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Abstract
In parametric lock-sharing systems processes can spawn new processes to run in parallel, and can
create new locks. The behavior of every process is given by a pushdown automaton. We consider
infinite behaviors of such systems under strong process fairness condition. A result of a potentially
infinite execution of a system is a limit configuration, that is a potentially infinite tree. The
verification problem is to determine if a given system has a limit configuration satisfying a given
regular property. This formulation of the problem encompasses verification of reachability as well as
of many liveness properties. We show that this verification problem, while undecidable in general, is
decidable for nested lock usage.

We show Exptime-completeness of the verification problem. The main source of complexity is
the number of parameters in the spawn operation. If the number of parameters is bounded, our
algorithm works in Ptime for properties expressed by parity automata with a fixed number of ranks.
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1 Introduction

Locks are a widely used concurrency primitive. They appear in classical programming
languages such as Java, as well as in recent ones such as Rust. The principle of creating
shared objects and protecting them by mutexes (like the “synchronized” paradigm in Java)
requires dynamic lock creation. The challenge is to be able to analyze programs with dynamic
creation of threads and locks.

Our system model is based on Dynamic Pushdown Networks (DPNs) as introduced in [7],
where processes are pushdown systems that can spawn new processes. The DPN model was
extended in [20] by adding synchronization through a fixed number of locks. Here we take
a step further and allow dynamic lock creation: when spawning a new process, the parent
process can pass some of its locks, and new locks can be created for the new thread. This
way we model recursive programs with creation of threads and locks. We call such systems
dynamic lock-sharing systems (DLSS).

The focus in both [7] and [20] is computing the Pre∗ of a regular set of configurations, and
they achieve this by extending suitably the saturation technique from [6]. Here we consider
not only reachability but also infinite behaviors of DLSS under fairness conditions. For this
we propose a different approach than saturation from [7,20] as saturation is not suited to
cope with liveness properties.

We show that verifying regular properties of DLSS is decidable if every process follows
nested lock usage. This means that locally every process acquires and releases the locks
according to the stack discipline. Nested locking is assumed in most papers on parametric
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24:2 Model-checking parametric lock-sharing systems against regular constraints

verification of systems with synchronization over locks. It is also considered as good pro-
gramming practice, sometimes even enforced syntactically, as in Java through synchronized
blocks.

Without any restriction on lock usage we show that our problem is undecidable, even for
finite state processes and reachability properties that refer to a single process. Note that
our model does not have global variables. It is well-known that reachability is undecidable
already for two pushdown processes with one lock and one global variable.

Outline of the paper. Our starting point is to use trees to represent configurations of
DLSS. This representation was introduced in [20]. The advantage is that it does not require
to talk about interleavings of local runs of processes. Instead it represents every local run
as a left branch in a tree and the spawn operations as branching to the right. At each
computation step one or two nodes are added below a leaf of the current configuration. Thus,
the result of a run of DLSS is an infinite tree that we call a limit configuration. Our first
observation is that it is easy to read out from a limit configuration of a run if the run is
strongly process-fair (Proposition 3).

An important step is to characterize those trees that are limit configurations of runs
of a given finite state DLSS, namely where every process is a finite state system. This is
done in Lemma 11. To deal with lock creation this lemma refers to the existence of some
global acyclic relation on locks. We show that this global relation can be recovered from local
orderings in every node of the configuration tree (Lemma 12). Finally, we show that there is
a nondeterministic Büchi tree automaton verifying all the conditions of Lemmas 11 and 12.
This is the desired tree automaton recognizing limit configurations of process-fair runs.
Our verification problem is solved by checking if there is a tree satisfying the specification
and accepted by this automaton. This way we obtain the upper bound from Theorem 7.
Surprisingly the size of the Büchi automaton is linear in the size of DLSS, and exponential
only in the arity of the DLSS, which is the maximal number of locks a process can access. For
example, in the dining philosophers setting (cf. Figure 1) the arity is 3, as every philosopher
has access only to its left and right forks, implemented as locks; and there is one more fork
to close the cycle.

The extension of our construction to pushdown processes requires one more idea to get
an optimal complexity. In this case, ensuring that the limit tree represents a computation
requires using pushdown automata. Hence, the Büchi tree automaton as described in the
previous paragraph becomes a pushdown Büchi automaton on trees. The emptiness of
pushdown Büchi tree automata is Exptime-complete, which is an issue as the automaton
constructed is already exponential in the size of the input. However, we observe that the
automata we obtain are right-resetting, since new threads are spawned with empty pushdown.
Intuitively, the pushdown is needed only on left paths of the configuration tree to check
correctness of local runs. A right-resetting automaton resets its stack each time it goes to the
right child. We show that the emptiness of right-resetting parity pushdown tree automata
can be checked in Ptime if the biggest rank in the parity condition is fixed (if it is not fixed
then the problem is at least as complex as solving parity games). This gives the upper bound
from Theorem 8.

Finally, we obtain the matching lower bound by proving Exptime-hardness of checking
if a process of the DLSS has an infinite run (Proposition 22). This holds even for finite state
processes. We also show that even for finite state processes the DLSS verification problem is
undecidable if we allow arbitrary usage of locks (Theorem 5).

Related work. Parametrized verification has remained an active research area for almost
three decades [1, 5, 13]. It has brought a steady stream of works on parametric systems with
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locks. As already mentioned, the first directly relevant paper is [7] introducing Dynamic
Pushdown Networks (DPNs). These consist of pushdown processes with spawn but no
locks. The main idea is to represent a configuration as a sequence of process identifiers, each
identifier followed by a stack content. Computing Pre∗ of a regular set of configurations is
decidable by extending the saturation technique from [6].

An important step is made in [20] where the authors introduce a tree representation of
configurations. This is essentially the same representation as we use here. They extend DPNs
by a fixed set of locks, and show how to adapt the saturation technique to compute Pre∗

in this case. Their result is an Exptime decision procedure for verifying reachability of a
regular set of configurations. This work has been extended to incorporate join operations [12],
or priorities on processes [9]. Our work extends [20] in two directions: it adds lock creation,
and considers liveness properties. It is not clear how one could extend saturation methods to
deal with liveness properties.

The saturation method has been adapted to DPNs with lock creation in the recent
thesis [17]. The approach relies on hyperedge replacement grammars, and gives decidability
without complexity bounds. Our liveness conditions can express this kind of reachability
conditions.

Actually, the first related paper to deal with lock creation is probably [25]. The authors
consider a model of higher-order programs with spawn, joins, and lock creation. Apart
from nested locking, a new restriction of scope safety is imposed. Under these conditions,
reachability of pairs of states is shown to be decidable.

The works above have been followed by implementations [9, 18, 25]. In particular [9]
reports on verification of several substantial size programs and detecting an error in xvisor [8].

In all the works above nested locking is assumed. In [16] the interest of nested locking
is underlined by showing that reachability with two pushdown processes using locks is
undecidable in general, but it is decidable for nested locking. There are only few related
works without this assumption. The work [15] generalizes nested locking to bounded lock-
chain condition, and shows decidability of reachability for two pushdown processes. In [19]
the authors consider contextual locking where arbitrary locking may occur as long as it does
not cross procedure boundaries. This condition is incomparable with nested locking.

Finally, we comment on shared state and global variables. These are not present in the
above models because reachability for two pushdown processes with one lock and one global
variable is already undecidable. There is an active line of study of multi-pushdown systems
where shared state is modeled as global control. In this model decidability is recovered
by imposing restrictions on stack usage such as bounded context switching and variations
thereof [2,22–24]. Observe that these are restrictions on global runs, and not on local runs of
processes, as we consider here. Another approach to recover decidability is to have shared
state but no locks [10, 11, 14, 21]. Finally, there is a very interesting model of threaded
pools [3, 4], without locks, where verification is decidable once again assuming bounded
context switching. But the complexity of this model is as high as Petri net coverability [4].

Structure of the paper. The next section presents the main definitions and results. The
main proof for finite state processes is outlined is Sections 3 and 4. Section 5 describes the
extension to pushdown processes. All missing proofs are included in the appendix.

2 Definitions and results

A dynamic lock-sharing system is a set of processes, each process has access to a set of locks
and can spawn other processes. A spawned process can inherit some locks of the spawning

CONCUR 2023



24:4 Model-checking parametric lock-sharing systems against regular constraints

pinit : spawn(first, new, new)
first(xl, xr) : spawn(phil, xl, xr); spawn(next, xr, new, xl)

next(xl, xr, xlfirst) : or
{

spawn(phil, xl, xlfirst)
spawn(phil, xl, xr); spawn(next, xr, new, xlfirst)

phil(xl, xr) : repeat-forever or
{

getxl
; getxr

; eat; relxr
; relxl

getxr
; getxl

; eat; relxl
; relxr

Figure 1 Dining philosophers: process first starts the first philosopher and an iterator process
next starts successive philosophers. The forks, modeled as locks, are passed via variables xl and
xr. The third variable xlfirst of next is the left fork of the first philosopher used also by the last
philosopher. The system is nested as phil takes and releases forks in the stack order. The arity of
the system is 3.

process and can also create new locks. All processes run in parallel. A run of the system
must be fair, meaning that if a process can move infinitely many times then it eventually
does.

More formally, we start with a finite set of process identifiers Proc. Each process identifier
p ∈ Proc has an arity ar(p) ∈ N telling how many locks the process uses. The process can
refer to these locks through the variables Var(p) = {xp

1, . . . , xp
ar(p)}. At each step a process

can do one of the following operations:

Op(p) ={nop} ∪ {getx, relx | x ∈ Var(p)}
∪ {spawn(q, σ) | q ∈ Proc, σ : Var(q) → (Var(p) ∪ {new})}

Operation nop does nothing. Operation getx acquires the lock designated by x, while relx

releases it. Operation spawn(q, σ) spawns an instance of process q where every variable of
q designates a lock determined by the substitution σ; this can be a lock of the spawning
process or a new lock, if σ(xq) = new. We require that the mapping σ is injective on Var(p).
This is important for the definition of nested stack usage.

A dynamic lock-sharing system (DLSS for short) is a tuple

S = (Proc, ar , (Ap)p∈Proc, pinit , Locks)

where Proc, and ar are as described above. For every process p, Ap is a transition system
describing the behavior of p. Process pinit ∈ Proc is the initial process. Finally, Locks is an
infinite pool of locks.

Each transition system Ap is a tuple (Sp, Σp, δp, opp, initp) with Sp a finite set of states,
initp the initial state, Σp a finite alphabet, δp : Sp × Σp → Sp a partial transition function,
and opp : Σp → Op(p) an assignment of an operation to each action. We require that the
Σp are pairwise disjoint, and define Σ =

⋃
p∈Proc Σp. We write op(b) instead of opp(b) for

b ∈ Σp, as b determines the process p.
For simplicity, we require that pinit is of arity 0. In particular, process pinit has no get

or rel operations.
An example in Figure 1 presents a DLSS modeling an arbitrary number of dining

philosophers. The system can generate a ring of arbitrarily many philosophers, but can also
generate infinitely many philosophers without ever closing the ring.
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A configuration of S is a tree representing the runs of all active processes. The leftmost
branch represents the run of the initial process pinit , the left branches of nodes to the right
of the leftmost branch represent runs of processes spawned by pinit etc. So a leaf of a
configuration represents the current situation of a process that is started at the first ancestor
above the leaf that is a right child. A node of a configuration is associated with a process,
and tells in what state the process is, which locks are available to it, and which of them it
holds.

More formally, a configuration is a, possibly infinite, tree τ ⊆ {0, 1}∗, with each node ν

labeled by a tuple (p, s, a, L, H) where p ∈ Proc is the process executing in ν, s ∈ Σp the
state of p, a ∈ Σp the action p executed at ν, or ⊥ ̸∈ Σ if ν is a root, L : Var(p) → Locks
an assignment of locks to variables of p, and H ⊆ L(Var(p)) the set of locks p holds before
executing a. We use p(ν), s(ν), a(ν), L(ν) and H(ν) to address the components of the label
of ν. For ease of notation we will write Var(ν) instead of Var(p(ν)).

We write H(τ) for the set of locks ultimately held by some process in τ , that is, H(τ) =
{ℓ : for some ν, ℓ ∈ H(ν′) for all ν′ on the leftmost path from ν}. If τ is finite this is the
same as to say that H(τ) is the union of H(ν) over all leaves ν of τ .

The initial configuration is the tree τinit consisting only of the root ε labeled by
(pinit , initp, ⊥, ∅, ∅). Suppose that ν is a leaf of τ labeled by (p, s, b, L, H), and there is
a transition s

a−−→ s′ for some s′ in Ap. A transition between two configurations τ
ν,a−−→ τ ′ is

defined by the following rules.
If op(a) = spawn(q, σ) then τ ′ is obtained from τ by adding two children ν0, ν1 of
ν. The label of the left child ν0 is (p, s′, a, L, H). The label of the right child ν1 is
(q, initq, ⊥, L′, ∅) where L′(xq) = L(σ(xq)) if σ(xq) ̸= new and L′(xq) = ℓν,xq is a fresh
lock, otherwise.
Otherwise, τ ′ is obtained from τ by adding a left child ν0 to ν. The label of ν0 must be
of the form (p, s′, a, L, H ′) subject to the following constraints:

If op(a) = nop then H ′ = H,
If op(a) = getx and L(x) ̸∈ H(τ) then H ′ = H ∪ {L(x)},
If op(a) = relx and L(x) ∈ H then H ′ = H \ {L(x)}.

Note that we do not allow a process to acquire a lock it already holds, or release a lock it
does not have. We call this property soundness.

A run is a (finite or infinite) sequence of configurations τ0
ν1,a1−−−→ τ1

ν2,a2−−−→ · · · . As the trees
in a run are growing we can define the limit configuration of that run as its last configuration
if it is finite, and as the limit of its configurations if it is infinite.
▶ Remark 1. Note that in a run, at every moment distinct variables of a process are associated
with distinct locks: L(νi)(x) ̸= L(νi)(y) for all x, y ∈ Var(ν) with x ̸= y.
▶ Remark 2. The labels L and H can be computed out of the other three labels in the tree
just following the transition rules. We could have defined configurations as trees with only
three labels (p, s, a), but we preferred to include L and H for readability. Yet, later we will
work with tree automata recognizing configurations and there it will be important that the
labels come from a finite set.

A configuration τ is fair if for no leaf ν there is a transition τ
ν,a−−→ τ ′ for some a and τ ′.

We show that this compact definition of fairness captures strong process fairness of runs.
Recall that a run is strongly process-fair if whenever from some position in the run a process
is enabled infinitely often then it moves after this position.

▶ Proposition 3. Consider a run τ0
ν1,a1−−−→ τ1

ν2,a2−−−→ · · · and its limit configuration τ . The
run is strongly process-fair if and only if τ is fair.

CONCUR 2023



24:6 Model-checking parametric lock-sharing systems against regular constraints

Objectives. Instead of using some specific temporal logic we stick to a most general
specification formalism and use regular tree properties for specifications. A regular objective
is given by a nondeterministic tree automaton B over Σ ∪ {⊥}, which defines a language of
accepted limit configurations. The trees we work with can have nodes of rank 0, 1, or 2.
So we suppose that the alphabet is partitioned into Σ0, Σ1 and Σ2. The nondeterministic
transition function reflects this with δ(q, a) ⊆ {⊤} if a ∈ Σ0, δ(q, a) ⊆ Q if a ∈ Σ1, and
δ(q, a) ⊆ Q × Q if a ∈ Σ2. A run of the automaton on a tree t is a labeling of t with states
respecting δ. In particular if ν is a leaf of t then ⊤ ∈ δ(q, a), where q is the state and a is the
letter in ν. A run is accepting if for every infinite path the sequence of states on this path
is in the accepting set of the automaton. We will work with accepting sets given by parity
conditions. We say that a configuration τ satisfies B when B accepts the tree obtained from
τ by restricting only to action labels.

Regular objectives can express many interesting properties. For example, “for every
instance of process p its run is in a regular language C”. Or more complicated “there is an
instance of p with a run in a regular language C1 and all the instances of p have runs in
the language C2”. Of course, it is also possible to talk about boolean combinations of such
properties for different processes. Observe that the resulting automaton B for these kinds
of properties can be a parity automaton with ranks 1, 2, 3 (properties of sequences can be
expressed by Büchi automata, and rank 3 is used to implement existential quantification on
process instances).

Regular objectives can express deadlock properties. Since we only consider process-fair
runs, a finite branch in a limit configuration indicates that a process is blocked forever after
some point. Hence, we can express properties such as “there is an instance of p that is
blocked forever after a finite run in a regular language C”. We can also express that all
branches are finite, which is equivalent to a global deadlock since we are considering only
process-fair runs.

Reachability properties are also expressible with regular objectives. We can check
simultaneous reachability of several states in different branches, for instance “there is a
reachable configuration in which some process p reaches s while some process p′ reaches s′”.
There are ways to do it directly, but the shortest argument is through a small modification of
the DLSS. We can simply add transitions to stop processes non-deterministically in desired
states: adding new nop transitions from s and s′ to new deadlock states. Using ideas from [19]
we can also check reachability of a regular set of configurations.

Going back to our dining philosophers example from Figure 1, we can see also other
types of properties we would like to express. For example, we would like to say that there
are finitely many philosophers in the system. This can be done simply by saying that there
are not infinitely many spawns in the limit configuration. (In this example it is equivalent
to saying that there is no branch turning infinitely often to the right.) Then we can verify
a property like “if there are finitely many processes in the system and some philosopher
eats infinitely often then all philosophers eat infinitely often”. This property holds under
process-fairness, as philosophers release both their forks after eating.

▶ Definition 4 (DLSS verification problem). Given a DLSS S and a regular objective B decide
if there is a process-fair run of S whose limit configuration τ satisfies B.

Without any further restrictions we show that our problem is undecidable:

▶ Theorem 5. The DLSS verification problem is undecidable. The result holds even if the
DLSS is finite-state and every process uses at most 4 locks.
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This result is obtained by creating an unbounded chain of processes simulating a Turing
machine. Each process memorizes the content of a position on the tape, and communicates
with its neighbours by interleaving lock acquisitions. The trick for processes to exchange
information by interleaving lock acquisitions was already used in [16], and requires a non-
nested usage of locks.

The situation improves significantly if we assume nested usage of locks.

▶ Definition 6. A process Ap is nested if it takes and releases locks according to a stack
discipline, i.e., for all x, y ∈ Var(p), for all paths s0

a1−→ · · · an−−→ sn in Ap, with op(a1) = getx,
op(an) = relx, op(am) ̸= relx for all m < n: if op(ai) = gety for some i < n then there
exists i < k < n such that op(ak) = rely. A DLSS is nested if all its processes are nested.

We can state the first main result of the paper. Its proof is outlined in the next two
sections.

▶ Theorem 7. The DLSS verification problem for nested DLSS is Exptime-complete. It
is in Ptime when the number of priorities in the specification automaton, and the maximal
arity of processes are fixed.

We can extend this result to DLSS where transition systems of each process are given by
a pushdown automaton (see definitions in Section 5). The complexity remains the same as
for finite state processes.

▶ Theorem 8. The DLSS verification problem for nested pushdown DLSS is Exptime-
complete. It is in Ptime when the number of priorities in the specification automaton, and
the maximal arity of processes is fixed.

3 Characterizing limit configurations

A configuration is a labeled tree. We give a characterization of such trees that are limit
configurations of a process-fair run of a given DLSS. In the following section we will show
that the set of limit configurations of a given DLSS is a regular tree language, which will
imply the decidability of our verification problem.

▶ Definition 9. Given a configuration τ with nodes ν, ν′ and variables x ∈ Var(ν), x′ ∈
Var(ν′), we write x ∼ x′ if L(ν)(x) = L(ν′)(x′), so if x and x′ are mapped to the same lock.
The scope of a lock ℓ is the set {ν : ℓ ∈ L(ν)(Var(ν))}.

▶ Remark 10. It is easy to see that in any configuration, the scope of a lock is a subtree.

We say that a node ν is labeled by an unmatched get if it is labeled by some getx and
there is no relx operation in the leftmost path starting from ν. Recall that H(τ) is the set
of locks ℓ for which there is some node ν with an unmatched getx and L(ν)(x) = ℓ.

We define a relation ≺H on H(τ) by letting ℓ ≺H ℓ′ if there exist two nodes ν, ν′ such
that ν is an ancestor of ν′, ν is labeled with an unmatched get of ℓ, and ν′ is labeled with a
get of ℓ′.

After these preparations we can state a central lemma giving a structural characterization
of limit configurations of process-fair runs.

▶ Lemma 11. A tree τ is the limit configuration of a process-fair run of a nested DLSS S if
and only if
F1 The node labels in τ match the local transitions of S.

CONCUR 2023



24:8 Model-checking parametric lock-sharing systems against regular constraints

F2 For every leaf ν every possible transition from s(ν) has operation getx for some x with
L(ν)(x) ∈ H(τ).

F3 For every lock ℓ ∈ H(τ) there are finitely many nodes with operations on ℓ, and there is
a unique node labeled with an unmatched get of ℓ.

F4 The relation ≺H is acyclic.
F5 The relation ≺H has no infinite descending chain.

Before presenting the proof of the previous lemma note that the main difficulty is the
fact that some locks can be taken and never released. If H(τ) = ∅ then from τ we can
easily construct a run with limit configuration τ by exploiting the nested lock usage. This is
because any local run can be executed from a configuration where all locks are available.

Proof. We start with the left-to-right implication. Suppose that we have a process-fair run
τ0

ν1,a1−−−→ τ1
ν2,a2−−−→ · · · with limit configuration τ .

With every lock ℓ ∈ H(τ) we associate the maximal position m = mℓ such that op(am) =
getx and L(νm)(x) = ℓ, so the position mℓ where ℓ is acquired for the last time (and never
released after).

It remains to check the conditions of the lemma. The first one holds by definition of a run.
The second condition is due to process fairness and soundness, since a process can always
execute transitions other than acquiring a lock, and locks not in H(τ) are free infinitely often.
All actions involving ℓ ∈ H(τ) must happen before position mℓ, hence there are finitely many
of them. Moreover, a lock cannot be acquired and never released more than once. This shows
condition F3. Conditions F4 and F5 are both satisfied because if ℓ ≺H ℓ′ then mℓ < mℓ′ .
Thus ≺H is acyclic and it cannot have infinite descending chains.

For the right-to-left implication, let τ satisfy all conditions of the lemma. In order to
construct a run from τ we first build a total order < on H(τ) that extends ≺H and has no
infinite descending chain. Let ℓ′

0, ℓ′
1, . . . be some arbitrary enumeration of H(τ) (which exists

as τ is countable, thus so is H(τ)). For all i let ↓ ℓ′
i = {ℓ′ ∈ H(τ) | ℓ′ ≺+

H ℓ′
i}. As τ satisfies

condition F3, the set of nodes that are ancestors of a node with an operation on ℓ′
i is finite.

Since additionally by condition F5 there are no infinite descending chains for ≺H , the set
↓ ℓ′

i is finite as well (by König’s lemma). As ≺H is acyclic by condition F4, we can chose
some strict total order <i on ↓ ℓ′

i that extends ≺H . We define for all ℓ ∈ H(τ) the index
mℓ = min{i ∈ N | ℓ ∈↓ ℓ′

i}. Finally, we set ℓ < ℓ′ if either mℓ < mℓ′ or if mℓ = mℓ′ and
ℓ <mℓ

ℓ′. By definition < is a strict total order on H(τ) with no infinite descending chains.
Moreover it is easy to see that if ℓ ≺H ℓ′ then ℓ < ℓ′. This is the case because ℓ ≺H ℓ′ and
ℓ′ ≺+

H ℓi implies ℓ ≺+
H ℓi, so mℓ ≤ mℓ′ .

Using the order < on H(τ) we construct a process-fair run τ0
+−−→ τ1

+−−→ · · · with τ as
limit configuration. During the construction we maintain the following invariant for every i:

There exists ki ∈ N such that all operations on locks ℓj with j < ki are already
executed in τi (there is no operation on these locks in τ \ τi). Moreover, all other locks
are free after executing τi: Hi := H(τi) = {ℓ0, . . . , ℓki−1}.

For i = 0 the invariant is clearly satisfied as all locks are free (k0 = 0).
For i > 0 we assume that there is a run τ0

+−−→ τi and τi satisfies the invariant. Thus, all
locks ℓj with j < ki are ultimately held and all other locks are free in τi.

We say that a leaf ν of τi is available if one of the following holds:
1. either there is a descendant ν′ ̸= ν on the leftmost path from ν in τ with H(ν′) = H(ν)

in τ ,
2. or the left child ν′ of ν in τ is labeled with an unmatched get of ℓki , and there is no

further operation on ℓki
in τ \ τi.
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In particular, leaves of τ cannot be available. The strategy is to find the smallest available
node ν in BFS order, and execute the actions on the left path from ν to ν′. The execution is
possible as on this path there are no actions using locks from Hi and all other locks are free.
Let τi+1 denote the configuration thus obtained from τi. The invariant is satisfied after this
execution, with Hi+1 = Hi in the first case above, resp. Hi+1 = Hi ∪ {ℓki

} in the second
case.

It remains to show that if a node is a leaf in τi for all i after some point, then it is a leaf
in τ . This shows, in particular, that there always exists some available node.

Suppose that ν and i0 are such that ν is a leaf of τi for all i ≥ i0. If ν becomes available
at some point then it stays available in all future configurations, and there are finitely many
nodes before ν in the BFS order. Thus ν cannot be available in some τi, as otherwise it
would eventually be taken. Note that by the invariant (and soundness), no leaf of τi has
the left child labeled by some rel operation. Moreover, every leaf ν of τi with left child ν′

in τ labeled by nop, spawn(), or by some matched get, is available (the latter because we
consider nested DLSS). Hence, the left child of ν must be labeled with an unmatched get of
some ℓ ∈ H(τ). Thus there is some unmatched get on a lock of H(τ) that is never executed.

Let m be the minimal index in the enumeration of H(τ) such that an unmatched get
of ℓm in τ is never executed. By minimality of m, there exists i1 such that m = ki for all
i ≥ i1. After i1, all operations on locks ℓ < ℓm have been executed. Thus, as < extends
≺H , all unmatched get operations that have some descendant in τ with operation on ℓm,
have been executed. By the previous argument, the nodes with left child not labeled with
an unmatched get cannot stay leaves forever. Hence, all nodes whose left child has some
operation on ℓm eventually become leaves. The ones with matched get or other operations
are then available and eventually executed.

Hence, after some point the only remaining operations on ℓm are unmatched get. Fur-
thermore by the condition F3 of the lemma there is exactly one. As a result, when it is
reached and all other operations on ℓm have been executed, it becomes available, and is thus
eventually executed, contradicting the definition of m.

This proves that the limit of the run we have constructed is τ . Observe finally that the
run is process-fair because of condition F2 of the lemma. ◀

The next lemma is an important step in the proof as it simplifies condition F4 of Lemma 11.
This condition talks about the existence of a global order on some locks. The next lemma
replaces this order with local orders in each of the nodes. These orders can be guessed by a
finite automaton.

▶ Lemma 12. Suppose that τ satisfies the first three conditions of Lemma 11. The relation
≺H is acyclic if and only if there is a family of strict total orders <ν over a subset of variables
from Var(ν)such that:
F4.1 x is ordered by <ν if and only if L(ν)(x) ∈ H(τ).
F4.2 if x <ν x′, ν′ is a child of ν, and y, y′ ∈ Var(ν′) are such that x ∼ y and x′ ∼ y′ then

y <ν′ y′.
F4.3 if x, x′ ∈ Var(ν) and L(ν)(x) ≺H L(ν)(x′) then x <ν x′.

4 Recognizing limit configurations

Recall that a configuration is a possibly infinite tree with five labels p, s, a, L, H. As we
have mentioned in Remark 2, configurations need actually only three labels p, s, a. The
other two can be calculated from the tree. Hence, configurations are labeled trees with node
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labels coming from a finite alphabet. Our goal in this section is to define a tree automaton
recognizing limit configurations of process-fair runs of a given DLSS.

Our plan is to check the conditions (F1-5) of Lemma 11. Actually we will check (F1-3,5)
and the conditions of Lemma 12 that are equivalent to F4 of Lemma 11.

We first observe that since our processes are finite state it is immediate to construct a
nondeterministic tree automaton B1 verifying condition F1. This automaton just verifies local
constraints between the labeling of a node and the labelings of its children. The constraints
talk only about the labels p, s, a. The automaton does not need any acceptance condition,
every run is accepting. We will say τ is process-consistent if it is accepted by B1.

Checking condition F2 is more complicated because it refers to a set H(τ) of locks that
are ultimately held by some process. Our approach will be to define four types of predicates
and color the nodes of τ with these predicates. From a correct coloring of τ it will be
easy to read out H(τ). Then we will show that the correct coloring can be characterized
by conditions verifiable by finite tree automata. The coloring will be also instrumental in
checking the remaining conditions F3, F4, F5.

For a configuration τ , a node ν and a variable x ∈ Var(ν) we define four predicates.

ν |= keeps(x) if at ν process p(ν) holds the lock ℓ = L(ν)(x) and never releases it:
ℓ ∈ H(ν′) for every left descendant ν′ of ν.
ν |= ev-keeps(x) if ν ̸|= keeps(x) and there is a descendant ν′ of ν and a variable
x′ ∈ Var(ν′) with x ∼ x′ and ν′ |= keeps(x′).
ν |= avoids(x) if neither p(ν) nor any descendant takes ℓ = L(ν)(x), namely ℓ ̸∈ H(ν′)
for every descendant ν′ of ν (including ν).
ν |= ev-avoids(x) if ν ̸|= avoids(x) and on every path from ν there is ν′ such that
ν′ |= avoids(x).

Observe a different quantification used in ev-keeps and ev-avoids. In the first case we require
one ν′ to exist, in the second we want that such a ν′ exists on every path.

The next lemma shows how we can use the coloring to determine H(τ).

▶ Lemma 13. Let τ be a process-consistent configuration. A lock ℓ ∈ H(τ) if and only if
there is a node ν of τ and a variable x ∈ Var(ν) such that ν |= keeps(x) and L(ν)(x) = ℓ.

Proof. Follows from the definitions, since ν |= keeps(x) if and only if ℓ ∈ H(ν′) for every left
descendant ν′ of ν. ◀

The above conditions define a semantically correct coloring of nodes of a configuration τ

by sets of predicates

C(ν) = {P (x) : x ∈ Var(ν), ν |= P (x)}

where P (x) is one of keeps(x), ev-keeps(x), avoids(x), ev-avoids(x). Observe that the four
predicates are mutually exclusive, but it may be also the case that none of them holds. We
say that a variable x ∈ Var(ν) is uncolored in ν if C(ν) contains no predicate on x.

We now describe consistency conditions on a coloring of configurations guaranteeing that
a coloring is semantically correct.

Before moving forward we introduce one piece of notation. A node that is a right child,
namely a node of a form ν1 is due to spawn(q, σ) operation. More precisely op(ν0) =
spawn(q, σ). We refer to this σ as σ(ν1).

A coloring of a configuration τ is branch-consistent if for every node ν of τ and every
variable x ∈ Var(ν) the following conditions are satisfied.
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If ν has one successor ν0 then ν0 inherits the colors from ν except for two cases depending
on op(ν0), i.e, the operation used to obtain ν0:

If ev-keeps(x) is in C(ν) and the operation is getx then C(ν0) must have either
ev-keeps(x) or keeps(x).
If ev-avoids(x) is in C(ν) and the operation is relx then C(ν0) must have either
ev-avoids(x) or avoids(x).

If ν has two successors ν0, ν1, and there is no y with σ(ν1)(y) = x then ν0 inherits x

color from ν and there is no constraint due to x on colors in ν1.
If ν has two successors and x = σ(ν1)(y) for some y ∈ Var(ν1 ) then

If keeps(x) in C(ν) then keeps(x) in C(ν0) and avoids(y) in C(ν1).
If avoids(x) in C(ν) then avoids(x) in C(ν0) and avoids(y) in C(ν1).
If ev-keeps(x) in C(ν) then either
∗ ev-keeps(x) in C(ν0) and either avoids(y) or ev-avoids(y) in ν1, or
∗ ev-keeps(y) in C(ν1) and either avoids(x) or ev-avoids(x) in ν0.
If ev-avoids(x) is ν then ev-avoids(x) in C(ν0) and ev-avoids(y) in C(ν1).

Next we describe when a coloring is eventuality-consistent. An ev-trace is a sequence of
pairs (ν1, x1), (ν2, x2), . . . where :

ν1, ν2, . . . is a path in τ ,
xi ∈ Var(νi); moreover xi+1 = xi if νi+1 is the left successor of νi, and σ(νi+1)(xi+1) = xi

if νi+1 is the right successor of νi.
ev-keeps(xi) or ev-avoids(xi) is in C(νi).

Observe that it follows that it cannot be the case that we have ev-keeps(xi) and ev-avoids(xi+1)
or vice versa. A coloring is eventuality-consistent if every ev-trace in the coloring of a
configuration is finite.

Finally, a coloring is recurrence-consistent if for every ν and uncolored x ∈ Var(ν) the
lock ℓ = L(ν)(x) is taken and released infinitely often below ν.

A coloring is syntactically correct if it is branch-consistent, eventuality-consistent, and
recurrence-consistent. We show that syntactically correct colorings characterize semantically
correct colorings. The two implications are stated separately as the statements are slightly
different.

▶ Lemma 14. If τ is a limit configuration and C is a semantically correct coloring of τ then
C is syntactically correct.

For the other direction, we prove a more general statement without assuming that τ is a
limit configuration. This is important as ultimately we will use the consistency properties to
test if τ is a limit configuration.

▶ Lemma 15. If τ is a configuration and C a syntactically correct coloring of τ , then C is
semantically correct.

Having a correct coloring will help us to verify all conditions of Lemma 11. Condition F2
refers to L(ν)(x) ∈ H(τ). We need another labeling to be able to express this.

A syntactic H-labeling of τ assigns to every node ν a subset Hs(ν) ⊆ Var(ν). We require
the following properties:

For the root ε we have Hs(ε) = ∅.
If ν0 exists: x ∈ Hs(ν0) if and only if x ∈ Hs(ν).
If ν1 exists: y ∈ Hs(ν1) if and only if either σ(ν1)(y) = new and ν1 |= ev-keeps(y), or
σ(ν1)(y) = x and ν |= ev-keeps(x).

It is clear that every configuration tree has a unique Hs labelling.
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▶ Lemma 16. Let τ be a process-consistent configuration with syntactically correct coloring.
For every node ν and variable x ∈ Var(ν) we have: L(ν)(x) ∈ H(τ) if and only if x ∈ Hs(ν).

Thanks to Lemma 16 we obtain

▶ Lemma 17. Let τ be a process-consistent configuration with a syntactically correct coloring.
Condition F2 of Lemma 11 holds for τ if and only if for every leaf ν of τ , every possible
transition from s(ν) has some getx operation with x ∈ Hs(ν).

▶ Lemma 18. Let τ be a process-consistent configuration with a syntactically correct coloring.
Then condition F3 of Lemma 11 holds for τ .

It remains to deal with conditions F4 and F5 of Lemma 11. Condition F4 is more difficult
to check as it requires to find an acyclic relation with some properties. Fortunately Lemma 12
gives an equivalent condition talking about a family of local orders <ν for every node ν of a
configuration. An automaton can easily guess such a family of orders. We show that it can
also check the required properties.

A consistent order labeling assigns to every node ν of τ a total order <ν on some subset
of Var(ν). The assignment must satisfy the following conditions for every node ν:
1. x is ordered by <ν if and only if x ∈ Hs(ν),
2. if x <ν x′ and x, x′ ∈ Var(ν0 ) then x <ν0 x′,
3. if x <ν x′, ν1 exists, and σ(ν1)(y) = x, σ(ν1)(y′) = x′ then y <ν1 y′,
4. if ν |= keeps(x) and y <ν x then ν |= keeps(y) or ν |= avoids(y).

▶ Lemma 19. Let τ be a process-consistent configuration with a syntactically correct coloring.
A family of local orders <ν is a consistent order labeling of τ if and only if it satisfies the
conditions of Lemma 12.

We consider now condition F5. We say that a consistent order labeling of τ admits an
infinite descending chain if there exist a sequence of nodes ν1, ν2, . . . and variables (xi)i, (yi)i

such that for every i > 0: (i) νi is an ancestor of νi+1, (ii) yi ∼ xi+1, and (iii) yi <νi
xi.

▶ Lemma 20. Let τ be a process-consistent configuration with a syntactically correct coloring.
If ≺H has no infinite descending chain then there is a consistent order labeling of τ with no
infinite descending chain. If ≺H has an infinite descending chain then every consistent order
labeling of τ admits an infinite descending chain.

The next proposition summarizes the development of this section stating that all the
relevant properties can be checked by a Büchi tree automaton.

▶ Proposition 21. For a given DLSS, there is a non-deterministic Büchi tree automaton
B̂ accepting exactly the limit configurations of process-fair runs of DLSS. The size of B̂ is
linear in the size of the DLSS and exponential in the maximal arity of the DLSS.

We will show that the previous proposition yields an Exptime algorithm. We match it
with an Exptime lower bound to obtain completeness.

▶ Proposition 22. The DLSS verification problem for nested DLSS and Büchi objective is
Exptime-hard. The result holds even if the Büchi objective refers to a single process.
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The hardness proof involves a reduction from the problem of determining whether the
intersection of the languages of k deterministic tree automata over binary trees is empty.
To achieve this, we create a DLSS that simulates all the tree automata concurrently. Each
node of the tree in the intersection is simulated by a process, which encodes a state for
each automaton through the locks it holds. So each process creates two children with whom
it shares locks. The children are able to access the states of the parent by the following
technique: Suppose processes p and q share locks 0 and 1, and p acquires one lock and retains
it indefinitely. In this scenario, q can guess the lock chosen by p and try to acquire the other
lock. If q guesses incorrectly, the system deadlocks. However, if the guess is correct, the
execution continues, and q knows about the lock held by p.

Now we have all ingredients for the proof of Theorem 7:

Proof of Theorem 7. The lower bound follows from Proposition 22.
For the upper bound we use the Büchi tree automaton B̂ recognizing limit configurations

of the DLSS (Proposition 21).
We build the product of B̂ with the regular objective automaton A, which is a parity

tree automaton. From B̂ × A we can obtain with a bit more work an equivalent parity tree
automaton C with the same number of priorities, plus one. For this we modify the rank
function in order to only store in the state the maximal priority seen between two consecutive
occurrences of Büchi accepting states, and make the maximal priority visible at the next
Büchi state. When the state of the B̂ component is not a Büchi state, the priority is odd
and lower than all the ones of A.

By Proposition 21, C is non-empty if and only if there exists a limit configuration of the
system that satisfies the regular objective A. Moreover, we know that B̂ has size linear in
the size of the DLSS and exponential only in the maximal arity of processes. So C has size
that is exponential w.r.t. the DLSS and the objective, and polynomial size if the maximal
arity is fixed.

Finally, non-emptiness of C amounts to solve a parity game of the same size as C: player
Automaton chooses transitions of C, and player Pathfinder chooses the direction (left/right
child). To sum up, we obtain a parity game of exponential size, so solving the game takes
exponential time since the number of priorities is polynomial. If both the number of priorities
and the maximal arity are fixed, the game can be solved in polynomial time. ◀

5 Pushdown systems with locks

Till now every process has been a finite state system. Here we consider the case when
processes can be pushdown automata. The definition of a pushdown DLSS is the same as
before but now each automaton Ap is a deterministic pushdown automaton.

We will reduce our verification problem to the emptiness test of a nondeterministic
pushdown automata on infinite trees. These automata will have parity acceptance conditions.
While in general testing emptiness of such automata is Exptime-complete, we will notice
that the automata we construct have a special form allowing to test emptiness in Ptime for
a fixed number of ranks in the parity condition.

We start by defining pushdown tree automata. We work with a ranked alphabet Σ =
Σ0 ∪ Σ1 ∪ Σ2, so a letter determines whether a node has zero, one or two children. Our
automaton will be quite standard but for an additional stack instruction. Apart standard
pop and push(a), we have a reset instruction that empties the stack. A pushdown tree
automaton is a tuple (Q, Σ, Γ, q0, ⊥, δ, Ω), where Q is a finite set of states, Σ an input
alphabet, Γ a stack alphabet, q0 ∈ Q an initial state, ⊥ ∈ Γ a bottom stack symbol, and
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Ω : Q → {1, . . . , d} a parity condition. Finally, δ is a partial transition function taking as
the arguments the current state q, the current input letter a, and the current stack symbol γ.
The form of transitions in δ depends on the rank of the letter a:

For a ∈ Σ0, we have δ(q, a, γ) = ⊤ for a special symbol ⊤. This means that the automaton
accepts in a leaf of the tree if δ is defined.
For a ∈ Σ1, we have δ(q, a, γ) = (q′, instr) where instr is one of the stack instructions.
For a ∈ Σ2, we have δ(q, a, γ) = ((ql, instrl), (qr, instrr)), so now we have two states,
going to the left and right, respectively, and two separate stack instructions.

A run of such an automaton on a Σ-labeled tree is an assignment of configurations to
nodes of the tree; each configuration has the form (q, w) where q ∈ Q is a state and w ∈ Γ+

is a sequence of stack symbols representing the stack (top symbol being the leftmost). The
root is labeled with (q0, ⊥). The labelling of children must depend on the labeling of the
parent according to the transition function δ. In particular, if a leaf of the tree is labeled
a and has assigned a configuration (q, w) then δ(q, a, γ) must be defined, where γ is the
leftmost symbol of w. A run is accepting if for every infinite path the sequence of assigned
states satisfies the max parity condition given by Ω: the maximum of ranks of states seen on
the path must be even.

We say that a pushdown tree automaton is right-resetting if for every transition δ(q, a, γ) =
((ql, instrl), (qr, instrr)) we have that instrr is reset.

▶ Proposition 23. For a fixed d, the emptiness problem for right-resetting pushdown tree
automata with a parity condition over ranks {1, . . . , d} can be solved in Ptime.

Proof. We consider the representative case of d = 3. Suppose we are given a right-resetting
pushdown tree automaton A = (Q, Σ, Γ, q0, ⊥, δ, Ω).

The first step is to construct a pushdown word automaton Al(G1, G2, G3) depending
on three sets of states G1, G2, G3 ⊆ Q. The idea is that Al simulates the run of A on the
leftmost branch of a tree. When A has a transition going both to the left and to the right
then Al goes to the left and checks if the state going to the right is in an appropriate Gi.
This means that Al works over the alphabet Σl that is the same as Σ but all letters from
Σ2 have rank 1 instead of 2. The states of Al(G1, G2, G3) are Q × {1, 2, 3} with the second
component storing the maximal rank of a state seen so far on the run. The transitions of
Al(G1, G2, G3) are defined according to the above description. We make precise only the
case for a transition of A of the form δ(q, a, γ) = ((ql, instrl), (qr, instrr)). In this case, Al

has a transition δl((q, i), a, γ) = ((ql, max(i, Ω(ql))), instrl) if qr ∈ Gmax(i,Ω(qr)). Observe
that instrr is necessarily reset as A is right-resetting.

The next step is to observe that for given sets G1, G2, G3 we can calculate in Ptime the
set of states from which Al(G1, G2, G3) has an accepting run.

The last step is to compute the following fixpoint expression in the lattice of subsets of Q:

W = LFPX3. GFPX2. LFPX1. P (X1, X2, X3) where
P (X1, X2, X3) = {q : Al(X1, X2, X3) has an accepting run from q} .

Observe that P : P(Q)3 → P(Q) is a monotone function over the lattice of subsets of Q.
Computing W requires at most |Q|3 computations of P for different triples of sets of states.

We claim that A has an accepting run from a state q, if and only if, q ∈ W . The argument
is presented in the appendix. ◀

Proof of Theorem 8. The lower bound follows already from Theorem 7.
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For the upper bound we reuse the Büchi tree automaton B̂ from Proposition 21. This
time B̂ is a pushdown tree automaton, however it is right-resetting because processes are
spawned with empty stack. We follow the lines of the proof of Theorem 7, building the
product of B̂ with the regular objective automaton A, and constructing an equivalent parity,
right-resetting pushdown tree automaton C. Proposition 23 concludes the proof. ◀

6 Conclusions

We have considered verification of parametric lock sharing systems where processes can
spawn other processes and create new locks. Representing configurations as trees, and the
notion of the limit configuration, are instrumental in our approach. We believe that we have
made stimulating observations about this representation. It is very easy to express fairness
as a property of a limit configuration. Many interesting properties, including liveness, can
be formulated very naturally as properties of limit trees (cf. page 6). Moreover, there are
structural conditions characterizing when a tree is a limit configuration of a run of a given
system (Lemma 12).

We expect that the parameters in Theorem 8 will be usually quite small. As the dining
philosophers example suggests, for many systems the maximal arity should be quite small
(cf. Figure 1). Indeed, the maximal arity of the system corresponds to the tree width of the
graph where process instances are nodes and edges represent sharing a lock. The maximal
priority will be often 3. In our opinion, most interesting properties would have the form
“there is a left path such that” or “all left paths are such that”, and these properties need
only automata with three priorities. So in this case our verification algorithm is in Ptime.

Our handling of pushdown processes is different from the literature. Most of our de-
velopment is done for finite state processes, while the transition to pushdown process is
handled through right-resetting concept. Proposition 23 implies that in our context pushdown
processes are essentially as easy to handle as finite processes.

As further work it would be interesting to see if it is possible to extend our approach
to treat join operation [12]. An important question is how to extend the model with some
shared state and still retain decidability for the pushdown case.
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A Fairness

▶ Proposition 3. Consider a run τ0
ν1,a1−−−→ τ1

ν2,a2−−−→ · · · and its limit configuration τ . The
run is strongly process-fair if and only if τ is fair.

Proof. Consider the left-to-right implication. Suppose towards a contradiction that the run
is not process-fair. So there is a transition τ

ν,a−−→ τ ′ for some leaf ν. Let p be the process
moving in ν, and let τi be the first configuration where ν appears in τ . We show that p

moves after this configuration, contradicting the fact that ν is a leaf.
If op(a) is not a get operation then (ν, a) is enabled in every configuration τj for j > i.

By strong fairness p must move after i.
A more interesting case is when op(a) is getx for some x. Let ℓ = L(ν)(x) be the lock

taken by the transition. As (ν, a) is enabled in τ , we have that ℓ ̸∈ H(τ). We show that this
implies that process p is enabled infinitely often after position i. By soundness, as ν, a is
enabled, p cannot hold ℓ: so ℓ ̸∈ H(ν). If ℓ ∈ H(τi) and ℓ is never released afterwards then
there is a node ν′ in τi (and thus in τ) such that for every left descendant of ν′ we have
ℓ ∈ H(ν′). But this is impossible since we have assumed ℓ ̸∈ H(τ). Hence, either ℓ is free in
τi or it is free in some later configuration τi1 such that τi1

ν′,b−−→ τi1+1 and op(b) = gety with
L(ν′)(y) = ℓ. So, (ν, a) is enabled in τi1 . If ℓ is never taken after i1 then (ν, a) is enabled
always after i1, and we get a move of p by strong fairness as before. If ℓ is taken after i1
then by the same argument as above there must be also a position i2 when ℓ is released. So,
(ν, a) is enabled in τi2 . This argument shows that (ν, a) must be enabled infinitely often after
i, so by strong fairness there must be a move by p after i.

Consider now the right-to-left implication. Suppose that τ is process-fair, and the process
p is enabled infinitely often after position i. By contradiction, assume that p does not move
after position i and let ν be the last node of p’s local run. If the action a of p that is
enabled infinitely often is not a get then a is enabled in every τj with j ≥ i, and τ

ν,a−−→ τ ′,
contradicting process-fairness. Else, op(a) is getx with L(ν)(x) = ℓ. Since a is enabled
infinitely often, ℓ /∈ H(τ). Again we have τ

ν,a−−→ τ ′, contradicting process-fairness. ◀

B Characterizing limit configurations

▶ Lemma 12. Suppose that τ satisfies the first three conditions of Lemma 11. The relation
≺H is acyclic if and only if there is a family of strict total orders <ν over a subset of variables
from Var(ν)such that:
F4.1 x is ordered by <ν if and only if L(ν)(x) ∈ H(τ).
F4.2 if x <ν x′, ν′ is a child of ν, and y, y′ ∈ Var(ν′) are such that x ∼ y and x′ ∼ y′ then

y <ν′ y′.
F4.3 if x, x′ ∈ Var(ν) and L(ν)(x) ≺H L(ν)(x′) then x <ν x′.

Proof. For the left-to-right direction we fix a strict total order < on H(τ) that is compatible
with ≺H (for instance the strict order < defined in the proof of Lemma 11). Then we order
the variables x ∈ Var(ν) with L(ν)(x) ∈ H(τ) according to <. The three conditions of the
lemma then follow directly.

For the converse we define ≺ on H(τ) by ℓ ≺ ℓ′ if for some node ν with variables x ̸= x′

such that L(ν)(x) = ℓ and L(ν)(x′) = ℓ′ we have x <ν x′.
We start by showing that ≺ is acyclic. Assume by contradiction that ℓ0 ≺ ℓ1 · · · ≺ ℓk ≺ ℓ0

is a cycle of minimal length, so the locks ℓi ∈ H(τ) are all distinct. We use indices modulo
k + 1, so k + 1 ≡ 0. Note that k > 1 because of condition F4.2.
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By assumption, the scopes of ℓi and ℓi+1 intersect, for every i. Since scopes are subtrees
of τ (Remark 10) this means that two scopes that intersect have roots that are ordered by
the ancestor relation in τ .

Assume first that k > 2. Let i be such that the depth of the root of the scope of ℓi

is maximal. So the roots of the scopes of ℓi−1 and ℓi+1 are ancestors of the root ν of the
scope of ℓi. In the scope of ℓi there exist nodes that belong to the scope of ℓi−1 and of ℓi+1,
respectively. This means that ν is in the scope of ℓi−1, ℓi and ℓi+1. So the scopes of ℓi−1
and ℓi+1 intersect, and we have either ℓi−1 <ν ℓi+1 or ℓi+1 <ν ℓi−1. Thus we get from the
definition of ≺ either ℓi−1 ≺ ℓi+1 or ℓi+1 ≺ ℓi−1. In both cases the cycle ℓ0 ≺ ℓ1 · · · ≺ ℓk ≺ ℓ0
is not minimal, a contradiction.

It remains to consider the case ℓ0 ≺ ℓ1 ≺ ℓ2 ≺ ℓ0. With a similar argument as before
there exists a node ν which is in the scope of all of ℓ0, ℓ1, ℓ2, so this node gives a total order
on these locks and there cannot exist a cycle.

We now show that ≺H is acyclic as well.
Like before, suppose there exists a cycle of distinct nodes ℓ0 ≺H ℓ1 ≺H · · · ≺H ℓk ≺H

ℓk+1 = ℓ0 with k > 0. We consider such a cycle of minimal size. Hence every ℓi is comparable
with ℓi−1, ℓi+1 and incomparable with all the other ℓj (as otherwise we would obtain a shorter
cycle).

Given ℓ, ℓ′ ∈ H(τ) such that ℓ ≺H ℓ′, let ν be the node with an unmatched get of ℓ. By
condition F3, this node is unique. By the definition ≺H this node has some descendant ν′

with an operation on ℓ′. There are two possibilities, one is that the scopes of ℓ, ℓ′ intersect,
in which case by condition F4.3 we have ℓ ≺ ℓ′. The other possibility is that the two subtrees
do not intersect, in which case the root of θ(ℓ′) is strictly below the unmatched get of ℓ.

As ≺ is acyclic, there exists some i such that the scopes of ℓi−1 and ℓi are disjoint, hence
all nodes of the scope of ℓi are below the unmatched get of ℓi−1. In particular the unmatched
get of ℓi−1 is an ancestor of the unmatched get of ℓi. As a result, by the definition of ≺H ,
ℓi−1 ≺H ℓi+1.

If k ≥ 2 then the above argument shows that the cycle was not minimal, yielding a
contradiction.

If k = 1 then we have a contradiction as well, as either the scopes intersect, so we cannot
have both ℓ0 ≺ ℓ1 and ℓ1 ≺ ℓ0. Or they do not intersect, but then there is a node ν in the
intersection with either ℓ0 <ν ℓ1 or ℓ1 <ν ℓ0, but not both.

As a result, the relation ≺H is acyclic. ◀

C Recognizing limit configurations

▶ Lemma 14. If τ is a limit configuration and C is a semantically correct coloring of τ then
C is syntactically correct.

Proof. Suppose C is a correct coloring of τ . Clearly τ is process-consistent. Branch con-
sistency follows from Lemma 11 (condition F3). Indeed, all the clauses for keeps(x) and
ev-keeps(x) hold because of the third condition of this lemma. The clauses for avoids(x)
and ev-avoids(x) follow directly from the semantics. Directly from definition of the correct
coloring it follows that it is also eventuality-consistent. It is slightly more difficult to verify
that it is recurrence-consistent.

To verify recurrence consistency of C consider an arbitrary node ν of τ and an uncolored
variable x ∈ Var(ν). We find an infinite sequence:

(ν, x) = (ν0, x0), (ν1, x1), . . .
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such that
xi ∈ Var(νi) and xi is uncolored in νi,
ν0, ν1, . . . is a path,
xi ∼ xi+1.

Let us see why it is possible. Since every leaf satisfies either ν |= keeps(x) or ν |= avoids(x),
node ν is not a leaf. If ν0 satisfies keeps(x) or ev-keeps(x) then so does ν. If ν0 satisfies
avoids(x) or ev-avoids(x) and is the unique successor then so does ν. Hence, if ν0 is the
unique successor of ν then x cannot be colored in ν0. If ν1 exists, but there is no y with
x = σ(ν1)(y) then the same verification shows that x cannot be colored in ν0. Finally, if
x = σ(ν1)(y) and y is colored in ν1 then x must be colored too. Hence, y is not colored in
ν1 in this last case. This shows how to find (ν1, x1). Repeating this argument we obtain the
desired sequence.

To terminate we show why the existence of the above sequence implies the recurrence
condition. First note that xi ∼ xj for all i, j ≥ 0. Let ℓ = L(ν)(x). We observe that since νi

does not satisfy avoids(xi) then there must be an operation on ℓ below νi, and since it does
not satisfy ev-keeps(x) it must be a release. So we have found an infinite path such that in
the subtree of every node of this path there is a release operation. This means that there are
infinitely many get and release operations on ℓ in the tree below ν ◀

▶ Lemma 15. If τ is a configuration and C a syntactically correct coloring of τ , then C is
semantically correct.

Proof. Process consistency guarantees that locally labels follow the transition relations.
Branch consistency on keeps(x) and avoids(x) labels guarantees that if ν is labeled by one of
these predicates then the predicate holds in ν. To get the same property for ev-keeps(x) and
ev-avoids(x) we need the eventuality-consistent condition.

Finally, if x is uncolored at ν then the recurrence-consistent condition implies that x

satisfies none of the four predicates. ◀

▶ Lemma 16. Let τ be a process-consistent configuration with syntactically correct coloring.
For every node ν and variable x ∈ Var(ν) we have: L(ν)(x) ∈ H(τ) if and only if x ∈ Hs(ν).

Proof. Suppose ℓ = L(ν)(x) and ℓ ∈ H(τ). Take the node ν′ that is closest to the root and
has ℓ = L(ν′)(x′) for some x′. We have ν′ |= ev-keeps(x′) and ν′ is a right child (it cannot be
the root as Var(ε) = ∅). Hence, x′ ∈ Hs(ν′). By induction on the length of the path from ν′

to ν we show that x ∈ Hs(ν).
For the other direction, if ν |= ev-keeps(x) then L(ν)(x) ∈ H(τ). It is also easy to see

that membership in H(τ) is preserved by all the rules. ◀

▶ Lemma 17. Let τ be a process-consistent configuration with a syntactically correct coloring.
Condition F2 of Lemma 11 holds for τ if and only if for every leaf ν of τ , every possible
transition from s(ν) has some getx operation with x ∈ Hs(ν).

Proof. By Lemma 16. ◀

▶ Lemma 18. Let τ be a process-consistent configuration with a syntactically correct coloring.
Then condition F3 of Lemma 11 holds for τ .

Proof. Consider ℓ ∈ H(τ). By Lemma 13 there is a node ν and x ∈ Var(ν) with ν |= keeps(x),
ℓ = L(ν)(x). Let ν′ be the root of the scope of ℓ. We have ν′ |= ev-keeps(x′) for x′ ∈ Var(ν′)
with x′ ∼ x. By consistency conditions on the coloring:
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for every node ν′′ on the path from ν′ to ν we have ν′′ |= ev-keeps(x′′) for x′′ ∼ x, and
for every right child ν′′′ of ν′′ we have ν′′′ |= ev-avoids(x′′′) for x′′′ ∼ x.

Observe that ν′′′ |= ev-avoids(x′′′) guarantees that there are only finitely many operations on
ℓ below ν′′′, and that there is no unmatched get of ℓ below ν′′′. Since there are no operations
on ℓ below ν, we are done. ◀

▶ Lemma 19. Let τ be a process-consistent configuration with a syntactically correct coloring.
A family of local orders <ν is a consistent order labeling of τ if and only if it satisfies the
conditions of Lemma 12.

Proof. Let us take a family of orders <ν satisfying conditions F4.1, F4.2, F4.3 of Lemma 12.
We show that it is a consistent order labeling of τ . By Lemma 16 the first condition is
satisfied. The next two conditions follow from condition F4.2. The fourth condition requires
some verification. Consider ν as in that condition, so with y <ν x and ν |= keeps(x). It
follows that there is some ancestor ν′ of ν, together with some x′ ∼ x, x′ ∈ Var(ν′), such
that the action at ν′ is an unmatched getx′ of the lock ℓ = L(ν′)(x′) = L(ν)(x). If there
were some operation on ℓ′ = L(ν)(y) below or at ν then ℓ ≺H ℓ′, implying x <ν y by F4.3.
Thus there is no operation on ℓ′ below or at ν, meaning that ν |= keeps(y) or ν |= avoids(y).

For the other direction, take a consistent order labeling <ν . We show that it satisfies the
conditions F4.1, F4.2, F4.3 of Lemma 12. From the first condition on <ν and Lemma 16
we see that <ν orders only variables associated with locks from H(τ); this gives us F4.1.
Condition F4.2 follows directly from the second and third property of consistent order
labeling.

It remains to show F4.3. For this take a node ν and two locks ℓ = L(ν)(x) and ℓ′ = L(ν)(y)
for some x, y ∈ Hs(ν). Suppose ℓ ≺H ℓ′. This means that there is an unmatched get of ℓ,
say in a node ν′, and an operation on ℓ′ at some node ν′′ below ν′.

We show below that we can find some node ν1 in the scope of both ℓ and ℓ′, and such
that ν1 |= keeps(x1) and ν1 ̸|= keeps(y1) and ν1 ̸|= avoids(y1), with x ∼ x1 and y ∼ y1. This
will show that we cannot have y1 <ν1 x1, so it must hold that x1 <ν1 y1, thus also x <ν y

by local consistency.

If either ν, ν′ are incomparable, or ν is an ancestor of ν′, or ν = ν′, then ν′ and ν′0 are
in the scope of both ℓ and ℓ′ (note that ν′0 is an ancestor of ν′′, or they can be equal).
We choose ν1 = ν′0.
If ν′ ̸= ν is an ancestor of ν, but ν and ν′′ are either incomparable, or ν is an ancestor of
ν′′, then we chose ν1 as the least common ancestor of ν′′ and ν. Note that ν1 is below or
equal to ν0, and belongs to the scope of both ℓ and ℓ′.
If ν′′ is an ancestor of ν then ν′′ is in the scope of both ℓ and ℓ′, so we chose ν1 to be ν′′.

◀

▶ Lemma 20. Let τ be a process-consistent configuration with a syntactically correct coloring.
If ≺H has no infinite descending chain then there is a consistent order labeling of τ with no
infinite descending chain. If ≺H has an infinite descending chain then every consistent order
labeling of τ admits an infinite descending chain.

Proof. The first statement is easy: take the well-founded strict order on locks < defined in
the proof of Lemma 11, and for each node ν take as <ν the order given by < on L(ν)(Var(ν)).
The well-foundedness of < implies that there is no infinite descending chain in the order
labeling.
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For the second part, assume ≺H has an infinite descending chain and let (<ν)ν∈τ be a
consistent order labeling of τ . Let ℓ0 ≻H ℓ1 ≻H · · · be an infinite descending chain for ≺H .

For all i ≥ 1 let µi be a node with an unmatched get of ℓi and with a descendant with
a get of ℓi−1. Let ci be the root of the scope of ℓi in τ . As µi+1 is an ancestor of a node
where ℓi appears, it is comparable with ci (two nodes are comparable if one is an ancestor of
the other). As ci+1 is an ancestor of µi+1, it is comparable with ci.

Claim 1: For all a ≤ b, there exists i ∈ {a, . . . , b} such that ci is an ancestor of all (ck)a≤k≤b.

Proof. We proceed by induction on b − a. If b − a = 0 this is clear. If b − a > 0, by induction
hypothesis there exists i ∈ {a, . . . , b − 1} such that ci is an ancestor of all (cj)a≤k≤b−1. As
cb is comparable with cb−1, which is a descendant of ci, cb is comparable with ci. If cb is a
descendant of ci, then ci is an ancestor of all (ck)a≤k≤b. If cb is an ancestor of ci, then cb is
an ancestor of all (ck)a≤k≤b. ◀

Consider the subtree of τ formed by all ci and their ancestors. It is an infinite, but
finitely-branching tree, thus it has an infinite branch by König’s lemma. We first argue that
there must be infinitely many ci on that branch. Let a ∈ N, let νa be the lowest ancestor of
ca on the branch. Let ν′ be lower on the branch than νa, then ν′ has some descendant cb.
Note that νa is the lowest common ancestor of ca and cb. We can assume a < b (the case
b < a is symmetric), then by Claim 1 there is some i ∈ {a, . . . , b} such that ci is an ancestor
of all (ck)a≤k≤b, and in particular of ca and cb. Further, as νa is the lowest common ancestor
of ca and cb, ci is an ancestor of νa and is thus on the branch. As a result, for all a ∈ N we
can find i ≥ a such that ci is on the branch.

We pick a sequence of ci as follows: we start with the highest ci0 on the branch, and then
define cij+1 as the highest ci on the branch with i > ij , for all j. By definition for all j we
have that no ci with i > ij is a strict ancestor of cij+1 .

As a consequence of Claim 1, there exists i ∈ {ij + 1, . . . , ij+1} such that ci is an ancestor
of all (ck)ij+1≤k≤ij+1 . As noted above, as i > ij we cannot have ci as a strict ancestor of
cij+1 , hence i = ij+1. As a result, cij+1 is an ancestor of all (ck)ij<k<ij+1 .

For the remaining of the proof we fix a consistent order labeling (<ν)ν for τ .

Claim 2: For all a < b, if node ν is in the scope of both ℓa and ℓb, and if ν is ancestor of all
(ck)a<k<b, then x >ν y, with x, y such that L(ν)(x) = ℓa and L(ν)(y) = ℓb.

Proof. Let x, y be such that L(ν)(x) = ℓa and L(ν)(y) = ℓb. We proceed by induction on
b − a.

If b = a + 1 then ℓa ≻H ℓb. Since we assume that (<ν)n is a consistent order labeling, by
Lemma 19 and F4.3 of Lemma 12 we have x >ν y as claimed.

If b−a ≥ 2, by Claim 1, there exists i ∈ {a+1, . . . , b−1} such that ci is an ancestor of all
(ck)a<k<b. In particular, ci is an ancestor of ca+1, itself an ancestor of µa+1, itself an ancestor
of a node ν′ with a get of ℓa. Recall that ν itself is an ancestor of ci, by assumption. As the
scope of a lock is a subtree, ℓa appears in all nodes between ν and ν′, thus in particular in ci.

Moreover, µb is an ancestor of some node with a get of ℓb−1, which is a descendant of
cb−1, thus of ci, hence µb and ci are comparable. If µb is an ancestor of ci, then as ν′ is a
descendant of ci, ν′ is also a descendant of µb, hence ℓa ≻H ℓb. As a result, x >ν y as the
consistent order labeling satisfies F4.3 (Lemma 19). If µb is a descendant of ci then as the
scope of a lock is a subtree, ℓb appears in all nodes between ν and µb, thus in particular in
ci. We set x′, y′, z′ ∈ Var(ci) such that L(ci)(x′) = ℓa, L(ci)(y′) = ℓb and L(ci)(z′) = ℓi and
by induction hypothesis we have x >ci z and z >ci y thus x >ci y as >ci is total. Finally, as
we have a consistent order labeling, x >ν y holds as well. ◀
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Recall that cij+1 is an ancestor of all (ck)ij<k<ij+1 . In particular, cij+1 is an ancestor of
cij+1, thus of µij+1, itself an ancestor of some node ν′ with a get of ℓij

. Thus ℓij
appears in

cij+1 , because cij+1 is between cij
and ν′.

Let xj , yj be such that L(cij+1)(xj) = ℓij
and L(cij+1)(yj) = ℓij+1 . By Claim 2, we have

xj >ν yj . The sequences (cij+1)j>0, (xj)j>0 and (yj)j>0 thus form an infinite descending
chain, proving the lemma. ◀

▶ Proposition 21. For a given DLSS, there is a non-deterministic Büchi tree automaton
B̂ accepting exactly the limit configurations of process-fair runs of DLSS. The size of B̂ is
linear in the size of the DLSS and exponential in the maximal arity of the DLSS.

Proof. Given a tree τ labeled with p, a, s the automaton B̂ guesses a coloring C, labeling
Hs and an ordering labeling O. It then checks if C, Hs and O satisfy all the consistency
conditions. This automaton is a product of the following automata:

B1 recognizing process-consistent trees,
BC checking if the coloring is syntactically correct,
BH checking if Hs is a syntactic H-labeling,
B2 checking the conditions of Lemma 17,
BO checking if O is a consistent order labeling.
B5 checking the absence of infinite descending chains (Lemma 20).

Apart from BC and B5 the other automata only check relations between a node and its
children and some additional conditions local to a node. So they are automata with trivial
acceptance conditions. Automaton BC needs a Büchi condition to check that C is eventuality-
consistent and recurrence-consistent. The number of labels is polynomial in the size of
DLSS and exponential in the maximal arity as we have sets of predicates and orderings on
variables as labels. Automaton B5 can be obtained by first constructing an automaton for its
complement: one can easily define a non-deterministic Büchi automaton guessing a branch
and following a sequence of variables along that branch witnessing an infinite decreasing
sequence of locks. As it only needs to remember a pointer to one of the variables of a node,
its number of states is the maximal arity of the DLSS. Thus we can complement it to get a
non-deterministic Büchi automaton checking the absence of such sequence, of size exponential
in the maximal arity of the DLSS, and polynomial in the alphabet (itself exponential in the
arity and polynomial in the DLSS).

We need to check that τ is a fair limit configuration if and only if it is accepted by B̂.
If τ is a limit configuration then it is process consistent, so it is accepted by B1. Guessing

C to be semantically correct coloring ensures that BC accepts τ with this coloring (Lemma 14).
As we have observed, given the coloring there is unique syntactic H-labeling, so BH can
accept it. By Lemma 11, configuration τ satisfies properties F1-5. So τ is accepted by B2.
Finally, by Lemma 12, τ satisfies properties F4.1, F4.2, F4.3, so τ is accepted by BO thanks
to Lemma 19. By Lemma 20, the automaton B5 accepts τ as well.

For the other direction suppose τ is accepted by B̂. Thanks to Lemma 11 it is sufficient
to check properties F1-5. Property F1 is verified by automaton B1. Thanks to BC we know
that the guessed coloring is syntactically correct. Then B2 ensures that τ satisfies F2 thanks
to Lemma 17. Lemma 18 ensures that τ satisfies F3. Finally, automaton BO checks that
the guessed orderings are a consistent order labeling. Hence, Lemma 19 guarantees that τ

satisfies the conditions of Lemma 12 giving us F4. Finally, by Lemma 20 automaton B5
verifies condition F5. ◀
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D Pushdown systems

▶ Proposition 23. For a fixed d, the emptiness problem for right-resetting pushdown tree
automata with a parity condition over ranks {1, . . . , d} can be solved in Ptime.

Proof. We consider the representative case of d = 3. Suppose we are given a right-resetting
pushdown tree automaton A = (Q, Σ, Γ, q0, ⊥, δ, Ω).

The first step is to construct a pushdown word automaton Al(G1, G2, G3) depending
on three sets of states G1, G2, G3 ⊆ Q. The idea is that Al simulates the run of A on the
leftmost branch of a tree. When A has a transition going both to the left and to the right
then Al goes to the left and checks if the state going to the right is in an appropriate Ge.
This means that Al works over the alphabet Σl that is the same as Σ but all letters from
Σ2 have rank 1 instead of 2. The states of Al(G1, G2, G3) are Q × {1, 2, 3} with the second
component storing the maximal rank of a state seen so far on the run. The transitions of
Al(G1, G2, G3) are defined according to the above description. We make precise only the
case for a transition of A of the form δ(q, a, γ) = ((ql, instrl), (qr, instrr)). In this case, Al

has a transition δl((q, e), a, γ) = ((ql, max(e, Ω(ql))), instrl) if qr ∈ Gmax(e,Ω(qr)). Observe
that instrr is necessarily reset as A is right-resetting.

The next step is to observe that for given sets G1, G2, G3 we can calculate in Ptime the
set of states from which Al(G1, G2, G3) has an accepting run.

The last step is to compute the following fixpoint expression in the lattice of subsets of Q:

W = LFPX3. GFPX2. LFPX1. P (X1, X2, X3) where
P (X1, X2, X3) ={q : Al(X1, X2, X3) has an accepting run from q} .

Observe that P : P(Q)3 → P(Q) is a monotone function over the lattice of subsets of Q.
Computing W requires at most |Q|3 computations of P for different triples of sets of states.

We claim that A has an accepting run from a state q, if and only if, q ∈ W .
Let us look at the right-to-left direction of the claim. For this we recall how the least

fixpoint is calculated. Consider any monotone function R(X) over P(Q), and its least fixpoint
Rω = LFPX. R(X). This fixpoint can be computed by a sequence of approximations:

R0 = ∅ Ri+1 = R(Ri)

The sequence of Ri is increasing and Rω = Ri for some i ≤ |Q|.
Now we come back to our set W . Observe that W = LFPX3. R where R(X) =

GFPX2.LFPX1. P (X1, X2, X). As in the previous paragraph we can define

W 0 = ∅ and W i+1 = GFPX2.LFPX1. P (X1, X2, W i) .

So, if q ∈ W then q ∈ W i for some i. Now observe that W i = LFPX1.P (X1, W i, W i−1),
since W i is a fixpoint of GFPX2. By similar reasoning we define

W i,0 = ∅ and W i,j+1 = P (W i,j , W i, W i−1) .

Now, q ∈ W i implies q ∈ W i,j for some j. We write sig(q) for the lexicographically smallest
(i, j) such that q ∈ W i,j .

We examine what sig(q) = (i, j) means. By definition q ∈ P (W i,j−1, W i, W i−1), so there
is an accepting run of Al(W i,j−1, W i, W i,j−1) from q. Looking at the run of A that Al

simulates we can see that whenever this run branches to the right with some q′ and e is the
maximal rank on the run till this branching then
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if e = 1 then q′ ∈ W i,j−1,
if e = 2 then q′ ∈ W i,k for some k,
if e = 3 then q′ ∈ W i−1,k for some k.

With this observation we can construct an accepting run of A from every state in
W . If sig(q) = (i, j) then consider an accepting run of Al on the left path given by
P (W i,j−1, W i, W i−1). For every state branching to the right from this left path we recursively
apply the same procedure. By construction, every path that is eventually a left path is
accepting. A path branching right infinitely often is also accepting by the previous paragraph
since signatures cannot go below 0. More precisely, the path cannot see 3 infinitely often
because the first component of the signature decreases. If it sees 1 infinitely often then it
needs to see also 2 infinitely often, because of the second component that decreases.

Let us now look at the left-to-right direction. Take an accepting run of A from q0. We
construct something that we call a skeleton tree of this run. As the nodes of the skeleton tree
we take the root and all the nodes that are a right child; so these are the nodes of the tree of
the form (0∗1)∗. The skeleton has an edge ν

e−−→ ν0k1 if e is the maximal rank of a state of
A on the path from ν to ν0k1. Observe that a node can have infinitely many children. As
we have started with an accepting run, every path in this skeleton tree satisfies the parity
condition. In particular, for every node, on every path from this node there is a finite number
of 3 edges. Thus, to every node ν we can assign an ordinal θ3(ν) such that if ν

e−−→ ν′ then
θ3(ν′) ≤ θ3(ν) and the inequality is strict if e = 3. It is also the case that on every path from
ν there is a finite number of 1 edges before some 2 or 3 edge. This allows to define θ1(ν)
with the property that if ν

1−−→ ν′ then θ1(ν′) < θ1(ν). Now we can show that for every node
ν of the skeleton tree, if q is the state assigned to ν then q ∈ W θ3(ν),θ1(ν) for W i,j as defined
in the computation of W (putting W θ3 = W for every θ3 > |Q|, and W θ3,θ1 = W θ3 for every
θ1 > |Q|). The proof is by induction on the lexicographic order on (θ3(ν), θ1(ν)). ◀

E Lower bounds

In this section we show the two remaining lower bounds, namely Exptime-hardness for
nested DLSS and undecidability for arbitrary ones.

▶ Proposition 22. The DLSS verification problem for nested DLSS and Büchi objective is
Exptime-hard. The result holds even if the Büchi objective refers to a single process.

Proof. We show that the difficulty of the problem stems from the systems and not the
specification, by proving that checking if some copy of a process has an infinite run is already
Exptime-hard.

We provide a reduction from the emptiness problem for the intersection of top-down tree
automata (over finite trees). Let A1, . . . , Ak be finite tree automata over a ranked alphabet
A, with Ai = (Si, δi, s0,i, Fi). We can assume that A = {a, b, c} with a, b of arity 2 and c of
arity 0, and that all automata only recognize trees with root labelled by a. We are going to
construct a DLSS that simulates their computations simultaneously on the same tree T , by
using locks to memorize their states.

The idea is to have a new process copy for each node of T . Each such copy uses the
variables xs

i and ys
i for all 1 ≤ i ≤ k and s ∈ Si, as well as the variables z1, z2 and t. Variable

xs
i is supposed to encode the information about the state of the parent node in the run of

Ai, while ys
i will encode the state of Ai at the current node.

We use processes p0, q, ch, tk, plus processes p0
a, p1

a, p0
b , p1

b and pc. The processes are
sketched in Figure 2. Process p0 is the initial one. Process q is the root of T , and after
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spawning its children it takes and releases the lock ℓt associated with variable t indefinitely.
Lock ℓt will be shared with all processes, except for tk. The specification is that q should
keep running forever. Equivalently, lock ℓt should be free infinitely often.

Whenever process ch is spawned, the purpose is to check if some lock is ultimately held.
The first get in process ch corresponds to this test. If the lock associated with variable s

is not taken, by process-fairness ch eventually takes it, and then it also takes ℓt (forever),
preventing q to have an infinite run. As for tk, it simply takes the lock that it is given as
argument.

The processes representing nodes of T are described next. Each node of T is represented
by a copy of process pi

a or pi
b, depending on the letter a or b its parent is labelled with, and

on whether it is a left or right child of its parent (i = 0 and i = 1, respectively). The root is
represented by process q.

Process p1
a proceeds as follows: it chooses for each of its children a letter and spawns the

associated processes, with each variable xs
i of the child mapped to its own variable ys

i , and
all ys

i of the child mapped to new (see actions sp in Figure 2). If the node represented by
p1

a is a leaf, then p1
a spans a unique child pc. For each 1 ≤ i ≤ k, process p1

a then guesses
the state s of its parent in Ai and spawns a process ch in charge of checking the guess, so
whether the lock associated with xs

i is taken (see actions β in Figure 2). Finally, p1
a spawns

a copy of process tk in charge of taking the lock associated with ys′

i , where s′ = δi(s, a, 1) is
the state of the current node (see actions γ in Figure 2).

Processes p0
a, p0

b , p1
b are defined similarly. Process pc simply guesses a final state s of its

parent in each Ai and spawns a copy of ch to verify the guesses.
Process q is also in charge of representing the root, which we assumed to be labelled

by a, hence all it has to do is spawn two children p0
a and p1

a with the variable assignments
described below, and spawn copies of tk to take the locks associated with the variables x

s0,i

i

(actions γi).
The problem is that we might end up producing an infinity of processes, representing a

computation of the automata Ai over an infinite tree. To avoid that, we use variables z0, z1
and z. Each copy of pi

a and pi
b, after doing all its other operations, takes z0 and z1 forever,

and then takes and releases z. When spawning other processes representing nodes, each of
pi

a and pi
b maps the z of the spawned process to its zi (depending on whether it is its first or

second spawned process), and the z0, z1 to new. We also add edges taking t forever that will
eventually be executed, due to process-fairness, if z is taken forever before this process can
take and release it. Hence all such processes must first acquire the locks of z0, z1 and then
use the lock of z. This imposes that this part of the run is executed in the current process
after it is executed in both children. This is only possible if the tree T is finite.

To sum up, if the Ai all accept a finite tree T then we can construct a process-fair run of
this DLSS by spawning all the processes representing nodes of T , then having all processes tk
execute their get. There is no conflict as no two copies of tk take the same lock. All copies
of process ch are then stuck in their first state. We then execute the actions on z, z0, z1 of
each pi

a, pi
b in a bottom-up fashion, so that we can execute them all. Finally, we run q forever

by having it take and release the lock ℓt indefinitely.
Conversely, if this DLSS has a process-fair run where q runs forever, then we can construct

a tree T over a, b, c by taking q as root and defining the children of a node as the processes
pi

a, pi
b spawned by the corresponding process. A node whose children are pi

a is labelled a, one
whose children are pi

b is labelled b, and the leaves are labelled c.
We know that T is finite thanks to the previous argument involving the z, z0, z1. We

can associate with each node of T a state of each Ai, inferred from the set of locks held so
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Figure 2 DLSS in Proposition 22

that we obtain runs of the automata Ai over T (transitions are respected as otherwise some
ch process would get a lock that is not taken by any tk and thus would eventually take ℓt

forever). This run is furthermore accepting by definition of processes pc.
The DLSS we constructed is clearly nested, which shows the claim. ◀

▶ Theorem 5. The DLSS verification problem is undecidable. The result holds even if the
DLSS is finite-state and every process uses at most 4 locks.

Proof. The proof idea is to simulate an accepting run of TM M using n cells by spawning a
chain of n processes, P0, . . . , Pn−1. We assume that M accepts when the head is leftmost.

The initial process P0 uses three locks, called a, b, c1, and acquires a, b before spawning
P1. Process P1 uses locks a, b, c1, plus a fresh lock c2. It acquires c1 before spawning P2.
More generally, process Pk (1 ≤ k < n − 1) uses locks a, b, ck, ck+1, and it acquires ck before
spawning the next process Pk+1. The last process Pn−1 uses only three locks, a, b, cn−1.

A configuration (p, k, A0 . . . An−1) of the TM corresponds to each Pj storing Aj , with
process Pk storing in addition state p. A TM step to the right, from cell k to k + 1, needs to
communicate the next state q.

In the following we denote the process that currently owns locks a and b, as “sender”. The
notation S+, S− used below indicates that the sender tries to send the state to the right or
left neighbour, respectively. Similarly, R+, R− indicates that a “receiver” is ready to receive
from the right or the left neighbour, respectively.

Sending q from Pk to Pk+1 is implemented by Pk using the following sequences of actions:

S+
a = relagetck+1

relb getarelck+1getb

S+
b = relbgetck+1

rela getbrelck+1geta
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Process Pk+1 (“receiver”) uses matching sequences:

R−
a = getarelck+1getb relagetck+1

relb

R−
b = getbrelck+1geta relbgetck+1

rela

Suppose now that the sender Pk wants to send state q to receiver Pk+1. This will be done
by Pk by trying to execute the sequence (S+

a )q S+
b . Every process Pj with j > k is ready to

execute either R−
a or R−

b . Symmetrically, every process Pj with j < k is ready to execute
either R+

a or R+
b .

We show next that the DLSS deadlocks if Pk, Pk+1 do not execute (S+
a )q S+

b and (R−
a )q R−

b ,
resp., in lockstep manner:

Claim. Assume that Pk owns {a, b}, every Pj , j < k, owns cj+1, and every Pj , j > k, owns
cj . Moreover, Pk wants to send a to Pj+1. Then either Pk, Pk+1 execute S+

a and R−
a , resp.,

in lockstep manner, or all processes deadlock.

Proof of claim. Process Pk is the only process who can start, since all other processes wait
for acquiring either a or b.

After releasing a, process Pk needs ck+1. It can only proceed and take ck+1 if Pk+1 starts
executing R−

a , taking a and releasing ck+1. Then Pk releases b, and waits to get back a. If b

is taken by another process than the receiver, say Pj , j ≠ k + 1, then Pj will release its lock
c ̸= cj+1, and c is now the only available lock. Lock a will never become available because
Pj+1 will not release it, so all processes deadlock.

Assume that Pj+1 takes b, and releases a. If a is taken by another process than the
sender, say Pj , j ̸= k, then Pj will release its lock c ̸= cj+1, and c is now the only available
lock. Lock a will never become available because Pj+1 does not release b, so all processes
deadlock.

Assume that Pj takes a back. Then it releases cj+1, which can be taken only by Pj+1,
who releases also b. If b is taken by another process than the sender, say Pj , j ≠ k, then Pj

will release its lock c ̸= cj+1, and c is now the only available lock. Lock b will never become
available because Pj does not release a anymore. Once again, all processes deadlock. ◀

We conclude the proof by noting that P0 reaches a final state of M if and only if M

accepts. ◀
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