,d)−−−−−→δ γ
′(a) for some reception929

transition δ (unmatched reception of (m, d)).930

A partial run ϱ is a sequence of partial steps. It is initial if it starts in an initial config-
931

uration. Its d-input Ind(ϱ) is the sequence m0 · · ·mk of letters corresponding to unmatched932

receptions with datum d in ϱ. Its d-output Outd(ϱ) is the sequence of letters corresponding933

to broadcasts with datum d in ϱ.934

Note that a local run can be seen as a partial run with a single agent. Given a control
935

strategy σ, a σ-partial run is a partial run in which the local runs of all agents are σ-local936

runs.937
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A datum d is initial in ϱ if it appears in the first configuration. We extend the notion
938

of compatible to partial runs: A partial run ϱ is compatible over d with a decomposition
939

dec = (v0,m1, . . . , vk) if ϱ = ϱ0 · · · ϱk and for all i ∈ [0, k], vi⊑ Outd(ϱi) and Ind(ϱi) ∈940

{m1, . . . ,mi}∗, with d an initial datum of some agent in ϱ.941

The following lemmas give us ways to compose partial runs to obtain complete runs.942

Suppose we have a partial run ϱ compatible with a decomposition dec = (v0,m1, . . . , vk)943

over an initial datum d.944

Suppose that we have, for each non-initial datum d′, a run ϱd′ such that Ind′(ϱ)⊑ Outd′(ϱd′).945

Also suppose that for each j ∈ [1, k] we have a partial run ϱj such that Ind(ϱ′
j) ∈946

L(v0,m1,...,vi−1) and which contains a broadcast of (m, d), and no unmatched receptions on947

data other than d.948

First, we show that given a word w ∈ Ldec we can use the ϱi to extend ϱ and obtain949

a σ-partial run which is still compatible with dec and whose d-output contains w as a950

subword. This is done by composing ϱ with many copies of each ϱi to fill in the missing951

broadcasts.952

Then, we show that we can again use many copies of the ϱi to eliminate the unmatched953

receptions with datum d. We do this by carefully adding the necessary copies of ϱi,954

by decreasing i. Each time we fill in a missing broadcast of mi while possibly adding955

new ones for some of the mj with j < i. This terminates as the number of unmatched956

receptions of each letter mi decreases with respect to the lexicographic ordering.957

We show that for each non-initial d′ we can eliminate the unmatched receptions with958

datum d′ by composing that partial run with the σ-runs ϱd′ . We use the broadcasts in959

ϱd′ to match the unmatched receptions in ϱ over d′.960

Finally, we combine the two first steps to show that given a run compatible with a961

decomposition dec over some datum d and a word w ∈ Ldec, we can extend this run to962

obtain another run whose d-output contains w.963

C.1.2 Extending the output964

▶ Lemma 38. Let dec = (v0,m1, . . . , vk) be a decomposition, let w ∈ Ldec.965

Let d a datum and ϱ an initial σ-partial run compatible with dec over d.966

Suppose that for all j ∈ [1, k] there exist an initial σ-partial run ϱ′
j such that Ind(ϱ′

j) ∈967

Ldecj
where decj = (v0,m1, . . . , vj−1), Ind′(ϱ′

j) = ε for all d′ ̸= d and mj⊑ Outd(ϱ′
j).968

Then, there is a partial run ϱ̃ such that969

ϱ̃ is compatible with dec over d,970

w⊑ Outd(ϱ̃)971

for all d′ ̸= d, either Ind′(ϱ̃) = ε or Ind′(ϱ̃) = Ind′(ϱ)972

Proof. As w ∈ Ldec, we have w = w0 · · ·wk, where each wi can be obtained by adding some973

letters of {m1, . . . ,mi} to vi. As u is compatible with dec, u = u0 · · ·uk with vi⊑ Outd(ui)974

for all i and Ind(ui) ∈ {m1, . . . ,mi}∗. As a consequence, to obtain a d-output that contains975

w, it suffices to show that we can add a letter from {m1, . . . ,mi} at any point of ui. We976

do so using ϱ̃i: Since Ind(ϱ̃i) ∈ L(v0,m1,...,vi−1) ↓, we can split ϱ̃j into ϱ̃j,0, . . . , ϱ̃j,j−1 so that977

Ind(ϱ̃j,i)⊑ w̃j,i where w̃j,i can be obtained by adding letters from {m1, . . . ,mj} to vi.978

We use the following composition operation: consider ϱ and one of the ϱ′
j . We can build979

a new run in which we execute both runs in parallel over disjoint sets of agents. We match980

each ϱ̃i,j with ϱj so that the broadcasts of ϱj with d forming vi are received in ϱ̃i,j and the981

only remaining missing broadcasts in that section of the run are with letters m1, . . . ,mi.982
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ϱ′
b :

rec(a, d)
br(b, d)

ϱ′
c :

rec(a, d) rec(b, d)
br(c, d)

ϱ :
rec(b, d)

br(a, d)
rec(c, d)

br(a, d)

ϱ̃ :

rec(c, d)rec(b, d)
br(a, d) br(a, d)

rec(a, d)
br(b, d)

rec(a, d)
br(c, d)

rec(b, d)

Figure 5 An illustration of the proof of Lemma 38. The partial run ϱ is compatible with
decomposition (a, b, a, c, ε). We have Ind(ϱb) = a ∈ L(a) and Ind(ϱb) = ab ∈ L(a,b,a). We build
a partial run ϱ̃ such that aacb⊑ Outd(ϱ̃). Note that ϱ̃ is also compatible with decomposition
(a, b, a, c, ε). We ignore data other than d in this picture.

We obtain a run section whose d-output still contains vi and whose d-input only contains983

m1, . . . ,mi. This lets us get to a point where the next step in ϱ̃j is a broadcast of (mj , d)984

and ϱ has been executed up to the beginning of ϱj . We may then use the (mj , d) broadcast985

at any moment in the rest of ϱ to extend the d-output. As a consequence, we can compose ϱ986

with the ϱ′
i as many times as necessary to obtain a run ϱ̃ whose d-output contains w.987

Each composition maintains the fact that the run is compatible with dec. Further, for988

all d′ ̸= d, either d′ does not appear in ϱ and Ind(ϱ̃) = ε or d′ appears in ϱ and then989

Ind′(ϱ̃) = Ind′(ϱ). ◀990

C.1.3 Unmatched receptions with initial data991

▶ Lemma 39. Let dec = (v0,m1, . . . , vk) be a decomposition, d a datum, ϱ an initial σ-partial992

run compatible with dec over d.993

Suppose that for all j ∈ [1, k] there exist an initial partial run ϱ′
j in which d is not initial994

such that Inϱ′
j
(d) ∈ Ldecj

where decj = (v0,m1, . . . , vj−1), Inϱ′
j
(d′) = ε for all d′ ̸= d and995

mj⊑ Outd(ϱ′
j).996

Then, there exist a σ-partial run ϱ̃ such that997

Ind(ϱ̃) = ε,998

Outd(ϱ)⊑ Outd(ϱ̃),999

for all d′ ̸= d, Ind′(ϱ̃) = Ind′(ϱ)1000

Proof. We proceed in the same way as in the previous part: the goal is now to use the1001

partial runs ϱ′
j to eliminate the d-input of ϱ.1002

As ϱ is compatible with dec over d, we can split ϱ into ϱ0, . . . , ϱk with wi⊑ Outd(ϱi) and1003

Ind(ϱi) ∈ {m1, . . . ,mi}∗ for all i. Again, we rename agents and data so that the sets of1004
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ϱ′
b : rec(a, d)

br(b, d)
ϱ′

c : rec(a, d) rec(a, d) rec(b, d)
br(c, d)

ϱ :
rec(b, d)

br(a, d)
rec(c, d)

br(a, d)

rec(b, d) rec(c, d)
br(a, d) br(a, d)

rec(a, d) rec(a, d)
br(c, d)

rec(b, d)

ϱ̃ :

rec(b, d) rec(c, d)
br(a, d) br(a, d)

rec(a, d)
br(b, d)

rec(a, d) rec(a, d)
br(c, d)

rec(b, d)

rec(a, d)
br(b, d)

Figure 6 An illustration of the proof of Lemma 39. The partial run ϱ is compatible with
decomposition (a, b, a, c, ε). We have Ind(ϱb) = a ∈ L(a) and Ind(ϱb) = aab ∈ L(a,b,a). We build ϱ̃

such that Ind(ϱ̃) = ε. We start by using ϱ′
c to eliminate the unmatched receptions of c (while adding

some unmatched receptions of b), then we use ϱ′
b to eliminate the unmatched receptions of b. We

ignore data other than d in this picture.

agents of ϱ and of every ϱ′
j are all disjoint and the only shared datum between any two of1005

these runs is d.1006

We once again use the composition operation described in the proof of Lemma 38: consider1007

ϱ and one of the ϱ′
j . We execute both runs in parallel and match each ϱ̃i,j with ϱj so that1008

the broadcasts of ϱj with d forming vi are received in ϱ̃i,j , leaving only unmatched receptions1009

with letters m1, . . . ,mi. We obtain a run section whose d-output still contains vi and whose1010

d-input only contains m1, . . . ,mi. We can do that until the next step in ϱ̃j is a broadcast1011

of (mj , d) and ϱ has been executed up to the beginning of ϱj . We may then use the (mj , d)1012

broadcast at any moment in the rest of ϱ to match an unmatched reception of ϱ. As a1013

consequence, we can compose ϱ with the ϱ′
i as many times as necessary to obtain a run ϱ̃1014

with no unmatched receptions on d.1015

Each composition maintains the fact that the run is compatible with dec. When we1016

do a composition with ϱ′
j to match a reception of (mj , d), we may add some receptions of1017

m1, . . . ,mj−1 to the run (the ones of ϱ′
j). However, every composition decreases the number1018

of unmatched receptions of mk, . . . ,m1 for the lexicographic ordering.1019

As a result, in the end we obtain a run ϱ̃ without any unmatched reception on datum d.1020

As ϱ is fully contained in ϱ̃, Outd(ϱ)⊑ Outd(ϱ̃). Moreover, for all d′ ̸= d, either d′ does not1021

appear in ϱ and then Ind′(ϱ̃) = ε or d′ appears in ϱ and Ind′(ϱ̃) = Ind′(ϱ) ◀1022
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C.1.4 Unmatched receptions with non-initial data1023

▶ Lemma 40. Let ϱ be an initial σ-partial run, d′ a datum, ϱ′ an initial σ-run. If1024

Ind(ϱ)⊑ Outd′(ϱ′) and d′ an initial datum value in ϱ′ but not in ϱ, then there exists1025

an initial σ-partial run ϱ̃ such that1026

Ind′(ϱ̃) = ε1027

for all d′′ ̸= d′, Ind′′(ϱ̃) = Ind′′(ϱ)1028

for all d′′ ̸= d′, Outd′′(ϱ)⊑ Outd′′(ϱ̃)1029

Proof. Up to renaming agents, assume that ϱ and ϱ′ have disjoint agents. We rename data1030

in ϱ′ so that ϱ′ has no shared data with ϱ besides d′.1031

We build ϱ̃ by running ϱ and ϱ′ over their respective agents separately. We use the1032

broadcasts made by ϱ′ with d′ to match the unmatched receptions with datum d′ in ϱ: this1033

gives us a new partial run ϱ with no unmatched reception with datum d′. Furthermore, for1034

every datum d′′, either the sequence of broadcasts and unmatched receptions is the same as1035

before, or Ind(ϱ) = ε (if d′′ appears in ϱd′).1036

The d′′-output can only increase as ϱ is fully executed within ϱ̃. ◀1037

C.1.5 How to obtain a word w ∈ L(I, (Jm)m∈M)1038

We now combine Lemmas 38 and 39 to obtain one last useful technical lemma for the proof1039

of Lemma 29. It will be used to prove the second condition of Definition 28 when showing1040

that an invariant (I, (Jm)m∈M) is sufficient for a strategy σ.1041

▶ Lemma 41. Let σ be a control strategy, I a downward-closed set of words, and (Jm)m∈M1042

upward-closed ones.1043

Suppose that for all w ∈ I there is an initial σ-run and a datum d such that w⊑ Outd(ϱ).1044

Suppose also that for all m ∈ M and w ∈ Jm there is a σ-partial run ϱ and a datum d that1045

is not initial in ϱ such that Ind(ϱ)⊑ w, m⊑ Outd(ϱ) and Ind′(ϱ) = ε for all d′ ̸= d.1046

Then for all w ∈ L(I, (Jm)m∈M)), there is a σ-run ϱ and a datum d such that w⊑ Outd(ϱ).1047

Proof. Let w ∈ L(I, (Jm)m∈M)), w matches a decomposition dec = (v0,m1, . . . , vk) such1048

that v0 · · · vk ∈ I and, for all j, L(v0,m1,...,vj−1) ∩ Jmj ̸= ∅. Hence we have a σ-run ϱ and1049

a datum d such that v0 · · · vk⊑ Outd(ϱ). Note that as ϱ has no unmatched reception, in1050

particular, it is compatible with dec. Also, for all j we have a σ-partial run ϱj and a datum1051

dj not initial in ϱj such that Indj (ϱj) ∈ L(v0,m1,...,vj−1) ↓, mj⊑ Outdj (ϱj) and Ind′(ϱj) = ε1052

for all d′ ̸= dj .1053

By Lemma 38, this means that we can obtain a σ-partial run whose d-output contains w,1054

with no unmatched receptions on data other than d, and compatible with dec.1055

We can then use Lemma 39 to eliminate all unmatched receptions and obtain a σ-run1056

whose d-output contains w. ◀1057

C.1.6 Proof of the characterisation lemma1058

Proof of Lemma 29. ⇒ Suppose σ is winning. Consider R the set of σ-runs.1059

Let I = {Outd(ϱ) | ϱ ∈ R, d ∈ D}↓ be the set of all outputs of all σ-runs.1060

For all m ∈ M, we set Jm as the upward-closure of the set of Ind(ϱ) with ϱ a σ-partial1061

run such that d is not an initial datum of ϱ, ϱ contains a broadcast of (m, d) and Ind′(ϱ) = ε1062

for all d′ ̸= d.1063

Let us now prove that (I, (Jm)m∈M) is sufficient for σ. As σ is winning, merr is never1064

broadcast, and thus never received, in any σ-run. Hence merr /∈ I. Furthermore, if we had a1065
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word w ∈ I ∩ Jmerr , then we would have a σ-run ϱ and a σ-partial run ϱ′ such that merr1066

is broadcast in ϱ′, Ind′(ϱ′)⊑ w⊑ Outd(ϱ) and Ind′′(ϱ′) = ε for all d′′ ̸= d′. We can assume1067

d = d′, as we can rename data.1068

As a result, we could form a σ-run by renaming data and agents such that their sets of1069

data and agents are disjoint except for d. We then execute the two runs in parallel, and1070

match the unmatched receptions of ϱ′ with broadcasts in ϱ, to obtain a σ-run, with no1071

unmatched receptions. This contradicts the fact that σ is winning. Hence I ∩ Jmerr
= ∅.1072

Further, as an empty run is a σ-run, we have ε ∈ I.1073

For the second point, we can simply apply Lemma 41.1074

It remains to show that a σ-local run satisfying 3i and 3ii also satisfies 3a and 3b. Let u1075

be a σ-local run satisfying 3i and 3ii.1076

First, we construct a σ-run ϱ whose projection on some agent is u, which shows that1077

u satisfies 3a. Let d be the initial datum of u. As u satisfies 3i, there is some dec =1078

(v0,m1, . . . , vk) ∈ D((Jm)m∈M) such that u is compatible with dec.1079

By definition of (Jm)m∈M, for each j we have a σ-partial run ϱj and a non-initial datum1080

dj such that Indj
(ϱj) ∈ L(v0,m1,...,vj−1) ↓, there are no unmatched receptions with data1081

other than dj , and mj⊑ Outdj
(ϱj).1082

We can thus apply Lemma 39, to obtain a σ-partial run with no unmatched reception1083

over d such that Outd(u)⊑ Outd(ϱ).1084

Furthermore, as u satisfies 3ii, by definition of I, for all d′ ̸= d there is a σ-run ϱd′1085

such that Ind′(u)⊑ Outd′(ϱd′). We can then apply Lemma 40 on ϱ, with every d′ ̸= d1086

appearing in u to obtain a σ-run ϱ′ such that Outd(u)⊑ Outd(ϱ′). This shows that1087

Outd(u) ∈ I, by definition.1088

Let d′ ̸= d and m ∈ M be such that (m, d′) is broadcast in u. We can apply Lemma 391089

on u and then Lemma 40 on the resulting run, with every d′′ /∈ {d, d′}. We obtain a1090

σ-partial run in which (m, d′) is broadcast and whose d′-input is the same as u. As a1091

consequence, u satisfies 3b by definition of (Jm)m∈M.1092

This concludes the proof of that direction.1093

⇐ By Lemma 36.1094

◀1095

C.2 The invariant game1096

The invariant game associated with BGR G and invariant (I, (Jm)m∈M), which we denote
1097

by IG(G, I, (Jm)m∈M) is defined as follows: The set of vertices is QR: the current state in1098

the protocol and a set of registers, which are the ones supposed to contain the initial datum.1099

The initial vertex is qinit. From each vertex q ∈ QR, players choose a transition from q in1100

∆R. Controller chooses the next transition when q is in Qctrl, Environment when it is in1101

Qenv. The state is updated to the target of the transition.1102

For all play π, we define reg(π) as the set of registers on which there were no record1103

transition in π. Intuitively, reg(π) is the set of registers that contain the initial datum of1104

the local run.1105

Given a play π, we define its initial input initIn(π) as the sequence of letters received with
1106

equality transitions with registers of reg. This represents the sequence of letters received1107

with the initial datum. Formally, initIn(ε) = ε, and1108
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initIn(δ1 · · · δk+1) =


initIn(δ1 · · · δk)m if δk+1 is an equality transition rec(m,=i)−−−−−−→

with i ∈ reg(δ1 · · · δk),
initIn(δ1 · · · δk)otherwise.

1109

For all registers i, we define its recent input on i, written recentIni(π) like in the previous1110

section: it is the sequence of messages received with equality transitions over register i since1111

its last reset.1112

We define the output Out(π) of π in a different way as in the signature case. It is the1113

sequence of letters broadcast from registers that were in reg at the time of the broadcast.1114

Intuitively, this is the sequence of letters that are broadcast with the initial datum in the1115

local run. Formally,1116

Out(δ1 · · · δk+1) =


Out(δ1 · · · δk)m if δk+1 is a broadcast transition br(m,i)−−−−−→

with i ∈ reg(δ1 · · · δk),
Out(δ1 · · · δk) otherwise.

1117

Given a decomposition dec = (v0,m1, . . . , vk), we say that a play π is compatible with
1118

dec if π = π0 · · ·πk and for all j we have initIn(πj) ∈ {m1, . . . ,mj}∗ and vj⊑ Out(πj).1119

The objective of the game is then described as follows.1120

(A) If at some point the play π = δ1 · · · δk is not compatible with any decomposition of1121

D((Jm)m∈M) then Controller wins.1122

(B) If at some point the play π = δ1 · · · δk is such that recentIni(π) /∈ I for some i /∈ reg1123

then Controller wins.1124

(C) If at some point the play π = δ1 · · · δk is such that Out(π) /∈ I then Environment wins.1125

(D) If at some point of the play a broadcast transition with i /∈ reg(π) and br(m,i)−−−−−→ is taken1126

while recentIni(π) /∈ Jm (with π the play formed so far) then Environment wins.1127

(E) If the play goes on forever without any of those things happening then Controller wins.1128

▶ Lemma 42 (Deciding the invariant game). There is an elementary function φ(N) such1129

that:1130

Given a BGR G over a protocol R and finite sets of words B and (Bm)m∈M, we can1131

decide in time φ(|R| + ||B|| + |B| +
∑

m∈M ||Bm|| + |Bm|) whether Controller has a winning1132

strategy in IG(G, (B ↑)c, (Bm ↑)m∈M).1133

Furthermore, if Environment has a winning strategy then he has a strategy to win in at1134

most φ(|R| + ||B|| + |B| +
∑

m∈M ||Bm|| + |Bm|) steps.1135

Proof. By Lemma 8, B ↑ is a regular language, recognised by a deterministic finite automaton1136

AB↑ = (QB ,M,∆B , q
B
0 , FB) with (||B|| + 1)(|B|+1) states. Similarly, for each m we can1137

construct a deterministic automaton ABm↑ = (QBm
,M,∆Bm

, qBm
0 , FBm

)1138

Let I = B ↑c and for each m ∈ M, Jm = Bm ↑.1139

We define a deterministic automaton over the alphabet ∆R that reads plays δ1 · · · δk of1140

IG(G, I, (Jm)m∈M) and accepts exactly the winning plays for Environment.1141

Consider the alphabet M ⊔ M̄, where M̄ = {m̄ | m ∈ M} is a copy of M.1142

We define the useful automata in the following claims. Let us define K = |R| + |B| +1143

||B|| +
∑

m∈M |Bm| + ||Bm||1144
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▷ Claim 43. We can construct an NFA of exponential size in K and recognising the language1145

{v0m̄1 · · · vk | (v0,m1 · · · , vk) ∈ D((Jm)m∈M)}.1146

Proof. Consider the language of decompositions defined as {v0m̄1 · · · vk−1m̄kvk | v0, . . . , vk ∈1147

M∗, m̄1, . . . , m̄k ∈ M̄ distinct.}1148

This language is recognised by an automaton of exponential size which simply checks1149

that each letter of M̄ appears at most once.1150

We can turn this automaton into a non-deterministic transducer T that reads a decom-1151

position v0m̄1 · · · vk−1m̄kvk, outputs all the letters of M that it reads, and can output letters1152

of M̄ arbitrarily as soon at it has read them before. If some letter of M̄ is repeated then the1153

run is rejected. The set of images of v0m̄1 · · · vk−1m̄kvk is exactly L(v0,m1,...,vk).1154

By composing this transducer with an automaton recognising Jm, we obtain an automaton1155

Am recognising decompositions that have an image in Jm by the transducer, i.e., the language1156

{v0m̄1 · · · vk−1m̄kvk | L(v0,m1,...,vk) ∩ Jm ̸= ∅}.1157

It is then easy to obtain an automaton recognising {v0m̄1 · · · vk | (v0,m1 · · · , vk) ∈1158

D((Jm)m∈M)} using a product of the automata (Am)m∈M.1159

The resulting automaton is of exponential size in K. ◁1160

▷ Claim 44. We can construct a deterministic automaton of double-exponential size in K1161

recognising plays compatible with a decomposition of D((Jm)m∈M).1162

Proof. We use the automaton recognising {v0m̄1 · · · vk | (v0,m1 · · · , vk) ∈ D((Jm)m∈M)}1163

defined in the first claim.1164

We can define a non-deterministic transducer that takes as input a sequence of transitions1165

π = δ1 · · · δp and outputs some decomposition with which it is compatible. The transducer1166

keeps track of reg(π) while reading the play.1167

The transducer simply guesses a sequence m̄1 · · · m̄k of distinct letters of M̄. It outputs1168

them in that order at arbitrary moments while reading π.1169

When it reads a broadcast transition br(m,i)−−−−−→ over a register currently in reg(π), it1170

non-deterministically outputs m or not.1171

When it reads an equality transition rec(m,=i)−−−−−−→ over a register currently in reg(π), if m̄1172

has not been broadcast before it goes to a rejecting sink state.1173

The set of images of a play π are the decompositions it is compatible with. We compose1174

this transducer with the automaton from the first claim to get an automaton recognising the1175

set of plays compatible with some decomposition of D((Jm)m∈M). ◁1176

We have automata for I and each Jm, as well as for plays compatible with a decomposition1177

of D((Jm)m∈M). From those it is straightforward to define an automaton C reading plays1178

and accepting the ones winning for Environment. We can then determinise it at the cost of1179

an exponential blow-up.1180

By Proposition 10, we can solve this game in polynomial time in the size of the resulting1181

automaton C and the size of the arena of IG(G, I, (Jm)m∈M) (i.e., |R|), that is, in double-1182

exponential time in ||B|| + |B| + |R|.1183

Furthermore, if Environment has a winning strategy then he has one that guarantees1184

that he wins in at most double-exponentially many steps in K. ◀1185

We have to show that Controller wins the invariant game if and only if she has a winning1186

control strategy.1187
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▶ Lemma 45 (From the invariant game to control strategies). Let I ⊆ Σ∗ be a downward-closed1188

set and (Jm)m∈M upward-closed sets such that I contains ε and not merr, Jmerr
∩ I = ∅,1189

and L(I, (Jm)m∈M)) ⊆ I.1190

If Controller wins the invariant game IG(G, I, (Jm)m∈M) then there is a control strategy1191

σ such that (I, (Jm)m∈M) is a sufficient invariant for σ.1192

Proof. Let σIG be a winning strategy for Controller in IG(G, I, (Jm)m∈M).1193

We define σ as the control strategy in which Controller follows σIG . That is, given a1194

local run u = (s0, c0) op1(m1,d1)−−−−−−−→δ1 · · · opk(mℓ,dℓ)−−−−−−−→δℓ
(sℓ, cℓ), we set σ(u) = σIG(δ1 · · · δℓ). Let1195

d be the initial datum of u. We show that (I, (Jm)m∈M) is a sufficient invariant for σ. To1196

do so, we assume by contradiction that we have a σ-local run u = (s0, c0) op1(m1,d1)−−−−−−−→δ11197

· · · opℓ(mℓ,dℓ)−−−−−−−→δℓ
(sℓ, cℓ) such that u satisfies 3i and 3ii but does not satisfy either 3a or 3b.1198

Let d be its initial datum.1199

We then show that π = δ1 · · · δℓ is a losing σIG-play for Controller in IG(G, I). As u is a1200

σ-local run, by definition of σ, δ1 · · · δℓ is a σIG-play.1201

For all j ∈ [0, ℓ] let uj be the prefix of u up to (sj , cj) and πj = δ1 · · · δj .1202

▷ Claim 46. For all index j and i /∈ reg(πj) we have recentIni(πj)⊑ Inuj (cj(i)) and1203

initIn(πj)⊑ Inuj
(d). Furthermore, if reg(πj) ̸= ∅ then Out(πj) = Outd(uj).1204

Proof. By a straightforward induction on j. ◁1205

As u satisfies 3i, it is compatible with a decomposition dec = (v0,m1, . . . , vk) in1206

D((Jm)m∈M). We thus have u = u0 · · ·uk with vi⊑ Outd(ui) and Ind(ui) ∈ {m1, . . . ,mi}∗
1207

for all i.1208

Let j be the maximal index such that reg(πj) ̸= ∅, and i0 the maximal index such that1209

π0 · · ·πi is a prefix of πj .1210

Hence we can cut π in the same way: π = π0 · · ·πk where πi is the sequence of transitions1211

of ui. We can infer using the previous claim that vj⊑ Outd(ui) = Out(πi) for all i ≤ i0 and1212

initIn(πj)⊑ Ind(ui) ∈ {m1, . . . ,mi}∗.1213

As a consequence, πj is compatible with dec′ = (v0,m1, . . . ,mi0 , ε). Furthermore, we1214

have initIn(πj) = initIn(π) and we can conclude that π is compatible with dec′, which is in1215

D((Jm)m∈M).1216

We can also infer that all its prefixes π′ are compatible with a decomposition of1217

D((Jm)m∈M): it suffices to consider the decomposition (v0,m1, . . . ,mi, ε), with i the maximal1218

index such that mi is appears in initIn(π′).1219

Furthermore, as u satisfies 3ii, for all d′ ̸= d, we have Ind(uℓ) ∈ I. For all j,1220

recentInπj (i)⊑ Incj(i)(uj)⊑ Incℓ(i)(uℓ)1221

. As I is downward-closed, we have recentInπj
(i) ∈ I for all j ∈ [0, ℓ].1222

We know that either u does not satisfy 3a or does not satisfy 3b.1223

Let us first assume that u does not satisfy 3b. Let d′ ̸= d and m ∈ M be such that u1224

contains a broadcast of (m, d′) while Ind′(u) /∈ Jm. Let j be the index of the first broadcast1225

of (m, d′) in u and i the register containing d′ at that point. Then δj is a broadcast transition1226

br(m,i)−−−−−→, while recentInπj
(i)⊑ Ind′(uj)⊑ Ind′(u). As Jm is upward-closed, recentInπj

(i) /∈ Jm,1227

which means that π is losing for Controller.1228

Now we assume that u does not satisfy 3a. Let u = u−u+ be such that u− is the maximal1229

prefix of u in which d appears at all times. We can cut π = π−π+ the same way: π− is the1230

sequence of transitions of u−, and is also the maximal prefix of π such that reg(π−) ̸= ∅.1231
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▷ Claim 47. Suppose that π is a winning play for Controller. Then there is a decomposition1232

dec = (v0,m1, . . . , vk) ∈ D((Jm)m∈M) such that v0 · · · vk⊑ Out(π) and Outd(u) ∈ Ldec.1233

Proof. Let dec = (v0,m1, . . . , vk) be a decomposition of D((Jm)m∈M) such that u is com-1234

patible with dec. It exists as u satisfies 3i.1235

Furthermore, we choose it so that |v0 · · · vk| is minimal. Among the ones with minimal1236

|v0 · · · vk|, we choose one with k maximal.1237

Suppose v0 · · · vk is not a subword of Out(π). Then, as Out(π) = Out(π−) = Outd(u−),1238

we get that v0 · · · vk ̸ ⊑ Outd(u−).1239

Let i be the minimal index such that v0 · · · vi ̸ ⊑ Outd(u−), and let vi− be the maximal1240

prefix of vi such that v0 · · · vi−1vi−⊑ Outd(u−), and m the letter right after vi− in vi.1241

Let vi+ such that vi = vi−mvi+. The letter m must be broadcast with d in u+. The1242

same broadcast appears in π+, say at step j on register i0. As we assumed that π is1243

winning, we have recentInπj (i0) ∈ Jm. Hence Ind(uj) ∈ Jm, as Jm is upward-closed and1244

recentInπj
(i0)⊑ Ind(uj).1245

We have three cases:1246

m ∈ {m1, . . . ,mi−1} : then it is easily checked that we can remove m from vi without1247

affecting the properties of dec, contradicting the minimality of |v0 · · · vk|.1248

m = mℓ for some ℓ ∈ [i, k] : then we can use the following decomposition:1249

(v0,m1, . . . , vi−1,mi, vi−,m, vi+, . . . ,mℓ−1, vℓ−1vℓ,mℓ+1, . . . , vk)1250

instead of dec, again contradicting the minimality of |v0 · · · vk|.1251

m /∈ {m1, . . . ,mk}. Then we use the following decomposition instead of dec:1252

(v0,m1, . . . , vi−1,mi, vi−,m, vi+,mi+1, . . . , vk). This contradicts the minimality of |v0 · · · vk|1253

.1254

As a consequence, we obtain that v0 · · · vk is a subword of Out(π). It remains to show1255

that Outd(u) ∈ Ldec. To do that, let us assume that u+ contains a broadcast with d of1256

a letter that is not in {m1, . . . ,mk}. Let m be the letter in the first such broadcast of1257

u+, i the corresponding register, and j the index of the step. Since we assumed that π1258

is winning, we have recentInπj
(i) ∈ Jm. Hence Ind(uj) ∈ Jm, as Jm is upward-closed and1259

recentInπj (i)⊑ Ind(uj). Moreover, every letter in Ind(uj) must be in {m1, . . . ,mk}, as u is1260

compatible with dec.1261

As a result, Ind(uj) ∈ Jm ∩ Ldec, hence Jm ∩ Ldec ≠ and thus (v0,m1, . . . , vk,m, ε) ∈1262

D((Jm)m∈M). Moreover, u is compatible with this decomposition. This contradicts the1263

maximality of k.1264

In conclusion, we have shown that dec matches all the conditions of the claim. ◁1265

Suppose π is winning, then by this claim we have a decomposition dec = (v0,m1, . . . , vk) ∈1266

D((Jm)m∈M) such that v0 · · · vk⊑ Out(π) and Outd(u) ∈ Ldec.1267

As π is winning, we have Out(π) ∈ I, and thus Outd(u) ∈ L(I, (Jm)m∈M). Since1268

L(I, (Jm)m∈M) ⊆ I, we get Outd(u) ∈ I, and thus u satisfies 3a, a contradiction.1269

In conclusion, we obtained that π is a losing σIG-play, which contradicts the assumption1270

that σIG is winning. As a consequence, (I, (Jm)m∈M) is a sufficient invariant for σ.¨ ◀1271

▶ Lemma 48 (From control strategies to the invariant game). Let σ be a control strategy.1272

Let I ⊆ Σ∗ be a downward-closed set and (Jm)m∈M upward-closed sets such that I1273

contains ε and not merr, Jmerr
∩ I = ∅, and L(I, (Jm)m∈M)) ⊆ I.1274
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Let B be the basis of Ic and Bm the basis of Jm for all m.1275

If Environment wins the invariant game IG(G, I, (Jm)m∈M) then there is a σ-local run of1276

length at most φ(|R|+|B|+||B||+
∑

m∈M |Bm|+||Bm||) satisfying 3i and 3ii and dissatisfying1277

either 3a or 3b.1278

Proof. Let N = |R| + |B| + ||B|| +
∑

m∈M |Bm| + ||Bm||. By Lemma 42 and Proposi-1279

tion 10 there exists τIG a winning strategy τIG for Environment in the invariant game1280

IG(G, I, (Jm)m∈M) such that Environment always wins in at most φ(N) steps. We construct1281

a σ-local run of length at most φ(N) satisfying 3i and 3ii and dissatisfying either 3a or1282

3b. To do so, we apply τIG to choose transitions and we choose data by always picking a1283

datum never seen before in the run, when the datum is not determined by the transition.1284

Let (s0, c0) be an initial configuration of R. We define iteratively a sequence of steps1285

(sℓ−1, cℓ−1) opℓ(mℓ,dℓ)−−−−−−−→δℓ
(sℓ, cℓ) as follows. Suppose we defined them up to (sℓ−1, cℓ−1), and1286

let uℓ−1 be the local run defined so far. We first choose δℓ:1287

If sℓ−1 ∈ Qctrl then δℓ = σ(δ1 · · · δℓ−1),1288

otherwise δℓ = τIG(δ1 · · · δℓ−1).1289

We then choose dℓ:1290

If δℓ is a broadcast transition of letter m, we set dℓ as the initial datum of the local run.1291

If δℓ is a record transition, we pick a datum dk that does not appear in uℓ−1.1292

If δℓ = sℓ−1
rec(m,=i)−−−−−−→ sℓ is an equality transition of letter m, we set dℓ = cℓ−1(i).1293

Clearly we maintain the fact that uℓ is a σ-local run and δ1 · · · δℓ is a τIG-play in1294

IG(G, I, (Jm)m∈M). We stop when δ1 · · · δℓ is winning for Environment in IG(G, I, (Jm)m∈M),1295

which happens for some ℓ ≤ φ(N). Let M be the final value of ℓ and u = uM be the local1296

run obtained at the end. Let d be its initial datum. It remains to show that u satisfies 3i1297

and 3ii and dissatisfies either 3a or 3b. To do so, we rely on the following claim:1298

▷ Claim 49. For all register i and index ℓ such that i /∈ reg(δ1 · · · δℓ), recentIni(δ1 · · · δℓ) =1299

Inuℓ
(cℓ(i)). Furthermore, Out(δ1 · · · δℓ) = Outd(uℓ) and initIn(δ1 · · · δℓ) = Ind(uℓ).1300

Proof. By a straightforward induction on ℓ. ◁1301

Let πℓ = δ1 · · · δℓ for all ℓ, and let π = πM .1302

First we show that u satisfies 3i: As π is winning for Environment, it is compatible1303

with some decomposition dec = (v0,m1, . . . , vk) ∈ D((Jm)m∈M). Thus π = π0 · · ·πk with1304

vj⊑ Out(πj) and initIn(πj) ∈ {m1, . . . ,mj}∗, for all j.1305

We divide u like π, u = u0 · · ·uk. As a consequence of the claim, we obtain vj⊑ Outd(uj)1306

and Ind(uj) ∈ {m1, . . . ,mj}∗, for all j. Thus u is compatible with dec.1307

Now, we show that u satisfies 3ii. Let d′ ̸= d. If d′ is stored in a register at some point1308

in u, let ℓ be the maximal index such that cℓ(i) = d′ for some i. There can be no step1309

involving d′ after ℓ, as d′ would need to be stored in a register, contradicting the maximality1310

of ℓ. As a consequence, Ind′(u) = recentInπℓ
(i). As π is winning for Environment, we have1311

recentInπℓ
(i) ∈ I . If Ind′(u) = ε then clearly Ind′(u) ∈ I by assumption on I. If d′ is never1312

stored in a register then Ind′(u) = ε ∈ I.1313

We have shown that u satisfies 3i and 3ii.1314

If Out(π) /∈ I then Outd(u) /∈ I, by the claim, hence u does not satisfy 3a.1315

If Out(π) ∈ I, since π is winning for Environment, there must be an index ℓ such that1316

the ℓth transition of π is a broadcast transition br(m,i)−−−−−→, but recentInπ(i) /∈ Jm. In that case,1317

we have Incℓ+1(i)(uℓ+1) /∈ Jm and uℓ+1 contains a broadcast of (m, cℓ+1(i)).1318
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As a consequence, we have found a prefix uℓ+1 of u which does not satisfy 3b. As 3i and1319

3ii hold for u, it is easy to see that they must also hold for all its prefixes.1320

In all cases we have found a σ-local run of length at most φ(N) which satisfies 3i and 3ii1321

but dissatisfies either 3a or 3b.1322

This concludes our proof. ◀1323

▶ Lemma 50 (Bounding invariants). There is an elementary function ψ(N) such that the1324

following statement holds.1325

Let G a BGR. There is a winning control strategy for G if and only if there is a sequence1326

of words w1, . . . , wk ∈ M∗ and subsets B, (Bm)m∈M of {w1, . . . , wk} such that1327

B contains merr and not ε and Bmerr
↑ ∩B ↑c = ∅1328

L(B ↑c, (Bm ↑)m∈M,⊆)B ↑c
1329

Controller wins IG(G, B↑c, (Bm ↑)m∈M),1330

B and all Bm are antichains for the subword order ⊑ ,1331

B ∪
⋃

m∈M Bm = {w1, . . . , wk},1332

for all i ∈ [1, k], |wi| ≤ ψ(|wi−1|).1333

Proof. By Lemma 45, if there are such sets of words B and (Bm)m∈M, then there is a control1334

strategy such that (B ↑c, (Bm ↑)m∈M is a sufficient invariant for σ. Hence, by Lemma 29, σ1335

is a winning control strategy.1336

Conversely, suppose there is a winning control strategy σ. By Lemma 29 there is a1337

sufficient invariant (I, (Jm)m∈M) for σ. As Ic is upward-closed it has a finite basis B.1338

Similarly, each Jm has a finite basis Bm.1339

The first two conditions hold by definition, as (I, (Jm)) is a sufficient invariant.1340

By Lemma 48 Controller wins IG(G, I, (Jm)m∈M), so the third condition of the lemma1341

is satisfied.1342

For the third condition, by definition, all basis are antichains.1343

Let w0, w1, ..., wk be the elements of B ∪
⋃

m∈M Bm sorted by length, i.e., |wi| ≤ |wi+1|1344

for all i. We can assume that we chose I and (Jm)m∈M so that k would be minimal.1345

By minimality of k, for all j ∈ [1, k], (B′, (B′
m)m∈M) is not a sufficient invariant for σ,1346

with B′ = B ∩ {wi | i < j} and for all m, B′
m = Bm ∩ {wi | i < j}. Let I ′ = B′ ↑c and1347

J ′
m = B′

m ↑ for all m. Note that I ⊆ I ′ while J ′
m ⊆ Jm for all m.1348

A possibility is that merr ∈ I ′. As merr ∈ B, we then have |wj | ≤ 1.1349

Another possibility is that I ′ ∩ J ′
merr

̸= ∅. As a consequence, there is a word w ∈ B′
merr

1350

with no subword in B′. As this word is of length at most |wj−1|, we conclude that there is a1351

word of length at most |wj−1| in B \B′, hence |wj | ≤ |wj−1|.1352

Thirdly, we may have L(I ′, (J ′
m)m∈M) ⊈ I ′. Then there is a decomposition dec =1353

(v0,m1, . . . , vk) ∈ D(I ′, (J ′
m)m∈M) and w ∈ Ldec such that w /∈ I ′.1354

It is easy to construct deterministic automata recognising L(I ′, (J ′
m)m∈M) and I ′ of1355

double-exponential size in |R|, |M|, B′ and (B′
m)m∈M, by using Lemma 8 and Claim 43.1356

Hence we can find such a w of at most double-exponential size, and thus the decomposition1357

dec = (v0,m1, . . . , vk) also has at most double-exponential size. Now note that v0 · · · vk is1358

in I ′, but cannot be in I: otherwise, we would have w ∈ L(I, (J ′
m)m∈M) ⊆ L(I, (Jm)m∈M),1359

while w /∈ I ′ ⊇ I, a contradiction. Hence there is a word of at most double-exponential size1360

in |G|, B′ and (B′
m)m∈M (thus of at most triple-exponential size in |wj−1|) that is in B′ but1361

not B. As a consequence, |wj | is at most triply-exponential in |wj−1| + |M| + |R|.1362

The last case is when there is a run σ-local run which satisfies 3i and 3ii but dissatisfies1363

either 3a or 3b, with respect to (I ′, (J ′
m)m∈M). By Lemma 48, there is such a σ-local run u1364

of length at most K = φ(|R| + ||B′|| +
∑

m∈M ||B′
m||) ≤ φ(|R| + (|M| + 1)|wj−1|).1365
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As J ′
m ⊆ Jm for all m, we have D((J ′

m)m∈M) ⊆ D((Jm)m∈M). As a consequence, u1366

satisfies 3i with respect to (I, (Jm)m∈M).1367

As I ⊆ I ′, if u satisfies 3a with respect to (I, (Jm)m∈M) then it also satisfies it with1368

respect to (I ′, (J ′
m)m∈M).1369

Two cases remain: either u satisfies 3ii with respect to (I ′, (J ′
m)m∈M) and not (I, (Jm)m∈M),1370

or satisfies 3b with respect to (I, (Jm)m∈M) and not (I ′, (J ′
m)m∈M).1371

We examine the two cases:1372

Suppose u satisfies 3ii with respect to (I ′, (J ′
m)m∈M) and not (I, (Jm)m∈M). Let d′ be a1373

datum such that Ind′(u) /∈ I. As Ind′(u) ∈ I ′, we found a word of length at most K that1374

is in I ′ but not I.1375

Suppose u satisfies 3b with respect to (I, (Jm)m∈M) and not (I ′, (J ′
m)m∈M). Then there1376

exist m ∈ M and d′ ̸= d such that u contains a broadcast of (m, d′) and Ind′(u) /∈ J ′
m,1377

while Ind′(u) ∈ Jm. Furthermore, we have |Ind′(u)| ≤ |u| ≤ K1378

In both cases, there exists wℓ with ℓ ≥ j such that wℓ⊑ w, and thus |wℓ| ≤ |w| ≤ K.1379

As |wj | ≤ |wℓ|, we have |wj | ≤ K. As ||B′|| ≤ |wj−1| and ||B′
m|| ≤ |wj−1|, we obtain1380

|wj | ≤ φ(|R| + (|M| + 1)|wj−1|).1381

We can then simply take a suitable elementary function so that |wj−1| ≤ ψ(|R| + |M| +1382

|wj |) ◀1383

C.3 Main theorem1384

▶ Theorem 30 (Main theorem). SafeStrat is decidable and Fωω -complete.1385

Proof. It was shown in [13] that the coverability problem is Fωω -hard. As coverability is the1386

particular case of SafeStrat where there are no controller nodes, this immediately yields1387

the same lower bound for SafeStrat.1388

Let us now show the upper bound. Let G a BGR. We once again apply the Length1389

Function Theorem.1390

Consider a sequence of words w1, . . . , wk ∈ M∗ and subsets B, (Bm)m∈M of {w1, . . . , wk}1391

satisfying the conditions of Lemma 50.1392

We use a fresh letter # /∈ M. For each wi we define w′
i = #|R|+|M|wi## if wi ∈ B, and1393

w′
i = #|R|+|M|wi#m with m such that wi ∈ Bm otherwise.1394

By the second condition of Lemma 50, w′
i is well-defined for all i.1395

Note that the sequence w′
1 · · ·w′

k is an antichain: as # does not appear in any wi, w′
i⊑ w′

j1396

implies that wi⊑ wj , and that they both belong to B or to some common Bm. This is1397

impossible as all those sets are antichains.1398

Furthermore, for all i, we have |w′
i+1| ≤ ψ(|R|+|M|+|wi|)+|R|+|M|+2 ≤ ψ(|w′

i|)+|w′
i|.1399

As g : n 7−→ ψ(n)+n is a primitive recursive function, by the Length function theorem we obtain1400

a function f ∈ Fω|M| such that every (g, n)-controlled bad sequence of words w0, w1, ..., wk1401

has at most f(n) terms.1402

As merr is in B, |w0| ≤ 1, thus |w′
0| ≤ |R| + |M| + 3 We therefore have |wi| ≤ g(i)(|R| +1403

|M| + 3) for all i. As a consequence, we have k ≤ f(|R| + |M| + 3).1404

Our algorithm guesses a sequence of words of sorted by length w1, ..., wk with k ≤1405

f(|R| + |M| + 3) such that |wi+1| ≤ ψ(|wi|) for all i. The algorithm then guesses subsets B1406

and (Bm)m∈M that cover {wi | i ∈ [1, k]}.1407

It checks that Controller wins IG(G, B↑c, (Bm ↑)m∈M,). We accept if she does and reject1408

otherwise.1409
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This can be done in double-exponential time in |R| + k + |wk|, by Lemma 42. We can1410

make this algorithm deterministic with an exponential blow-up in the time complexity. By1411

Lemma 50, this algorithm is correct.1412

The time required by this algorithm is therefore h(f(|R| + |M| + 3)) with h a primitive1413

recursive function. As Fω|M| is closed under composition with primitive recursive functions,1414

the algorithm takes a time bounded by a function of Fω|M| . As a consequence, the problem1415

is in Fωω . ◀1416

D Missing proofs from Section 61417

We say that a local run has organised data if
1418

if whenever a datum is received for the first time, it is greater than the initial datum and1419

all data received previously.1420

Each datum is recorded at most once in the registers.1421

▶ Proposition 51. There is a function h : N → N such that for all BGR G, if a control1422

strategy is losing then there exists a σ-run ϱ in which every local run has length at most1423

h(|G|) and has organised data in which merr is broadcast.1424

Proof. Let us start by defining an execution tree as a tree of the following form:1425

There are two types of nodes, word nodes and run nodes1426

The children of a word node are run nodes, and the children of a run node are word1427

nodes.1428

For all run node ν with a label u and all d ∈ D such that Ind(u) ̸= ε, ν has a child with1429

a label w such that Ind(u)⊑ w.1430

For all word node ν labelled w, for all child ν′ of ν labelled u, w⊑ Outsign(u)1431

Consider the following algorithm: We start with an execution tree made only of a root
1432

labelled merr. We maintain a set of word nodes O, initially containing only the root. The1433

word nodes in O are called open, others are called closed1434

While O is not empty, we apply the following steps:1435

If there is a run node ν whose children are all closed, let ν′ be its parent, labelled w. We1436

remove every node that was added to the tree after ν′ (in particular, we remove all of its1437

descendants). Then, we remove ν from O.1438

Otherwise, let B be the set of labels of open nodes, we define I = B ↑c. By Lemma 21, there1439

exists a σ-local run u of length at most φ(R, B) such that Outsign(u) /∈ I, Ind(u) ∈ I1440

for all d and no datum is recorded twice. Let ν be an open node with a label w such that1441

w⊑ Outsign(u). It exists by definition of B and I. We add a child ν′ to ν, labelled by u.1442

Then, consider the set {Ind(u) | d ∈ D} \ {ε}, let Bu be its set of minimal elements for1443

⊑ . For each v ∈ Bu we add a child labelled v to ν′, and we add all those children to O.1444

Note that when we remove a node we remove all nodes added after that one. As a1445

consequence, at all times we can enumerate open nodes O = {ν0, ν1, . . . , νk} in their order1446

of appearance, and we obtain |wi| ≤ |ui| ≤ φ(R, {w1, . . . , wi−1}) for all i, with w1, . . . , wk1447

the labels of ν1, . . . , νk and u1, . . . , uk the labels of their respective parents. Additionally, we1448

maintain the fact that the sequence w1, . . . , wk is a bad sequence. We can then apply the1449

Length Function Theorem to bound k by f(|R|) with f a function of Fωω .1450

We also obtain a bound h(|R|) on the length of run node labels. As a consequence, the1451

number of data appearing in each local run is bounded by that same bound, and thus the1452

degree of the tree is at most h(|R|).1453
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As every node is a leaf or an open node or the child of an open node, we get a bound1454

b(|R|) on the size of the tree. As a consequence, the set of trees we see is finite. In order to1455

show that the algorithm terminates, we simply have to show that we cannot loop.1456

Given the tree at some point of the algorithm, let ν0, . . . , νk be the set of word nodes in1457

their order of creation. For each i, let xi be 0 if νi is open and 1 if it is closed. It is easy to1458

check that the sequence x0 · · ·xk increases at each step for the lexicographic ordering. As1459

a result, we never see the same tree twice. The algorithm therefore terminates in at most1460

c(|R|) steps.1461

▷ Claim 52. After each iteration, for all closed node ν labelled w, ν is a leaf and there is1462

a σ-run in which every local run has organised data and has length at most h(|R|) and in1463

which the sequence w is broadcast by some agent.1464

Proof. We proceed by induction on the number of iterations. This property is clearly true at1465

the beginning as there are no closed nodes.1466

For the induction step, note that we never add children to closed nodes and only turn1467

leaves into closed nodes. Hence we maintain the fact that every closed node is a leaf.1468

Furthermore, say we turn an open node labelled w into a closed one. We do so when1469

it has a child ν′ whose children are all closed. Let u be the label of ν′ and w1, . . . , wn the1470

labels of its children. By induction hypothesis, for each i we have a σ-run ϱi in which each1471

local run has organised data and length at most h(|R|) and in which an agent broadcasts wi.1472

For each d received in u, we know that there is an i such that Ind(u)⊑ wi. We define1473

ϱd as ϱi where data have been renamed so that wi is broadcast with datum d and all other1474

data are fresh and do not appear in u.1475

Let d1, . . . , dm be the data received in u, in order of appearance. Let d0 be the initial1476

datum of u. For all j ∈ [2,m], in increasing order, let Aj−1 be such that all data appearing1477

in ϱj−1 are below Aj−1. Let A0 = d0 + 1. Define ϱ′
j as ϱdj

where each datum d′ has been1478

renamed into d′ + Aj−1. The runs ϱ′
j use disjoint sets of data and in each ϱ′

j an agent1479

broadcasts Indj
(u) with datum d′

j = dj +Aj−1. In particular we have d0 < d′
1 < · · · < d′

m.1480

We have also maintained the fact that all local runs in those runs have organised data.1481

We rename each datum dj with in u to d′
j and obtain a local run u′ with organised data1482

and Indj (u) = Ind′
j
(u′). We can execute all runs ϱ′

j and u over disjoint sets of agents, and1483

use the broadcasts in each ϱ′
j to match the receptions in u. This gives us a σ-run ϱi in1484

which each local run has increasing data and length at most h(|R|) and in which an agent1485

broadcasts w (by executing u). ◁1486

As the algorithm terminates, eventually the root is closed. By the claim above, we have a1487

σ-run ϱ in which each local run has length at most h(|R|) and in which an agent broadcasts1488

merr. ◀1489

We recall Ramsey’s theorem on infinite hypergraphs. Given a set S and k ∈ N, we use1490

the notation
(

S
k

)
for the set of subsets of S of size k.1491

▶ Theorem 53 (Ramsey’s theorem on infinite hypergraphs). Let V be an infinite set of vertices1492

and k ∈ N. Let col :
(

V
k

)
→ C with C a finite set of colours. Then there exists an infinite1493

subset V ′ ⊆ V and c ∈ C such that col(
(

V ′

k

)
) = {c}.1494

▶ Theorem 31. There is a winning data-aware control strategy for G if and only if there is1495

a winning control strategy for G.1496
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Proof. The right-to-left direction is clear.1497

For the left-to-right direction, suppose there is a winning data-aware control strategy σ1498

for G. Let K = h(|R|) with h as defined in Proposition 51. Let RK be the set of σ-local runs1499

with organised data of length at most K.1500

We define a function col :
( D

K+1
)

→ 2RK as follows. Let D be a set of R + 1 data. Let1501

d0, · · · , dR be the elements of D in increasing order. Then col(D) is the set of σ-local runs1502

with organised data of length at most R such that the initial datum is d0 the other data1503

appearing in the run are d1, . . . , dk for some k. With the organised data property and those1504

conditions, the local run is fully determined by its sequence of transitions. As a result,1505

|col(D)| ≤ |∆|K .1506

In a local run with at most B steps, at most B + 1 data appear. As a result, every1507

element of RK has an antecedent by col. We can now apply Theorem 53. We obtain an1508

infinite set D′ ⊆ D of data and a set of local runs R such that col(
( D′

K+1
)
) = {R}.1509

Let d0, . . . , dK ∈ D′ with d0 < · · · < dK . Define the strategy σ′ : ∆∗ → ∆ which, given1510

a sequence of transitions, takes the same decision as σ over the unique local run with that1511

sequence of transitions, organised data, and using data {d0, . . . , dk} for some k, with d0 the1512

initial datum.1513

If σ′ was losing, we would have a run in which every local run has length at most K and1514

organised data in which merr is broadcast. This run is, however, also a σ-run, which is a1515

contradiction. As a result, σ′ is winning. ◀1516

E Missing proofs from Section 71517

In this section we prove the following result.1518

▶ Theorem 33. SafeStrat is NExpTime-complete for 1BGR.1519

We start with the upper bound.1520

▶ Proposition 54. SafeStrat is in NExpTime on 1BGR.1521

For the rest of this section we fix a 1BGR G = (R, Qctrl, Qenv,merr).1522

We will use the following criterion for the existence of positional strategies.1523

▶ Proposition 55 ([17]). If an objective is submixing then player P0 has a positional optimal1524

strategy in all games with this objective.1525

The output game is played on R, with players picking transitions from their respective1526

states. It has two parameters: an invariant (I, (Jm)m∈M), and a set of record transitions1527

T ⊆ ∆. We will use the term (I, (Jm)m∈M, T )-output game for the output game with those1528

parameters.1529

The winning condition is defined as follows:1530

(O1) If at some point the play is not compatible with any decomposition of D((Jm)m∈M),1531

then Controller wins.1532

(O2) If the output of the play is not in I then Environment wins.1533

(O3) If we reach a record transition then Controller wins if it is in T and Environment wins1534

otherwise.1535

(O4) If the play goes on forever without any of the previous things happening then Controller1536

wins.1537
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▶ Lemma 56. If Controller wins an output game then she has a positional winning strategy.1538

The echo game is also played on R, with players picking transitions from their respective1539

states. It has as parameters an invariant (I, (Jm)m∈M), a set of record transitions T ⊆ ∆ and1540

a record transition t = q
rec(m,↓1)−−−−−−→ q′. The play starts by taking transition t, and continues1541

from q′.1542

(E1) If at some point the recent input on 1 is not in I, Controller wins.1543

(E2) If at some point we make a broadcast with letter m while the recent input on 1 is not1544

in Jm, then Environment wins.1545

(E3) If we reach a record transition the game stops: If that transition is in T then Controller1546

wins, otherwise Environment does.1547

(E4) If the play goes on forever without any of those things happening then Controller wins.1548

▶ Lemma 57. If Controller wins an output game then she has a positional winning strategy.1549

Proof. We show that Controller’s objective in an output game is submixing. This proves the1550

lemma by applying [17, Theorem 4.5].1551

Consider two losing plays for Controller π and π′, and a third play π̄ = π0π
′
0π1 · · ·1552

obtained by shuffling the two. We show that π̄ is also losing for Controller. As π and π′ are1553

losing for Controller, we can consider them as finite: the victory of Environment is witnessed1554

by a finite prefix. We can cut π and π′ into π = π0π1 · · ·πm and π′ = π′
0π

′
1 · · ·π′

m so that1555

π̄ = π0π
′
0π1 · · ·πmπ

′
m (note that π′

m can be empty).1556

Clearly no transition of T is seen in π or π′, thus not in π̄ as well. Let π̃ a prefix of π̄, we1557

show that it is compatible with some decomposition of D((Jm)m∈M). Let m̃1, . . . , m̃k be1558

the set of letters received along π̃, in that order. Let π̃ = π̃0 · · · π̃k so that for each i the first1559

step of π̃i is the first reception of mi. Let ṽi be the sequence of letters broadcast in π̃i, for1560

all i. Let ˜dec = (ṽ0, m̃1, . . . , ṽk). Clearly π̃ is compatible with dec.1561

It remains to show that ˜dec ∈ D((Jm)m∈M). Let i ∈ [1, k], we need to find a word in1562

L(ṽ0,m̃1,...,ṽi−1)∩Jmi
. For that, we observe that the reception of m̃i happens in either a segment1563

from π or from π′. We assume that it is from π, the other case is symmetric. Since every1564

prefix of π is compatible with some decomposition of D((Jm)m∈M), in particular the prefix of1565

π up to that reception of m̃i is compatible with one. Thus there exists dec = (v0,m1, . . . , vℓ)1566

such that Ldec ∩ Jm̃i
≠ ∅ and with which π is compatible. Let w ∈ Ldec ∩ Jm̃i

, w can be1567

obtained from v0 · · · vℓ by adding letters from {m1, . . . ,mj} to each vj .1568

As this prefix of π is fully contained in π̃, we can find the same sequence of broadcast1569

v0 · · · vℓ in π̃. Moreover, for each j, the first reception of mj can only be earlier in π̃ than in1570

π, hence ˜dec allows us to find v0 · · · vℓ and to add the same letters at the same places. As a1571

consequence, w ∈ L(ṽ0,m̃1,...,ṽi−1).1572

It follows that every prefix of π̄ is compatible with some decomposition of D((Jm)m∈M).1573

As a consequence, Controller does not win at any point in π̄.1574

If some record transition outside of T is seen in π or π′ then in π̄ as well. Otherwise, it1575

means the output of some prefix of π is not in I. As the output of that prefix must be a1576

subword of the output of π̄, and I is downward-closed, we obtain that the output of π̄ is not1577

in I.1578

In conclusion, Controller does not win at any point in π̄ while Environment does. As1579

a consequence, Controller’s objective is submixing and thus if Controller wins she can win1580

with a positional strategy. ◀1581
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▶ Lemma 58. If Environment wins an echo game then he has a positional winning strategy.1582

Proof. We show that Environment’s objective in an echo game has the submixing property,1583

and again apply [17, Theorem 4.5].1584

Consider two losing plays for Environment π and π′, and π̄ a submixing of the two. We1585

can cut π and π′ into π = π0π1 · · · and π′ = π′
0π

′
1 · · · so that π̄ = π0π

′
0π1 · · · .1586

At all times in π̄ if we make a broadcast with letter m while the recent input is w,1587

then that broadcast was made in π or π′ with a recent input that is a subword of w. As1588

Environment loses in π and π′, and as Jm is upward-closed, w ∈ Jm.1589

Every record transition seen in π̄ must be seen in π or π′, hence must be in T .1590

As a consequence, Environment cannot win π̄, hence Controller wins. The objective1591

of Environment is therefore submixing, and thus if Environment wins he can win with a1592

positional strategy. ◀1593

E.1 Characterisation of winning strategies1594

▶ Lemma 59. Controller wins the (I, (Jm)m∈M)-invariant game if and only if there is a set1595

of record transitions T such that she wins the (I, (Jm), T )-output game and the (I, (Jm), T, t)-1596

echo game for all t ∈ T .1597

Proof. Suppose Controller wins the (I, (Jm)m∈M)-invariant game with a strategy σ. Let T1598

be the set of record transitions taken in a σ-play in which no player has won yet.1599

We start with the (I, (Jm), T )-output game : let Controller apply the same strategy σ in1600

that game.1601

▷ Claim 60. Let π be a play such that no record transition has been seen yet.1602

Then π is winning for a player in the invariant game if and only if it is winning for that1603

player in the output game.1604

Proof. Take a look at the winning conditions in the invariant game. Condition A and C are1605

the same as 1 and 2. Condition B and D cannot happen: as we have not seen any record1606

transition, reg(π′) = {1} for all prefixes π′ of π. ◁1607

As a consequence, a σ-play can only be winning for Environment if we reach a record1608

transition t /∈ T while Controller has not won. However, this means that the play obtained1609

before reaching t is not winning for Controller in the invariant game either, by the previous1610

claim. This contradicts the definition of T . Hence σ is winning for Controller in the1611

(I, (Jm), T )-output game.1612

Let t ∈ T . We now show that we have a winning strategy for Controller in the1613

(I, (Jm), T, t)-echo game.1614

▷ Claim 61. Let tπ+ be a play in the (I, (Jm), T, t)-echo game such that no record transition1615

has been seen yet (apart from the first step). Let π−t be a play ending with t in the1616

(I, (Jm))-invariant game such that no player wins in it.1617

Then π+ is winning for a player in the echo game if and only if π−tπ+ is winning for that1618

player in the output game.1619

Proof. First of all note that reg(π−t) = ∅ as t updates the only register. As π−t is not1620

winning for either player, no prefix of it fulfils either A or C. We can then conclude that1621

there is no play starting with π−t that fulfils either of those conditions.1622

Furthermore, since no player wins in π− and t updates the only register, conditions B, D1623

are satisfied by π−tπ+ if and only if they are satisfied by tπ+ if and only if tπ+ satisfies 1, 21624

respectively.1625
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This proves the claim. ◁1626

By definition of t there exists a play reaching t in the invariant game in which no player1627

has won yet. Let π− be the prefix of that play before reaching t. We define the strategy σE1628

as σE(π) = σ(π−π).1629

Let us consider a σE-play tπ+ in the echo game and show that it cannot be winning for1630

Environment.1631

By the claim above, a σE-play can only be winning for Environment if we reach a record1632

transition t′ /∈ T while Controller has not won. However, this means that the play π obtained1633

before reaching t′ is such that π−π is not winning for Controller in the invariant game either,1634

by the previous claim. This contradicts the definition of T .1635

We have established that a winning strategy in the (I, (Jm)m∈M)-invariant game yields1636

a set of record transitions T and winning strategies in the (I, (Jm), T )-output game and the1637

(I, (Jm), T, t)-echo game for all t ∈ T .1638

For the reverse direction, let us consider a set of record transitions T , σO a winning1639

strategy in the (I, (Jm), T )-output game and, for all t ∈ T , σt a winning strategy in the1640

(I, (Jm), T, t)-echo game.1641

We define a strategy σ in the invariant game as follows: If π does not contain any record1642

transition then σ(π) = σO(π). Otherwise, let π′ be the largest suffix of π with no record1643

transition and t the record transition just before π′. We set σ(π) = σt(tπ′).1644

It remains to show that σ is a winning strategy in the invariant game. Suppose by1645

contradiction that there exists a finite σ-play winning for Environment. Let π be such a1646

σ-play of minimal size. If π contains no record transition then by the first claim it is also1647

winning for Environment in the output game. As σ mimics σO while no record transition1648

has been seen, this is a contradiction with the fact that σO is winning.1649

On the other hand, if π contains a record transition, then we can decompose it as1650

π = π−tπ+ with t a record transition and π+ the maximal suffix of π with no record1651

transition.1652

Then by minimality of π, no player wins in π−. As a result, by the second claim, tπ+1653

is winning for Environment in the (I, (Jm), T, t)-echo game. This is a contradiction as by1654

definition of π, tπ+ is a σt-play, and σt is winning for Controller.1655

This concludes our proof. ◀1656

▶ Lemma 62. If there exists a winning control strategy for a BGR then there exist I such1657

that every word in the basis of Ic is of length ≤ |R|(|M| + 1) and (Jm)m∈M in which every1658

word in the basis has length ≤ |R| for all m and T a set of record transitions such that1659

Controller wins the I, (Jm), T -output game and the I, (Jm), T, t-echo game for all t ∈ T .1660

Proof. Suppose there exists a winning control strategy σ, then we have some I, (Jm) such1661

that Controller wins I, (Jm), T -output game and the I, (Jm), T, t-echo game for all t ∈ T .1662

We can assume that the sum of the lengths in the basis of the Jm is minimal.1663

We remove a word w from the basis of Jm. By minimality of Jm the resulting invariant1664

is not sufficient. Hence Environment wins one of the games. Since I has not changed but1665

(Jm) has decreased, Controller still wins the output game. As a consequence, Environment1666

wins the I, (Jm), T, t-echo game for some t ∈ T . Let σecho be a positional winning strategy1667

for Environment in the new instance of that game. There must be a σecho-play that is losing1668

for him in the previous instance. As we have decreased L(I, (Jm))↓, the only possibility is1669

that there is a play in which we broadcast m while the recent input is not in Jm. As Jm1670

is upward-closed and σecho is positional, we can cut all cycles from this play: We obtain1671
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a σecho-play whose recent input is not in Jm, of length at most |R|. As a consequence,1672

|w| ≤ |R|.1673

We have shown that all words in the basis of all Jm have length at most |R|. Let us now1674

bound the words in the basis of Ic.1675

Consider I with a basis of minimal size such that I, (Jm) is a sufficient invariant for σ. We1676

remove a word w from the basis of Ic, thus increasing I. By minimality of Ic, Environment1677

wins one of the games. It cannot be the output game as I has increased and the Jm are the1678

same. If it is an echo game then let σecho be a positional winning strategy for Environment1679

in the new instance of that game. There must be a play whose recent input was previously1680

out of L(I, (Jm))↓ but is now in it. We can once again cut cycles on that play. Once we do1681

so, we obtain a play of length ≤ |R| whose recent input win is in L(I, (Jm))↓ but was not1682

previously. As a consequence, there exists dec = (v0,m1, . . . , vk) such that win ∈ Ldec ↓ and1683

for all i, L(v0,m1,...,vi−1) ∩ Jmi
≠ ∅. As we have bounded the lengths of words in the basis1684

of each Jm by |R|, there exist u1, . . . , uk, all of size at most |R|, such that ui ∈ Jmi and1685

ui ∈ L(v0,m1,...,vi−1) ↓.1686

For each ui and for win at most |R| letters from v0, · · · , vk suffice to maintain these1687

properties. We define v′
0, . . . , v

′
k as the words obtained by removing all other letters. Let1688

dec′ = (v′
0,m1, . . . , v

′
k). We therefore have |v′

0 · · · v′
k| ≤ |R|(|M| + 1), and (v′

0,m1, . . . , v
′
k) ∈1689

D(I, (Jm)) and win ∈ Ldec′ ↓.1690

As a consequence, we must have that v′
0 · · · v′

k is in I but was previously not. As a result,1691

w⊑ v′
0 · · · v′

k and thus |w| ≤ |R|(|M| + 1). ◀1692

▶ Theorem 33. SafeStrat is NExpTime-complete for 1BGR.1693

Proof. We guess a positional strategy σ for Controller in the output game. We also guess a1694

set of record transitions T , a set of words B of length ≤ |R|(|M| + 1) and a family of sets of1695

words (Bm)m∈M, where all words have length at most |R|.1696

We then try to check if Environment has a winning strategy in one of the games. For the1697

output game, we enumerate all positional strategies for Controller. As the size of words in1698

the basis of I is bounded by |R|(|M| + 1), if such a strategy allows a losing play, it allows1699

one of length at most |R|(|R| + 1)(|M| + 1). As a consequence, we can check in exponential1700

time whether one of those strategies is winning.1701

For the echo games, we enumerate all positional strategies for Environment.1702

▷ Claim 63. We can check that a positional strategy σecho is not winning for Environment1703

in an echo game in non-deterministic exponential time.1704

Proof. Let π be a play won by Controller, at all times if we make a broadcast with letter m,1705

the recent input on 1 is in Jm. For each m broadcast in the play, we can select a sequence1706

of at most |R| preceding receptions forming an element of the basis of Jm. Those elements1707

witness the fact that the recent input is in Jm.1708

We can thus easily construct an NFA of exponential size recognising finite plays in which1709

Environment does not win.1710

Since σecho is positional, there is an automaton with |R| states recognising the set of1711

σecho-plays. We first check whether there is an infinite word whose prefixes are all accepted1712

by the NFA. If not, we check whether the NFA accepts a play ending with a transition of T .1713

Finally, we project it to obtain an NFA A recognising the recent inputs of σecho-plays not1714

won by Environment. We also build an exponential-size NFA B recognising L(I, (Jm)m∈M).1715

As shown in [1], if there is a word in L(A)↓ that is not in L(B)↓, then there is one of1716

polynomial size in |A| and |B|.1717
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As a consequence, we can check that non-inclusion in non-deterministic exponential time.1718

In sum, we can check in non-deterministic exponential time that the given strategy is not1719

winning for Environment. ◁1720

This lets us decide in non-deterministic exponential time if there exist I, (Jm), T such1721

that Controller wins the output game and all the echo games. As a result, SafeStrat1722

is in NExpTime. All that is left to do is show the matching lower bound, which is done1723

below. ◀1724

E.2 NExpTime-hardness of SafeStrat for 1BGR1725

The exponential grid tiling problem asks, given a set of colours C, a number N in unary and1726

a set of tiles T ⊆ C{up,down,left,right}, whether there is a tiling of the 2N × 2N grid, i.e., a1727

function τ : [0, 2N − 1] × [0, 2N − 1] → T such that for all x, y, x′, y′ ∈ [0, 2N − 1],1728

if x = x′ and y = y′ + 1 then τ(x, y).down = τ(x, y).up1729

if x = x′ + 1 and y = y′ then τ(x, y).left = τ(x, y).right1730

if x = 0 (resp. x = 2N − 1, y = 0, y = 2N − 1) then τ(x, y).left = cborder (resp.1731

right,down, up)1732

This problem is NExpTime-complete [27].1733

▶ Lemma 64. SafeStrat is NExpTime-hard on 1BGR.1734

Proof. We reduce from the exponential grid tiling problem.1735

Let C be a set of colours containing a border colour B, let T = {t1, . . . , tk} be a set of1736

tiles and N an integer in unary. We use the alphabet of letters M = {0, 1, 0̄, 1̄} ∪ T ∪ T̄ ,1737

where T̄ = {t̄1, . . . , t̄k} is a copy of T .1738

We design a 1BGR in which Controller wins if and only if there is a valid tiling of the1739

2N × 2N grid with those tiles.1740

Essentially, Environment may use some agents to broadcast coordinates (x, y) and (x̄, ȳ)1741

in the grid, respectively using letters {0, 1} and {0̄, 1̄}. Environment can also make an agent1742

receive coordinates (x, y) (resp. (x̄, ȳ)), while checking that they all have the same datum. He1743

then makes Controller choose a tile t (resp. t̄), which is broadcast with that same identifier.1744

A strategy for Controller amounts to two functions τ, τ̄ : [0, 2N − 1] × [0, 2N − 1] → T .1745

The agents that broadcast coordinates (x, y) and (x̄, ȳ) can then receive tiles t and t̄ with1746

their own identifier, and check that:1747

If x = x̄ and y = ȳ then t = t̄1748

If x+ 1 = x̄ and y = ȳ then t.right = t̄.left1749

If x = x̄ and y + 1 = ȳ then t.up = t̄.down1750

If x = 0 (resp. y = 0, x = 2N − 1, y = 2N − 1) then t.left = B (resp. down, left, right).1751

The first item forces Controller to choose τ = τ̄ . The other items make sure that she1752

picks a valid tiling of the grid.1753

From the initial state Environment chooses between three modes:1754

He can receive a sequence of 2N bits in {0, 1} with the same datum and then let Controller1755

broadcast a letter of T with that same identifier.1756

He can receive a sequence of 2N bits in {0̄, 1̄} with the same datum and then let Controller1757

broadcast a letter of T̄ with that same identifier.1758

He can broadcast a sequence of letters of the form x1x̄1 · · ·xN x̄Ny1ȳ1 · · · yN ȳN with1759

x1, y1, . . . , xN , yN ∈ {0, 1}, all with his initial datum. He then receives one letter t′ of1760

T and one letter t̄ of T̄ with his initial datum. If t = t′ then he stops, otherwise he1761

broadcasts merr.1762
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He can broadcast a sequence of letters of the form x1x̄1 · · ·xN x̄Ny
′
1ȳ1 · · · y′

N ȳN with1763

x1, y1, y
′
1, . . . , xN , yN , y

′
N ∈ {0, 1}, all with his initial datum. He makes sure that1764

⟨y1 · · · yN ⟩2 = ⟨y′
1 · · · y′

N ⟩2 + 1. He then receives one letter t′ of T and one letter t̄1765

of T̄ with his initial datum. If up(t′) ̸= down(t) or ⟨y′
1 · · · y′

N ⟩2 = 0 and down(t′) ̸= B or1766

⟨y1 · · · yN ⟩2 = 2N −1 and up(t) ̸= B, he broadcasts merr. Otherwise he stops broadcasting1767

merr.1768

Similarly, he can broadcast a sequence of letters of the form x′
1x̄1 · · ·x′

N x̄Ny1ȳ1 · · · yN ȳN1769

with x1, x
′
1, y1, . . . , xN , x

′
N , yN ∈ {0, 1}, all with his initial datum. He makes sure that1770

⟨x1 · · ·xN ⟩2 = ⟨x′
1 · · ·x′

N ⟩2 + 1. He then receives one letter t′ of T and one letter t̄ of1771

T̄ with his initial datum. If right(t′) ̸= left(t) or ⟨x′
1 · · ·x′

N ⟩2 = 0 and left(t′) ̸= B or1772

⟨x1 · · ·xN ⟩2 = 2N − 1 and right(t) ̸= B, he broadcasts merr. Otherwise he stops without1773

broadcasting merr.1774

If there is a valid tiling, Controller can play the corresponding strategy. In order to1775

broadcast merr, Environment must make an agent a broadcast coordinates with its initial1776

datum, and then receive two tiles that do not satisfy the conditions mentioned above. The1777

agents that send those tiles must receive exactly 2N letters from a, as they are signed by its1778

initial datum. Thus their broadcasts are the tiles of the valid tiling at those coordinates, and1779

the agent will not be able to broadcast merr, as they match all the conditions.1780

If there is no valid tiling, Controller’s strategy will either induce two different tilings or1781

two identical invalid ones. In both cases Environment can detect the mistake by making an1782

agent a broadcast the coordinates corresponding to the mistake, making two agents answer1783

with the faulty tiles, and make a broadcast merr by observing the mistake. ◀1784
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