23
24
25
26
27
28
29

39
40
41
42
43
44

The complexity of downward closures of indexed languages

Anonymous Author(s)

ABSTRACT

Indexed languages are a classical notion in formal language theory,
which has attracted attention in recent decades due to its role in
higher-order model checking: They are precisely the languages
accepted by order-2 pushdown automata.

The downward closure of an indexed language—the set of all
(scattered) subwords of its members—is well-known to be a regular
over-approximation. It was shown by Zetzsche (ICALP 2015) that
the downward closure of a given indexed language is effectively
computable. However, the algorithm comes with no complexity
bounds, and it has remained open whether a primitive-recursive
construction exists.

We settle this question and provide a triply (resp. quadruply) ex-
ponential construction of a non-deterministic (resp. deterministic)
automaton. We also prove (asymptotically) matching lower bounds.

For the upper bounds, we rely on recent advances in semigroup
theory, which let us compute bounded-size summaries of words
with respect to a finite semigroup. By replacing stacks with their
summaries, we are able to transform an indexed grammar into a
context-free one with the same downward closure, and then apply
existing bounds for context-free grammars.

CCS CONCEPTS

« Theory of computation — Grammars and context-free lan-
guages; Verification by model checking; Algebraic language
theory.

KEYWORDS

Indexed languages, Higher-order pushdown automata, Downward
closures, Semigroups, Verification

ACM Reference Format:

Anonymous Author(s). 2018. The complexity of downward closures of in-
dexed languages. In Proceedings of Make sure to enter the correct conference
title from your rights confirmation email (Conference acronym 'XX). ACM,
New York, NY, USA, 25 pages. https://doi.org/XXXXXXX XXXXXXX

1 INTRODUCTION

Downward closures. For finite words u and v, we say that u is a
(scattered) subword of v, written u <X v, if v can be obtained from u
by inserting letters. The downward closure of a language L C 3*
isthe set L] = {u € ¥ | u X v for some v € L} of all subwords

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conference acronym XX, June 03-05, 2018, Woodstock, NY

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06

https://doi.org/XXXXXXX.XXXXXXX

of members of L. By the well-known Higman’s lemma [33], the
downward closure L| is regular for any language L.

This makes the downward closure a fundamental abstraction—it
is a regular overapproximation that preserves information about
pattern occurrences and unboundedness behavior. Specifically, in
the verification of complex systems, downward closures are of-
ten used to replace infinite-state components by finite-state ones,
which then enables the algorithmic analysis of the entire system.
Examples include asynchronous programs [15, 43], shared-memory
systems with dynamic thread creation [4, 8, 16-18], parameterized
asynchronous shared-memory systems [41], and systems commu-
nicating via lossy channels [1, 5, 9].

For these reasons, it is often useful to compute downward closures,
which means constructing a finite automaton for L| when given a
description (i.e. a grammar or an infinite-state recognizer) for L. This
is a notoriously difficult task, as it requires a deep understanding of
how L is generated/recognized. Therefore, the problem of comput-
ing downward closures has attracted significant attention over re-
cent decades, with work on context-free languages [23, 54], systems
with counting and concurrency [3, 10, 11, 29, 57], models of higher-
order recursion [20, 30, 55], lossy channel systems [1, 44], general al-
gorithms for broad classes of infinite-state systems [6, 55], represen-
tation sizes [12, 18, 28, 43], related algorithmic tasks [26, 47, 48, 58],
and even computability beyond subwords [6, 7, 13, 24, 59].

Indexed languages. A setting where downward closure computa-
tion is particularly challenging is that of indexed languages [2], a
classical notion in formal language theory that generalizes context-
free languages. Essentially, indexed grammars differ from context-
free grammars in that each non-terminal carries a stack, which
can be pushed and popped through special rules. These grammars
have recently attracted interest because of their role in higher-order
model-checking [40, 46]: Indexed grammars are equivalent to order-
2 pushdown automata, from the hierarchy of higher-order pushdown
automata (HOPA), which model safe higher-order recursion [38, 39]
(see also the survey [46]). Level k of this hierarchy consists of the
order-k pushdown automata (k-PDA), which have access to stacks of
(stacks of (...)) stacks—with nesting depth k: In particular, a 1-PDA is
an ordinary pushdown automaton, whereas a 2-PDA has a stack of
stacks, where it can operate on the top-most stack as an ordinary
pushdown automaton; but it can also copy the top-most stack.
There is a significant gap in our understanding of downward
closures of indexed languages (and HOPA more generally). There is
a general approach for computing downward closures [55]. Based
on this approach, computability of downward closures has been
shown for indexed languages (equivalently, 2-PDA) [55], then for
general HOPA [30], and even higher-order recursion schemes [20].
However, while mere computability of downward closures of
these models is settled, the complexity has remained a long-standing
open problem. This is because the algorithm from [55] enumerates
automata and then solves instances of the so-called simultaneous
unboundedness problem (SUP) to decide whether the current automa-
ton in fact recognizes L|. Thus, although the complexity of the SUP

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

112

114
115

116

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

itself is well-understood for HOPA [14, 47], there are no complexity
upper bounds for the entire task of computing downward closures
of indexed languages (nor for languages recognized by HOPA in
general). In fact, even the existence of a primitive-recursive (or even
hyper-Ackermannian) upper bound remained open’.

Contribution. In this work, we settle the complexity of computing
downward closures of indexed languages. We show that given an
indexed language L, one can compute a non-deterministic finite
automaton (NFA) for L| in triply exponential time (and hence of
triply exponential size). We also provide a triply exponential lower
bound, improving on the doubly exponential lower bound in [58].

Furthermore, our constructions also provide a tight bound for
the computation of a deterministic finite automaton (DFA) for L|: It
follows that one can construct a quadruply-exponential-sized DFA
for L], and we provide a quadruply-exponential lower-bound.

Moreover, our results settle the complexity of decision problems
involving downward closures of indexed languages. The downward
closure inclusion problem asks, whether for given indexed languages
Ly and Ly, we have L;| C Ly|. Similarly, the downward closure
equivalence problem asks whether L1| = Ly |. We show that both
problems are co-3-NEXP-complete.

Finally, our construction for the downward closure lower bound
also settles another question about indexed languages: It implies
that the known triply exponential upper bound on the pumping
threshold for indexed grammars [32, 53] (the maximal length of
words in a finite indexed language) is in fact asymptotically tight.
(In [37], a doubly exponential upper bound was claimed, but that
seems to be a miscalculation, see Section 3 and Appendix B.)

Why are the results unexpected? The complexity results come as
a considerable surprise. This is because (tight) complexity bounds
for HOPA are usually towers of exponentials where the height
grows linearly with the order. For example, for k > 1, the empti-
ness problem for k-PDA is (k — 1)-EXPTIME-complete [25, com-
ment before Thm. 7.12] (note that 0-EXPTIME = P). The same is
true of the SUP [47, Thm. 3]. Since downward closure inclusion
and equivalence are coNP-complete for NFAs (see [12, Sec. 5] and
[36, Prop. 7.3]) and coNEXP-complete for 1-PDAs [58, Tab. 1], and
hence co-k-NEXP-complete for k-PDAs with k < 1, one would ex-
pect co-2-NEXP rather than co-3-NEXP for 2-PDAs. In fact, the best
(and only) known lower bound until now has been co-2-NEXP [58,
Cor. 18]. Similarly, since downward closure NFAs are polynomial-
sized for given NFAs (sometimes considered 0-PDAs) and exponential-
sized for given 1-PDAs [12, Cor. 6], one would expect a doubly
exponential bound for 2-PDAs. In fact, the best known lower bound
on the NFA size for downward closures had been doubly exponen-
tial [58, remarks before Cor. 18].

Key ingredients. Indexed grammars extend context-free gram-
mars by equipping the nodes of derivation trees with pushdown
store (which we also call stack). This way, each branch of a deriva-
tion tree corresponds to a run of a pushdown automaton.

1Given that computing downward closures involves a well-quasi-ordering (WQO)
at its core, and WQO-based algorithms employing the subword ordering can often
be furnished with hyper-Ackermannian/multiply-recursive upper bounds via length-
function theorems [50, 51], one might hope for such a bound here. Unfortunately, it is
not clear how to apply length-function theorems to downward closure computation.

Anon.

Our construction relies on recent advances in finite semigroup
theory, which provide succinct “summaries” of arbitrarily long
words relative to a finite semigroup [27]. We use this (for a suitable
semigroup) to replace the stack inside each derivation tree node by
such a summary, each of which takes up exponentially many bits.
This replacement changes the overall language, but preserves the
downward closure. Once the information in each node is bounded,
we can transform the grammar into a doubly-exponential-sized
context-free grammar. This yields the triply exponential upper
bound overall, since for context-free grammars, existing algorithms
yield exponential-sized downward closure NFAs [12, Corollary 6].

The aforementioned summaries are similar in spirit to Simon’s
factorization forests [52]. The latter annotate words by trees: Rela-
tive to a morphism ¢: ¥* — M into a finite monoid M, a factoriza-
tion forest for w € 3* is a tree of height bounded by a function of
|M]| that allows evaluating ¢ on infixes of w without processing the
entire infix. Here, a crucial idea is that a sequence of infixes that all
map under ¢ to the same idempotent e must evaluate to e.

Similar to factorization forests, our summaries also exploit repe-
titions of idempotents to collapse long infixes in a stack. However,
in contrast to factorization forests, our summaries reduce the stack
word to one of bounded length (hence losing information). Also cru-
cially, taking summaries is compatible with pushing stack symbols:
Given a summary of w, one can compute a summary of aw.

Structure of the paper. We recall necessary notations and basic
results in Section 2, and state the main results in Section 3. Then
in Section 4 we show how to make a given indexed grammar pro-
ductive, meaning that every partial computation can be extended
to a full one. In Section 5 we introduce an object at the core of our
construction, the production monoid. In Section 6 we introduce new
rules that extend and reduce parts of the stack without altering the
downward closure of the language. We then proceed in Section 7 to
define summaries of stack contents with respect to the production
monoid. In Section 8 we leverage those summaries to compute from
an indexed grammar a context-free one with the same downward
closure, to which known constructions apply. Finally, in Section 9
we complement our upper bounds with matching lower bounds.

This paper contains internal links; every occurrence of a term is
linked to its definition. The reader can click on terms (and some
notations), or simply hover over them on some pdf readers, to get their
definition.

2 PRELIMINARIES

Words, trees and languages. Given a finite alphabet X, we write
3* for the set of words over %, and 3 for the set of words of length
k. Given w € 2*, we denote |w| its length. We assume familiarity
with basic finite automata theory, see [49] for an introduction.
We write u < v if u is a (scattered) subword of v; that is, if u can be
obtained from v by removing some of its letters. If a word w is equal
to uv, then we call u a prefix, and v a suffix of w. The downward
closure of a language L C X* is the set of subwords of words of L,
and is denoted L|. An important reason for studying downward
closures is that they are always regular. This was first shown by
Haines [31, Theorem 3], but also follows from =< being a well-quasi
ordering, which was shown earlier by Higman [33, Theorem 4.3]:

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289
290

The complexity of downward closures of indexed languages

THEOREM 2.1. The downward closure of any language is regular.

A finite ordered X-labeled binary tree is a pair (z,1) with 7 a
finite prefix-closed subset of {0, 1}* such that forallve r,vl € ¢
implies v0 € 7, and A : 7 — ¥ a function mapping each node in
7 to a label. We use the usual terminology for trees, with node,
leaf, branch, subtree, parent, child, ancestor, descendant etc. retaining
their usual meaning. The leaf word of 7 is the word obtained by
concatenating A(v1) ... A(vg), where vy, ..., v are the leaves of 7
read from left to right, i.e., in lexicographic order.

Indexed grammars. In this work we use a syntax for indexed
grammars that resembles the Chomsky normal form used for context-
free grammars. This simplifies semantics as well as proofs.
An indexed grammaris a tuple G = (N, T, I, P, S) with
e N the set of non-terminals, and S € N the starting non-
terminal
o T the set of terminal symbols
o [the set of index symbols, also called stack symbols
e P aset of productions, which are of the following types:
- A—> wwithw e T
- A— BCwithA,B,Ce N
- A—- BfwithA BeNand fel
- Af > BwithA,Be Nand f €]

We define the size of G as [N| + |P| + 2 o wep |W|. A context-free
grammar (or CFG) is an indexed grammar where all productions
are of the two first forms.

A sentential form is a word over the (infinite) alphabet NI* U T.
The set of sentential forms is denoted SF g, or simply SF when the
grammar is clear from context. We write the elements of NI* as
Alz], with A € N a non-terminal and z € I* interpreted as the
content of its stack; such an element is sometimes referred to as a
term. If u € SF, we occasionally use the notation u[z] to denote the
sentential form obtained by pushing z on top of the stack of every
non-terminal in u. The derivation relation = g (or simply =) over
SF is defined as:

uA[z]Jo=>uB[z]C[z]v ifA— BCeP,
uA[zlo=uB[fz]o if A— Bf € P,
uA|fzJo=>uB[z]ov ifAf > Be€P,
uA[z]Jo=>uwo ifA— weP.

forallu,0 € SF,AAB.Ce N, fel,zeI"and w € T*. We write
5 g (or simply %) for the reflexive transitive closure of = g.

The subword relation < is extended to SF in the natural way;, i.e.
u 2 v if u can be obtained from v by deleting terms. Note that on SF,
the ordering < is not a well-quasi ordering, since any two terms
Alz] and A[z’] are incomparable for z,z" € I*, z # Z’.

Given a sentential form u, we write Lgp (u) for the set of sentential
forms derivable from u, {v € SF | u=>v}. The language of G is
denoted L(G) and defined as Lgp(S) N T*. Furthermore, for all
X € N and u € SF, the language Lx (u) is defined as the set
Lsp(u) N (X U T)* of sentential forms derivable from u with all
stacks empty, and all non-terminals in X. In particular, Lg(u) is the
set of terminal words which can be derived from u. If the language
Lo (u) is non-empty then we say that u is productive.

A derivation treeis a finite ordered tree 7 whose nodes are labeled
by elements of NI* U T*, with the following constraints. For each

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

node v with label A[z] (where A € N and z € I*), exactly one of
the following holds

e visaleaf
e v has one child labeled w for some A — w € P
e v has two children labeled B[z] and C[z], for some produc-
tion A — BC € P
o v has one child labeled B[fz] for some A — Bf € P
e v has one child labeled B[z’] for some Af — B € P, with
z=f7.
A derivation tree whose root is labeled A[z] and whose leaf word
is equal to u is called a derivation tree from Alz] tou.If u € T* we
say that the derivation tree is complete.

REMARK 2.1. An easy induction shows that for all A[z] € NI*, a
sentential form u can be derived from A|z] if and only if u is the leaf
word of a derivation tree whose root is labeled A[z]. In the forthcoming
proofs we will either use sentential forms or derivation trees depending
on what is most convenient.

REMARK 2.2. When describing examples of indexed grammars, we
will use rules of the form Af — u and A — u withu € (NUT)*.
This is just syntactic sugar, as we can replace them with rules from
Definition 2 while adding a small number of non-terminals, in the
spirit of the Chomsky normal form [19]. This transformation incurs a
linear size increase the grammar. Details are left to Appendix A.

Example 2.2. We can define the language {a”b"2 | n € N} with
an indexed grammar:

S—>Tg # g is the stack bottom symbol;
T—>Tf # we push some number n of f;
T—A

Ag—e #ifn =0 then return ¢;
Af—>C #ifn > 0 we pop an f;
C — aAB #repeat n times to get a"B[g]|B[fg] - - - B[f" g];
B f — bbB

Bg—b #the Bs output pLisy (2041) _ pn’,

REMARK 2.3. We can assume without loss of generality that every
symbol pushed on the stack carries the information of the production
rule used to push it (this property can always be ensured by adding a
quantity of new stack symbols and production rules that is at most
quadratic in the size of the grammar). Formally, we assume that there
are functions a, f : I — N such that for every push rule A — Bf
we have A = a(f) and B = B(f). We also assume that for all f € I
there is a rule of the form A — Bf in P. Clearly stack symbols not
satisfying this condition can be removed.

Complexity. We define the functions exp; : N — N inductively by
setting exp,(n) = n and expy,;(n) = 2¢¥Pk(n) A function f: N —
Nis (at most) k-fold exponential if there is a constant ¢ > 0 such that
f(n) < expy(n°) for almost all n. We say that f is at least k-fold
exponential if there is a constant ¢ > 0 such that f(n) > expy (n°)
for infinitely many n. Instead of 2-fold, 3-fold, 4-fold exponential,
resp., we also say doubly, triply, or quadruply exponential, resp.
For k > 1, the class co-k-NEXP consists of the complements of sets

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

349
350
351
352
353
354
355

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

accepted by an f-time-bounded non-deterministic Turing machine,
for some f: N — N that is at most k-fold exponential.

3 MAIN RESULTS

In this section, we present the main results of this work.

Non-deterministic automata. Our first main contribution is an
algorithm to compute an NFA of at most triply exponential size for
the downward closure of an indexed language:

THEOREM 3.1. Given an indexed grammar G, one can compute (in
triply exponential time) a triply-exponential-sized NFA for L(G)].

We also provide an asymptotically matching lower bound, which
we infer from the following result:

THEOREM 3.2. Given n € N (in unary encoding), we can compute
in polynomial time an indexed grammar for the language {a®Ps(M)}.

An NFA for {a®*P3(n)} | clearly requires at least exps(n) states,
implying Corollary 3.3.

COROLLARY 3.3. There is a family (Gn)n>1 of indexed grammars
of size polynomial in n such that any NFA for L(Gy)| requires at
least exps(n) states.

Deterministic automata. Of course, Theorem 3.1 implies a quadru-
ply exponential upper bound for deterministic automata:

COROLLARY 3.4. Given an indexed grammar G, one can compute
(in quadruply exponential time) a DFA of at most quadruply expo-
nential size for L(G).

Here, we have an asymptotically matching lower bound as well:

THEOREM 3.5. There is a family (Gn)n>1 of indexed grammars of
size polynomial in n such that any DFA for L(Gn)| requires at least
exp,(n) states.

Downward closure comparisons. Theorem 3.1 and our construc-
tion for Theorem 3.2 also allow us to settle the complexity of deci-
sion problems related to downward closures. The downward closure
inclusion problem (for indexed languages) asks whether two given
indexed languages L1, L satisfy L1 C Ly|. Similarly, the downward
closure equivalence problem asks whether Ly | = Lp|.

In [58, Corollary 18], it was shown that downward closure inclu-
sion and equivalence for indexed languages are co-2-NEXP-hard.
Here, we settle their precise complexity:

THEOREM 3.6. Downward closure inclusion and downward closure
equivalence for indexed languages are co-3-NEXP-complete.

Here, the upper bounds follow from Theorem 3.1 and the fact that
downward closure inclusion and equivalence are coNP-complete
for NFAs (see [12, Section 5] and [36, Proposition 7.3]).

The pumping threshold for indexed languages. Our lower
bound technique also settles the growth of the pumping threshold
of indexed grammars. Consider the function

PB(n) = max{|w]| | there is an indexed grammar G of size n
with w € L(G) such that L(G) is finite}

Anon.

We call B(n) the pumping threshold (for size n) because placing an
upper bound on P(n) usually involves a pumping argument.

An analogous pumping threshold function for NFAs and CFGs
is well-understood: It is linear for NFAs and exponential for CFGs.
For indexed grammars, there are two proofs of a triply exponential
upper bound: the pumping lemmas of Hayashi [32, Theorem 5.1]
and Smith [53, Theorem 1] (Smith’s proof mentions the bound
explicitly; Hayashi’s proof requires some analysis for this). We
complement this by showing a triply exponential lower bound:

COROLLARY 3.7. P grows at least triply exponentially.

This follows from Theorem 3.2, because {anPS(")} is finite but
has an indexed grammar of size polynomial in n. It should be noted
that [37, Section 7] claims a doubly exponential upper bound for
B. Unfortunately, this seems to result from a miscalculation, see
Appendix B for a discussion.

REMARK 3.1. A triply exponential upper bound on B (n) also fol-
lows from our Theorem 3.1: If an indexed grammar G generates a
word that is longer than the number of states of an NFA for L(G)|,
then L(G)| must be infinite, and hence also L(G).

Structure of the paper. In Sections 4 to 8, we will prove Theo-
rem 3.1, from which all remaining upper bounds follow. In Section 9,
we will then prove all lower bounds.

4 PRODUCTIVENESS

For the rest of the paper, we assume that our input grammar G
generates a non-empty language. This is because emptiness of
indexed languages can be decided in EXPTIME [25, Theorem 7.12],
and if L(G) is empty, an NFA for L(G)] is immediate.

However, we will need to establish the stronger guarantee of
productiveness, which expresses the absence of deadlocks. This
means that if we can produce a sentential form u, then from u we
can derive a terminal word in T*.

Productive grammars. We say that G is productive if for all u €
Lsr(S) we have Lg(u) # 0, that is, from every sentential form
obtained from S we can derive a word in T*.

This property is especially useful for downward closure compu-
tation. In a productive indexed grammar, we can observe: for all
u,v € Lgp(S), if v is such that v < u, then Lg(v) C Lg(u)]. In other
words, we can interleave derivations and deletion of terms without
any risk of obtaining “extra” terminal words. This property does
not hold in general, because deleting terms that cannot produce
terminal words may allow the derivation of a terminal word that is
not in the downward closure.

Example 4.1. The following grammar G is not productive.

S—S1L S—Sf S — Sg
S — AA S — AAC

Af — aA Ag—b

Cf —cC Cg — CAB

AL — ¢ CL—e

The language of G is {w? | w € {a,b}*} U {a®*c" | n > 0}.
In particular, by setting u = A[gfL]A[gf LIC[fL]A[fL]B[fL]

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

464

465
466
467
468
469
470
471
472
473
474

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495

The complexity of downward closures of indexed languages

and v = C[fL]A[fL] we have v 2 u and u € Lsp(S), but ca €

Lo (v) while Ly (u)| = 0 (since B cannot produce a terminal word).
Moreover, ca ¢ L(G)]. In this case, it is easy to modify G to obtain
a productive grammar which generates the same language.

Tracking productivity of non-terminals. Before we describe
our method for achieving productiveness, we observe that tracking
the non-terminals which, with a given stack content, can derive a
sentential form with terms confined to a certain subset, gives rise
to a left semigroup action.

Definition 4.2. For X C N and z € I*, we define
z-X={AeN|Lx(Alz]) # 0},

i.e. z - X is the set of non-terminals A so that the term A[z] can
derive a sentential form consisting of terminals and empty-stack
occurrences of non-terminals in X. Let U be defined as the set of
non-terminals which can derive a word in T, i.e.

U={AeN|Ly(A) #0}.

Note that L(G) is empty if and only if S ¢ U.
We will often rely on the fact that I* acts (on the left) as a semi-
group2 on the power set 2N as we state now:

LEMMA 4.3. Forevery f €I,z € I*, and X C N, we have fz-X =
f(z-X). Moreover,z - U=1z-0.

Here, only the inclusion fz-X C f - (z- X) is not trivial: It holds
because a derivation that eliminates fz from the stack must in each
branch first remove f, and then z. The proof is in Appendix C.1.

Achieving productiveness. We are now ready to present our con-
struction of a productive equivalent of G. Formally, the annotated
version of G, denoted é = (N, T,1,P, 5‘), is defined as follows. Recall
that we assumed L(G) # 0, thus S € U. Otherwise, we have:

e N={(AX)eNx2N|AeXx},I=Ix2N,and S = (S,U),
e P contains the following rules:
- (AX) > wforall A > wePwithweT*
- (A,X) — (B,X)(C,X) forall A — BC € Pwith A, B,C € X
- (AX) > (BY)(f,X)forall A - Bf e PwithY = f - X,
AeXandBeY
- AYV)(f.X) > (BX)forall Af > Be PwithY =f X,
AeYandBeX
Note that a stack word z = (f, X5) -+ - (f1, X1) € T appearing
as an infix of a stack content in a derivation of G must be so that
Xi = fi—1 - X;—1 forall i > 1. A stack word satisfying this property
is determined by its projection onto I* and its last element. Given
z=fy--fi € I*and X C N, define 7% as (fp, Xp) - - - (fi, X1) with
X; = X and Xj41 = f; - X; for all i < n. Given A[z] € NIt with
z=fp---fiand A € z - X, the X-based annotation of A[z] is the
G term (A, Y)[Z] = (A Y)[(f. Xn) - (fi.X1)] € NT' such that
X1=X,Y=fy-Xpand X; = fi—1 - Xj—1 for all i > 1. In particular,
by Lemma C.1 we have X; = fi—;--- fi-XforalliandY =z-X.In
the case of an empty stack,the X-based annotation of A is (A, X).

Correctness of the construction. Having defined G, we can prove
that it serves its purpose:

ZHowever, it does not act as a monoid, because & - X it not necessarily X, as a set z - X
always includes U.

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

LEMMA 4.4. G and G have the same language, and G is productive.
The mostly straightforward proof can be found in Appendix C.2.

REMARK 4.1. Although we are able to turn any indexed grammar
into a productive one with the same language, this transformation
incurs an exponential blow-up in the size. Therefore, in order to obtain
tight complexity bounds, we do not simply assume productiveness of
the input grammar. Rather, we work with annotated versions explicitly
when needed.

5 THE STACK MONOID

Overall goal. Another key aspect of our construction is the stack

monoid—a finite monoid in which we evaluate stack contents. Es-
_ =k . P

sentially, we map a stack z € I to a monoid element that encodes?

e the non-terminals from and to which this content was
pushed (which are unique thanks to Remark 2.3), and

e for each pair A, B of non-terminals, whether we can derive
a sentential form containing B from A[z] (i.e., whether we
can obtain a B by popping z from A).

The purpose of this encoding is that based on this information, we
will be able to simplify (or expand) stack contents during deriva-
tions, while preserving the downward closure. For example, if we
have a derivation from A[z] to a sentential form uBo, then we could
just erase u and v, thus turning A[z] into B. Even better, if we have
a derivation from A[z] to A then, roughly speaking, this means we
can turn any term A[zz’] into A[Z’].

Observations like this, based on the stack monoid, will be used in
Section 6 to define more involved stack manipulations. In Section 7,
these will allow us to reduce, roughly speaking, every stack to one
of doubly exponentially many.

Semigroup terminology. We begin with some terminology. A
semigroup (S, -) is a set equipped with an associative product. We
will often identify a semigroup with its set of elements and de-
note it simply as S, when the product operation is clear. A monoid
(M, -, 1) is a semigroup with a neutral element 1j.

Given a monoid (M, -), define ¢ : M* — M to be its evaluation
morphism, which maps a sequence of elements of M to its product,
with the empty sequence being mapped to 1p. An element x € M
is idempotent if x - x = x. The set of idempotent elements of M is
denoted Idem(M).

In all that follows we fix an indexed grammar G = (N, T, L, P,S).
We will mainly work with its annotated version G. Note that we
cannot use the annotation construction as a black box and simply
assume that the input grammar is productive (see Remark 4.1).

Formal definition. Let us now start by describing formally the
monoid at hand. It is a bit more involved than what is described
above since we have to account for the productiveness issues ex-
plained in the previous section. We will use the boolean matrix
monoid over non-terminals of G: This monoid is defined as the set
of matrices BN*N | with B = {T, L}. The product is the usual prod-
uct of matrices over the Boolean semiring (B, V, A), and the neutral

3Notice that there is a dissymmetry between push and pop here (in fact, throughout
the construction). This is because a stack symbol is only pushed once, but may be
popped on multiple branches.

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577

585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

element is the matrix with T on the diagonal and L everywhere
else. Given matrices My, My, we write Mj M, for their product.

We also define, for all X C N, the reachability relation Rx over
N. It relates two non-terminals if from the first one we can produce
a sentential form containing the second one, with empty stacks.
Formally,

A Rx Bif and only if there is a derivation (A, X)é‘»?u(B, X)v with
u,0 € SF

(note that due to the productiveness property, requiring stack empti-

ness is only important for (B, X)).

Let Q be the set of tuples (B,Y, M, A, X) with A,B € N non-
terminals, X, Y C N sets of non-terminals, and M € BN*N Define
the stack monoid as the monoid (M, -, 13;) whose elements are
QU {1y} U {0}, where 0y satisfies Oy - x = x - Oy = Oy for all
x € M, and whose product operation is defined as follows:

(Ba, Y2, M2, A2, X2) - (B1, Y1, M1, A1, X1) =
{ (By, Yo, Mi Mg, A1, X1) if Xz = Y1 and By R, Aq

0y otherwise.

Let @, f be the functions described in Remark 2.3 for G. We define
a morphism ¢ : T" — M as follows. For each letter (f.X) €1, set

e(f,X) = (B(N). f - X, My x, a(f), X),
where for all A,B € N, Mf,X (A, B) = T if and only if there exist
u,0 € (X UT)" such that A[f]= guBo. Note that computing this
matrix easily reduces to an emptiness check for an indexed grammar,
which can be done in exponential time.

Feasibility. Let us mention some basic properties of stacks that are
encoded in their image in M. The first concerns whether a given
stack content can be pushed: We say that a non-empty stack content
(in either I* or 7*) is feasible if, starting from some non-terminal,
it can be pushed onto the stack of some non-terminal. In the case
of an annotated stack content z = (f, Xn) - - (f1,X1) € T*, this is
equivalent to the existence of a derivation

(a(f1), X1)= gu(f(fa), fn - Xn)[2]0

with u,v € SF. The following lemma says that the stack monoid
distinguishes the feasible stack contents in I.

LEMMA 5.1. Letz = (fp, Xpn) -+ (fi,X1) € T" be a stack content.
The following are equivalent:

(1) z is feasible
(2) o(2) # Oy
(3) foralli > 1,X; = f; - X;—1 and B(fi—1) Rx, a(f;).

The proof is given in Appendix D.1. Note that Lemma 5.1 shows
that all feasible stack contents in I can be written as z~ for some
feasible z € I" and X C N (hence, we sometimes assume that a
stack content is of this form).

Let (A,X) e Nandz = (. Xn) -~ (i, X1) € T, we say that the
term (A, X)[Z] is feasibleif z is feasible, X = f;, - X, and B(fn) Rx A.

Pushing between specific non-terminals. We will now see that
M encodes which non-terminals allow a stack content to be pushed,
and which non-terminals can result. More formally, ¢(z) encodes

Anon.

all pairs of non-terminals (C, X), (D,Y) € N such that (C,X) can
derive a sentential form u(D, Y)[z]o.

LEMMA 5.2. Let z € It a non-empty stack content, let X C N
and let (B,Y,M, A, X) = (p(EX). Then forallC € X and D € Y, the
following are equivalent:

e CRx Aand BRy D
o there exist u,v € SF such that (C,X)=*>éu(D, Y) zX70.

This lemma is proven in Appendix D.2.

Popping between specific non-terminals. Finally, our monoid
even encodes popping behavior. Specifically, the matrix M inside
@ (%) tells us for which non-terminals D and C, it is possible to
pop z from D to C:

LEMMA 5.3. Letz € I' a non-empty stack content, let X C N and
let (B,Y, M,A,X) = (p(EX) The following are equivalent:
e M(D,C)=T
e Ce€X,D €Y and there existu,v € (X UT)* such that

D[z]= guCo
o CeX,D €Y and there existu,v € SFg such that
(DY) [Ex]ééu(C,X)v.

This lemma is proven in Appendix D.3.

6 PUMPING AND SKIPPING

We introduce two new derivation rules on the terms of é and show
that they preserve the downward-closure of the resulting language.
Essentially, we show that, under certain conditions, sequences of
more than 2|N| contiguous infixes mapping to the same idempotent
can be extended and reduced.

This will let us abstract stack contents by forgetting everything
but the first and last N elements in such sequences of infixes map-
ping to the same idempotent. By adapting a recent construction
by Gimbert, Mascle and Totzke [27], we will show that this allows
us to obtain summaries of stack contents, of size bounded by an
exponential function in the size of G.

Pump and skip derivation steps. Let us formally define the two
rules. The pump rule is defined as follows:

(B’ X) [2] _)pump (B’ X) [262]

for all (A, X) € N, e = (B X,M,AX) € Idem(M) \ {0y, 134},
—+ . _ =k
ze €I with ¢(z,) =e,andz e .
The skip rule is first defined on stack contents:

_ _ -, _
Z'uy - UNZeU c UNZkipZ Ul - UNZ

for all Z’,uy,...,uN,ze,z € T'ande € Idem(M) \ {0y} such
that (u1) = -+ = ¢(uny) = ¢(z¢) = e (where the u; are in
one-to-one correspondence with N; we use the subscript N in-
stead of |N| for convenience). We then extend it to terms naturally:
(A, X)[2] > sip (A, X) [2’] whenever z—;,2”. Observe that the skip
rule erases symbols (potentially deep) inside the stack, not just at
the top. Nevertheless, we will see that allowing the skip rule does
not extend the language beyond its downward closure.

Both the pump rule and skip rules are extended to sentential
forms as expected: u—pympu’ if v’ is obtained by applying — pump

639
640
641
642
643
644
645
646
647
648
649
650

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

753
754

The complexity of downward closures of indexed languages

to a term in u, and the same goes for —i,. We write = ump, skip,

for the union of the three relations =g “pump and —yqp, and
= «in. ¢ for its reflexive transitive closure. We may thus define
pump, skip, G

Lpump,skip(é) ={we T" | (S, U)épump,skip,éw}'
Pump and skip are harmless. We now show that these additional
rules do not extend our language beyond its downward closure:

PRrOPOSITION 6.1. Lpump,skip(é) c L(é)i

The full proof is presented in Appendix E.1 and we sketch the
ideas here. For the pump rule this is not hard. It follows from
the definition of the product of M that if e = (B, X, M, A, X) is an
idempotent, then B Rx A, i.e., there must be a derivation from
(B, X) to some u(A, X)v. By erasing u and v (thanks to downward
closure and productiveness), from (B, X)[z] we can reach (A, X)[z],
whence we can reach (B, X)[z.z] (where ¢(z.) = e) thanks to
Lemma 5.2. Hence, any terminal word derived from (B, X)[z.z] is
a subword of a terminal word derived from (B, X)[z] (note that the
productiveness of G is essential here).

Eliminating skip. Replacing applications of the skip rule requires
more work. In an indexed grammar, a symbol is pushed once on the
stack, but may be popped on multiple branches of a derivation. To
tackle this issue, we make the following observations, illustrated by
Figure 1. When a sequence u € T" with o(u) = (B,Y,M,AX)
is popped along a branch starting with a non-terminal (D,Y),
the resulting non-terminal (C, X) (after popping u) must satisfy
M(D,C) = T (see Lemma 5.3).

Now suppose we are popping a sequence of infixes uj - - - up,
with ¢(u1) = -+ = ¢(uny) = e = (BX,M,A X) € Idem(M),
along a branch starting with the non-terminal (Ao, X). Consider,
for i = 1,...,|N|, the non-terminal (A;, X) obtained along that
branch right after popping u; - - - u;. By Lemma 5.3, it follows that
M(A;j, Ajy1) = Tfori=0,...,|N|. Since e is idempotent, MM = M,
and we can then apply the following elementary lemma.

Lemma 6.2. Let M € BN*N g matrix. If MM = M and we
have terms Ay,...,AN € N such that M(A;,Aiv1) = T for all
i=1,...,|N| =1, then there exists i such that M(A;, A;) = T.

Proor. By the pigeonhole principle, there exist i < j such that
A;j = Aj. Since M is idempotent, M/~" = M. Hence, we have
j-1
M(Ap Aj) = MITH (A Aj) = [\ M(AL Apyy) = T o
I=i

Thus, one of the A; is such that M(A;,A;) = T (note that i
may depend on the branch). This means that for all z € I" with
¢(2z) = e, we have a derivation from (A;, X)|[z] to u(A;, X)u’ for
some u,u” € SF which can be erased since we are only interested in
the downward closure (and because of the productiveness property).
Hence, (A;, X) can “erase” an arbitrary sequence of infixes map-
ping to e at the top of its stack. The skip rule is obtained, roughly
speaking, by erasing the sequence u;41 - - - UNZzeUq - - - 4; at the ap-
propriate (A;, X) in each branch of a derivation. Since we are sure
to encounter, when popping a sequence of |N| infixes mapping
to e, such a non-terminal on every branch of the derivation (i.e.

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

which can pop such infixes at will), we are able to eliminate all
applications of the skip rule (see Appendix E.1 for the full proof).

7 SUMMARIZING STACK CONTENTS

We have shown that adding the pump rule and skip rule to our
annotated indexed grammar does not change its downward closure.
Those rules give us a lot of flexibility on the infixes of the stack
mapping to idempotents: the pump rule lets us extend them, and
the skip rule reduce them.

We wish to compress stack contents into bounded summaries,
where such sequences of infixes are abstracted away, by remem-
bering only the first and last |[N| of them. A natural candidate for
this task is Simon’s factorization forest theorem [52]. It gives us a
way to evaluate a word in a finite monoid via a tree of bounded
height, using binary products and arbitrary iterations of idempo-
tent elements. If we only care about the first and last |N| elements
in a sequence of idempotent infixes, we can cut out from this tree
all the nodes corresponding to the remaining idempotent infixes.

Two problems remain: First, Simon’s theorem gives a linear
bound for the height of the tree in the monoid size. In our case this
would yield summaries of doubly exponential size, and a quadruply
exponential upper bound on an NFA for the downward closure,
while our lower bound is only triply exponential. To solve this, we
dive deeper into the structure of the monoid, utilizing results by
Jecker [34] which let us cut our monoid into polynomially many
layers. Within each layer, we decompose the word by reading it
from right to left and compressing sequences of idempotent infixes.

The other problem is that to simulate the indexed grammar with
a CFG, we use a version of the push operation on the compressed
words: from the compressed version of a word z and a letter x,
we need to be able to compute the compressed version of xz. This
is not a property of Simon’s theorem, at least not in its original
formulation. One way to circumvent this problem was through
the introduction of forward Ramsey splits [21], a weaker version of
factorizations which still detects sequences of idempotent infixes.
As a matter of fact, Jecker’s results have been applied to improve
computational bounds on those splits [42]. It may be interesting
to see if one can obtain a form of summaries from such splits, by
losing information to obtain a bounded object. Here, however, we
do not rely on these, but provide an elementary construction which
is computed deterministically by reading the word right-to-left.

We rely on a recent construction of such summaries presented

n [27]. Our exposition is self-contained, however, since we use
different notation and our summaries need to be constructed in
a slightly different manner. Specifically, theirs need to remember
only the first and last infixes, while we need the last |N|, and theirs
are constructed as trees of bounded height, bottom-up, while we
need to build ours from right to left along the stack content.

Green’s relations. We begin with some notions from semigroup
theory. Let (M, -, 1) be a finite monoid. We define the usual Green
relations 7, £, R, H on M, starting with the following quasi-orders:

x< gy if there exist a,b € Msuch thatx =a-y-b
x< ry if there exista € Msuch thatx =a -y
x<gy if there exist b € M such that x =y - b
x<quy if x< ry and x<gy

760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

807

809
810
811

812

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856

858
859
860
861
862
863
864
865
866
867
868
869
870

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Ajlu; - unzeus
L@ Aofur...un] o ‘
/
\
\
® Ailuin...un]
Aj=Aj K
M(A;A) =T '
Ajlujir .. un]
/' Ailui - -un

Anon.

~un]

Alug -+ -un] Alur - - unzeur -+ un|

w

Figure 1: The idea behind the skip rule is that if we have a derivation from some non-terminal A in which we pop N consecutive
infixes u; ...ux mapping to the same idempotent e = (B, X, M, A, X), then along every branch we must have a node of the form
Ajluizr - - -un] with M(A;, A;) = T. This means that for any word mapping to e, there is a derivation from A; popping this word,
and with the resulting sentential form containing A;. The rest of the sentential form can be erased since we are interested in
the downward closure. This non-terminal can be used to “skip” the infix u;1 - - - unZzetg - - - uj, which maps to e. Hence, we can
turn a derivation from A[u; - - - un] into one from A[u; - - - unz.us - - - un] by popping the right infix along every branch.

The relations 7, £, R, H are the equivalence relations induced
by those quasi-orders: for each X € {J, L, R, H} we define X =
<xN=x,aswellas <x = <y \ >x. We do not include the monoid
M in the notation since it will always be clear from the context.

J-length and J-depth. The regular J -length * of M, denoted
JL(M), is defined as

JL(M) = sup{k € N | ey > g -+ > e; € I[dem(M)}.

Definition 7.1. The regular J -depth (or just depth) of an element
x € M is the maximal number d such that there exist idempotents
et,...,eq € Idem(M) such thate; > g - > g eg > g x.

We write depth(x) for the regular 7 -depth of an element x € M.
We extend this notation to sequences of elements: Given a sequence
of elements u € M*, we write depth(u) instead of depth(ya(u)).

REMARK 7.1. Throughout this section, we will often use the observa-
tion that for all x,y € M, depth(x - y) > max(depth(x), depth(y)).
This is because of the definition of J, since x - y< qx and x - y< gv.

REMARK 7.2. Observe that in the case of the stack monoid M, we
have x < g 1y for every x € M\ {1y}, because if y,z € M\ {1y},
theny-z # 1y. As a consequence, depth(1y1) = 0, whereas depth(x)
isin [1, IL(M)] for all x € M\ {1p;}. The upper bound follows from
the definition of JL(M). Positivity of depth(x) is due to x < g 1y.

Summaries. We now define the main object of this section, sum-
maries. As mentioned above, they can be viewed as compressions of
stack words (with some information loss). Syntactically, these are
sequences of (sequences of (...)) sequences, where the nesting depth
depends on the depth of ¢(w), where w is the stack word to be
compressed. These sequences contain letters from I, but also a spe-
cial letter e* for each idempotent e € Idem(M) \ {1y}. Intuitively,
et represents a sequence of infixes that evaluate to e.

Summaries will have a well-defined image under ¢, and the
summary of w € T will agree with w under ¢. To this end, we
set p(e™) = e for all such e. We also extend ¢ to (f*)* by defining
4Called regular D-length in [34]. For finite monoids, D = 7, and we use J here

since it is more common. Furthermore, it is defined differently in [34], but a proof that
both definitions are equivalent can be found in the long version [35][Appendix B].

the image of a sequence of words z7 ...z, € (T")* as the image
of their concatenation, and so on for sequences of (sequences of
(...)) sequences. To simplify notation, given a sequence of stack
symbols z € T", we also write depth(z) instead of depth(¢(z)), and
we extend this notation to sequences of sequences of (sequences of
(...)) sequences naturally.

Formally, a 0-summary is just the empty word, and a (d + 1)-
summary is a sequence of (i) elements of I U {e* | e € Idem (M)}
and of (ii) d-summaries. As explained above, ¢(0) and depth(o)
are well-defined for all summaries o.

Definition 7.2. A 0-summary is simply the empty word ¢. Let
de[1,JL(M)].
e A d-atom is a word (f,X)o with (f,X) € Tand 5 a d’-
summary for some d’ < d, such that depth((f,X)o) = d.
e A d-block is a sequence of the form u; - - - uyetoy - - -onyw
where uy, ..., unN,v1,...,0N and w are sequences of d-atoms
and e € Idem(M) \ {1y}, such that ¢(u;) = ¢(v;) = e for
all i and depth(uy - - -unetor - --oyw) = d.
e A d-summaryis a sequence of the form ¢’uB; ... By where
o’ is a d’-summary for some d’ < d, u is a word of d-atoms,
and By, . .., By are d-blocks with depth(c’uBj ... By) =d.

A summaryis a d-summary for some d. Observe that by definition,
a d-summary o has depth(o) = d. The set of summaries is denoted
Summaries.

Intuition. Let us give some intuition on the definition of summaries.
Note that when processing a string from right to left, the depth of
the growing suffix increases monotonically (Remark 7.1). We read
the word from right to left since this is how our stacks are built.
Here, a d-atom represents a suffix-minimal sequence of depth d: It
has depth d, but when removing the left-most letter, the remainder
has lower depth. Hence, that remainder is given as a d’-summary
for some d’ < d. A d-block can be thought of as a sequence of
atoms where some of them (which mapped to e under @) were
(lossily) compressed into a single letter e*: This compression is
only allowed if the compressed part had been surrounded by |N]|
sequences of d-atoms (on each side) that also map to e, which are
still present in u1, ..., uN,v1,...,0N. Finally, a d-summary consists

871
872

874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

986

The complexity of downward closures of indexed languages

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Xk Xk-1 Xk-2 | Xk-3| Xk-4 X9 X6 X4 x2 X1 <4—
o Op 03 02 a1
ap 2 a2 a1
12 a1 10 o9 ag (e13 as ay as az ¢45]
‘\\.____‘/’"\\\.__—r//\"‘--._______________,———"’—___,4//~“‘-._________,_——"
e e e e
Ui uz U1 [p) w
V"
+
ujugse v1vaw

ujusetoivaw

’ ’,

K S N
lllltzt dluzh

=e
l

’

upuze oo, w’

Figure 2: A visual of how summaries are constructed. Say we are given a word z of regular J-depth d. We read it from right to
left. We cut it into d-atoms by iteratively taking the smallest suffix of regular J-depth d. Its summary consists of its leftmost
letter and a d’-summary for its tail of depth d’ < d. In parallel, we read the resulting sequence of atoms - - - a3z from right
to left. Every time we find an infix with a prefix made of 2N+1 infixes mapping to the same idempotent, we turn it into a
d-block ujuzetvivy. Finally, whenever we have two blocks corresponding to an idempotent e and such that the infix between
their middle parts also evaluates to ¢, we merge them into one d-block.

of d-blocks By, . . ., Bg, some remaining d-atoms (that did not permit
compression into d-blocks), and a lower-depth part represented by
a d’-summary.

Compressing stacks into summaries. Let us describe how a stack
zel is compressed into its (unique) summary. For a sequence
(i.e. word over a finite alphabet or a summary) of length > 1, its
tail is obtained by removing its leftmost element. Given a word z
with depth(z) = d, we proceed in three stages, illustrated in Fig. 2.

Stage I: Splitting into d-atoms. First we split the word into suffix-
minimal infixes of depth d, from right to left, and a residual prefix
of some depth d’ < d. By suffix-minimality, the tail of each of these
depth-d infixes has depth < d. We thus turn each of these depth-d
infixes into a d-atom by computing recursively a summary for its
lower-depth tail. Afterwards, the residual prefix of depth d’ < d is
recursively turned into a summary.

Stage II: Compression into blocks. Then, we look at the sequence
of d-atoms and their values in M. Going from right to left, we look
for sequences of 2|N| + 1 infixes uj - - - unopv; - - - v all evaluating
to the same idempotent. Whenever we find such a pattern we turn
the current infix (i.e. the pattern with, possibly, a suffix w) into
a d-block by replacing the middle part vy by e*. There may be a
remainder u at the left end of the d-atom sequence with no such
pattern; we write it explicitly in the summary.

Stage III: Merging blocks. Finally, we look at the sequence of
resulting d-blocks. We go again from right to left, this time looking
for pairs of blocks corresponding to the same idempotent e, and so
that the infix between their e* markers also evaluates to e. This lets
us merge them into a single block, obtained by abstracting their e*
markers and everything in between in a single e™.

Updating a summary. A key feature of summaries is that given
the summary o of a stack z € T" and an additional letter x € I, we
can compute the summary of xz. This is needed when simulating
pushes. We now describe the relevant operation,

=%
push(_» _):I X Summaries — Summaries.

Given a depth d € [0, JL(M)], an element (f,X) € I and an d-
summary o, we define push((f,X) » o) as follows. If d = 0 then
o = ¢and push((f,X) » o) = (f,X).If d > 0 then o is of the form
O',uBl N Bk-

(1) If depth((f,X)o) > d then let dy = depth((f,X)o). We set
push((f,X) » o) as the d;-summary made of a single d,-atom
(f.X)0

(2) Otherwise depth((f,X)o) < d.In fact, since depth((f, X)o) is
at least depth(o) = d, we even know depth((f,X)o) =d.

(a) If depth((f,X)o’) < d then
push((f,X) » o) = (push((f,X) » ¢’))uBy...By

(b) Otherwise, depth((f,X)o’) > d. Then we even know
depth((f,X)o”’) = d, because depth((f,X)c”’) is at most
depth((f,X)o) < d. Hence, (f,X)o’ is a d-atom.

(i) If the sequence of d-atoms ((f, X)o”)u is of the form
uj ... uNOYq ... oNw with ¢(vg) = @(u;) = ¢(v;) =
eforalli > 1, for some e € Idem(M), then define
the d-block B = u; ...une%o; ... onyw (note that e*
replaces the middle infix vy).

(A) Suppose there is j such that B; is of the form
uj . upetol oW
and the infix oy ... onwBy ... Bj_quj ... u;\] also
evaluates to e under ¢. In this case, we merge

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

everything up to B; into a single block: We
define push((f,X) » o) to be B'B;jBj41 ... By,
with B” = uy ... une*o] ..o ;w’. When there
are multiple such j, we pick the maximal one.
(B) Otherwise push((f,X) » o) =BBj...B
(ii) Otherwise push((f,X) » o) =u’B;... B withu’ =
((f:X)o")u

The definition is extended inductively to I by
push((f,X)z » o) = push((f,X) » push(z » 0)).

Intuitively, the push(_» _) operation simultaneously executes
stages I, I and III described above. Upon adding a new letter (f, X),
it checks whether it yields a new atom (Stage I). Case (1) happens
when a new atom is generated because the depth of the summary is
increased by adding (f, X), case (a) when no new atom is generated
at depth d. In case (b), we have a new atom (f, X)o’. We thus have
to check whether this new atom yields a new block (Stage II). If it
does, we are in case (i), and we then have to apply Stage III, i.e., see
if we can merge this new block with another one. In case (A) we
can; in case (B) we cannot.

Popping from summaries. We also define the inverse relation:
forz e ando,o’ € Summaries, we have o € pop(z < ¢’) if and
only if ¢’ = push(z » o). Note that push(_ » _) is a function while
pop(_ < _) is a relation. Intuitively, push(_ » _) makes compres-
sions, by creating and merging blocks, thereby losing information.
Meanwhile, pop(_ <« _) may revert those compressions, and thus
requires non-determinism.

Bounding summaries. The size of a d-summary (resp. d-atom,
d-block) is defined recursively as the sum of the sizes of its elements,
the size of a single letter being 1. Although summaries can have a
priori unbounded sizes, the ones we will use in our context-free
grammar will be of the form push(z » ¢) for some z € T". For such
summaries, we can prove a size bound:

LEMMA 7.3. For everyz € T', the summary push(z » ¢) is of size
at most exponential in |N|.

To prove this, we rely on two results of Jecker [34], recalled in
Appendix F.1:

e One guarantees that in a word of elements of exponential
length in JL(M) we can find large sequences of consecutive
infixes that all map to the same idempotent (Theorem F.3).

e Another bounds the regular 7 -length of a Boolean matrix
monoid by a polynomial in its dimension (Theorem F.4).

For Lemma 7.3, we show that when viewing when viewing d-
atoms and d’-summaries, for d’ < d, as individual letters, the
size of a d-summary is bounded by an exponential in |[N|. The
overall bound on summaries then results from the product of those
(polynomially many) exponential functions.

8 BUILDING THE CONTEXT-FREE GRAMMAR

We now construct a context-free grammar Cg that over-approximates
L(G), but remains within its downward closure. It will thus satisfy
L(Cg)l = L(G)| and enable us to compute an NFA for the latter.

Anon.

Definition of the grammar. Essentially, Cg is obtained from G
by replacing stack contents with their summaries.

We first restrict the set of summaries to those that can actually
result from a derivation of the indexed grammar. A summary o is
feasible if o = push(z » ¢) for some feasible z € I". Note that this
implies ¢(o) # Oy by Lemma 5.1. The non-terminals will be triples
(A X, 0) where (A, X) € N, and o is a feasible summary. We call
such triples feasible. The set of feasible triples is denoted FT.

Define the following context-free grammar Cg: Its set of non-
terminals is FT, with (S, U, ¢) the initial one. The set of terminal
symbols is T. The productions directly mimic the productions in
G, except that push and pop productions are simulated by the
push(_» _) and pop(_ <« _) relations on summaries:

e If (A, X) = w € P then (A, X, 0) — w, for all feasible o.
o If (A, X) > (B, X)(C,X) € P then
(A, X,0) = (B,X,0)(C, X, 0), for all feasible o.
o If (A, X) = (B,Y)(f,X) € Pthen
(A, X,0) — (B,Y,push((f,X) » 0)), for all summary o so
that o and push((f,X) » o) are feasible.
o If (A,Y)(f,X) = (B,X) € P then
(A,Y,0) — (B,X,0"), whenever o, ¢’ are feasible and ¢’ €
pop((f,X) < 0).
Abusing terminology slightly, we call production rules of the third
and fourth type pushes and pops, respectively (even though they
are standard context-free productions).

Correctness of the construction. The key property of Cg is that
it has the same downward closure as L(G).

TrEOREM 8.1. L(Cg)| = L(G)|.

One of the directions is quite easy: we can simply show that the
language of Cg contains that of G. This is natural as Cg is built as
an over-approximation of G. We can turn a derivation of G into
one of Cg by replacing every stack content with its summary. The
formal proof is presented in Appendix G.1.

PROPOSITION 8.2. L(G) C L(Cg).

Simulating Cg with pumps and skips. For the inclusion L(Cg)| <
L(G)!, we will show that every derivation in Cg can be simulated
by pumps and skips:

ProPOsITION 8.3. L(Cg) C Lpump,skip(§).

Indeed, by Proposition 6.1, this implies that L(Cg) C L(G)| and
thus L(Cg)| < L(G)| = L(G)/, establishing Theorem 8.1.

We shall prove Proposition 8.3 by simulating summaries by actual
stacks. Recall that in the summary push(z » ¢) that compresses the
stack z, the letters e* represent a sequence of e-words, where we
callw € I" an e-word if @(w) = e. The other letters in o are taken
directly from z. Therefore, the unfolding reverses this: It replaces
et by e-words and leaves the other letters unchanged.

Intuitively, our strategy for replacing e™ is as follows. We replace
e* by a sequence of all e-words that might be needed to sustain the
remainder of the derivation (specifically, all its pop operations). In
a particular branch of the derivation, those e-words that are not
needed can always be cleared using the skip rule. On the other hand,
the pump rule allows us to justify introducing all these e-words.

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

1160

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

1218

The complexity of downward closures of indexed languages

Unfoldings. Instead of tailoring the stack z simulating o to a
specific derivation, we will construct a “canonical” stack word z for
o that only depends on the number of pops in that derivation. We
will call this canonical stack word the “p-unfolding” of o, where p is
the number of pops it is designed to sustain. This means, intuitively,
each e” is replaced by a large enough concatenation of e-words so
that any sequence of p pops can be executed.

Just to choose the order in which those e-words appear, we
impose some arbitrary total order (such as a length-lexicographical
ordering) on the set of summaries, which we denote <.

Definition 8.4. Let p € N and o be a d-summary. The p-unfolding
of o, denoted unf, (o) is defined inductively w.r.t. d and p as follows.
For d = 0, the p-unfolding of a 0-summary (i.e., €) is ¢.
o The p-unfolding of a d-atom (f,X)o” is (f,X)unf,(c”).
e The p-unfolding of a sequence of d-atoms @ - - - a is de-
fined as unfy (ay) - - - unfy (am).
e The p-unfolding of a d-block B=1u; ...une*v;...onywis

2“2°((f,X)unfp—1(01)) - - - ((f, X)unfp_1(0r))z"unfp (w),
where:

— (f,X) is the first symbol of B, that is, the stack symbol
such that the first d-atom of u; is of the form (f, X)o’.

- z2¥ =unfy(ur...un) and z° = unf, (01 ... 0N)

— if p > 0, then (0)1<i<r is the family of all feasi-
ble summaries ¢’ for which push((f, X) » ¢’) equals
uy...unetovy...oN, ordered according to <.

- if p =0, thenr = 0, i.e, the p-unfolding of B is simply
z42%nfp (w).

e The p-unfolding of a d-summary ¢’uB; ... By, is defined as
unfy (o”)unfp (u)unfy (By) - - - unfy (Bpm).

Since the unfolding is obtained by replacing each e* in a sum-
mary by a concatenation of words with image e (and all other letters
are unchanged), the unfolding has the same image under ¢ as o:

REMARK 8.1. For every summary o and every p € N, we have
¢(unfp(a)) = ¢(0).

Removing excess e-words. When choosing a stack word to simu-
late a given summary o, we pick the p-unfolding, where p is the total
number of pops in the entire derivation. However, some branches
will apply less than p pops. The following lemma is therefore cru-
cial: It allows us to get rid of excess e-words that are not needed on
less pop-heavy branches, while maintaining the invariant that we
have unfoldings on the stack:

LEmMA 8.5. For each o and p > 1: unfy (o) Zgp unfp-1(0).

Note that it is not possible to simply skip e-words at will, since
that requires equality of some infixes in the stack. Nevertheless, un-
foldings are carefully constructed to allow Lemma 8.5. For example,
the fact that we always follow a uniform order < on summaries is
key. A full proof can be found in Appendix G.3.

Simulating pushes using unfoldings. Let us now show how
unfoldings are used to mimic derivations of Cg in G, with pumps
and skips. First, note that all productions of Cg that are not pushes
and pops have direct counterparts in G. Suppose we want to simu-
late a push, say a rule (A, X, 01) — (B,Y,02) of Cg, induced by a

11

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

push rule (A, X) — (B,Y)(f,X) in G.If (A X, 01) is simulated by
(A, X)[unfp(01)], then we can use (A, X) — (B,Y)(f,X) first in
G. But then the stack is (f.X)unfy(01), rather than an unfolding
of o2. The following lemma tells us that, using pump and skip, we
can replace (f, X)unfy(o1) by unfy(02), which will then enable us
to continue the simulation.

LEMMA 8.6. Letp € N, let (A, X,01) — (B, Y, 02) bearule of Cg
with o3 = push((f,X) » o1). We have

(B, V)[(f, X)unfp(01)]=pump, skip (B, Y) [unfy (02)].

This lemma is proved in Appendix G.4; in fact, only —,ump and
—skip are needed.

Simulating pops using unfoldings. Pop steps are more difficult.
In a production (A, X,01) — (B,Y,072) in Cg induced by a pop
rule (A, X)(f,Y) — (B,Y), o2 is the summary of a word obtained
by removing the first letter of a word compressed by oy. This re-
moval might break a block centered around some e € Idem (M), in
1. This means, the symbol e* is replaced by a concatenation of
summaries. However, p-unfoldings are designed so that unf;, (o1)
contains enough e-words for each e* so that using skip rules, we
can remove a subset of them so that the resulting stack is precisely
(f, Y)unfp_1(02). This is shown in the following lemma:

LEMMA 8.7. Letp 2> 1, let (A, X,01) — (B,Y,02) a rule of Cg
with oy € pop((f,Y) < o1). We have

(A, X)[unfy(01)] =siip (A X)[(f, Y)unfp_1(a2)].

This is shown in Appendix G.5. Thus, to simulate this pop rule,
we can first invoke Lemma 8.7 and then apply (A, X)(f,Y) —
(B,Y).

Simulating the whole derivation. With Lemmas 8.6 and 8.7 in
hand, Proposition 8.3 is now easy to show. Indeed, it is straight-
forward to simulate an entire derivation of Cg in G with pump
and skip rules: Simulating pushes and pops is as explained in Lem-
mas 8.6 and 8.7, and the other productions are immediate. The full
proof can be found in Appendix G.2.

We have thus completed Proposition 8.3 and hence Theorem 8.1.

Putting it all together. With Theorem 8.1, we are prepared to
prove Theorem 3.1. By Lemma 7.3, the size of a summary is bounded
by an exponential in the size of G. As a consequence, the size of
Cg is at most doubly exponential in the size of G. Since for a given
context-free grammar, one can compute an exponential-sized NFA
for its language’s downward closure [12, Corollary 6], this yields a
tripy exponentially sized NFA for L(G)], as desired in Theorem 3.1.

9 LOWER BOUNDS

In this section, we prove the lower bounds in our main results.

NFA Lower bound: Overview. We begin with Theorem 3.2. The
overall goal is to have a unique complete derivation tree that is a
full binary tree of doubly exponential depth: clearly, such a tree
must have triply exponentially many leaves. Here, the challenge is
to ensure that the paths have doubly exponential length.

A standard construction can enforce singly exponentially long
paths: Use a height-n stack over the alphabet {0, 1}, and then count
up from 0" to 1", resulting in 2" — 1 steps. This works because

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

1276

1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333

1334

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

when incrementing a binary expansion of the form 10w (the least
significant digit being on the left), we must replace the prefix 10
with @™ 1. Here, we store the number m < n in the non-terminal,
so as to restore the stack height n when pushing 0™ 1.

Doing the same for stack height 2" is not so easy: To restore
a stack height of 2", we would need to remember (in the non-
terminal) a number m < 2". In fact, enforcing a single run of length
2%" ina pushdown automaton of polynomial size is not possible:
A pushdown automaton that accepts any word must also accept a
word of at most exponential length.

Instead, we exploit the fact that an indexed grammar can simulate
a pushdown automaton with alternation: We implement binary
counting on a stack of height 2”; in order to replace a prefix 10
with 01, we non-deterministically push some number of @’s, but
then use alternation to ensure that the stack height is exactly 2.

Step I: Checking the stack via alternation. To this end, we
introduce syntactic sugar. We will use rules of the form

a Jo?r g (1)
where Ay, ..., A, are DFAs over the stack alphabet I. The rule has
the same effect as A — B, but it can only be applied to a term A[z]
if foreachi =1,...,r, the stack z has a prefix in L(A;). Such rules
can be implemented with only polynomial overhead: Introduce
non-terminals C;, D; for each i = 1,...,r and also Eq for each state
q in the DFAs Aj, ..., A, (we assume the state sets are disjoint).
Then we can simulate (1) using A — D;Cy, D; — D;jy1Ciyq for
i=1,...,r—1,and D, — B, which split the term A[z] into terms
Blz] and Cy[z], ..., Cr[2]. We then run A; using rules C; — Eg;,
where g; is the initial state of A;, for each i. The non-terminals Eq
simulate the DFAs: for each transition (p, f, q), we have E, f — Eg4.
To check acceptance, we have Eqg—¢ for each final state q.

Step II: Implementing a binary counter in DFAs. We want to
use rules (1) to check that the current stack height is 2", for which
we construct automata (A;)1<i<pn over some alphabet 3, such that:
(i) Each A; has two states 0; and 1;, with 0; being initial and 1; the
only final state, (ii) |2n| = n, and (iii) the intersection (L, L(A;)
contains a single word of length 2”. The construction is simpler if
we do this for 2™ — 1 instead of 2", which suffices: We can introduce
a fresh letter # and build automata A; with L(A]) = L(A;)#.

The idea is simply to use 2, = {incy,..., inc,}. Each letter is
an increment operation over an n-bit binary counter: inc; should
be read as “flip the i-th bit from 0 to 1 and all lower bits from 1
to 0”. Each automaton A; keeps track of the value of the i-th bit
throughout that sequence of instructions.

Formally, A; = ({0, 1;},2p, 8, 0;, {1;}) where §;(0;, incj) is
defined as 1; if j = i, it is 0; if j < i, and it is undefined if j > i.
Meanwhile, 8;(1;,inc;) is 0; if j > i, itis 1; if j < i and it is
undefined if i = j. It is easy to check that there is a unique word
accepted by those automata, corresponding to the only correct
sequence of instructions to increment a n-bit binary counter from 0
to 2" — 1, which enforces a single string of length 2" — 1, as desired.

Step III: Constructing the indexed grammar. Let Ay, ..., A,
the DFAs over X, built above. Since they will check for exponential
stack height, but we also need to store the binary digits on the stack,
we modify them slightly. For each i, the automaton B; will work

12

Anon.

over the alphabet { L} U (£, X {0, 1}) and accept exactly the words
of the form (ay, b1) - - - (tm, bm) L where a1 - - - a, € L(A;). The
L letter is used to mark the bottom of the stack.

Consider the following grammar: G, = (Np, T, I, Pp, S) with
N, = {S,A,B,D,F,Z},T ={a}, I, = {L} U (Z, x {0,1}), and P,
contains the following rules:

S—>ZL D — AA B— Z(a,1)

Z — Z(a,0) Ala,1) - A Al —>F
B, B

Z——D A(a,0) > B F—a

for each @ € X,,. The grammar works as follows. Initially, it places
L on the stack and switches to Z. A non-terminal Z will then fill

the stack with @’s, which are annotated by a € X,. After pushing

By,...8
these, it verifies that the stack height is 2", by using Z T, D

This D splits into two A’s, where an increment is performed on the
number encoded on the stack: It removes the prefix of the form 10
and switches to B. After this, it has to put back ™1: To this end, it
pushes a single 1 and then using Z pushes 0’s non-deterministically.

It then uses Z M D to verify that the stack height is 2". All
this repeats until in each branch, all stack contents encode the
number 22" — 1. This means, all terms are of the form A[z.L], where
z has length 2" and all its digits are 1’s. Each such A[z1] is then
rewritten to F, and then to a. Since the terms are duplicated before
each increment (using D — AA), the final number of a letters is
exps(n), deriving a®*Ps(n) Moreover, it is straightforward to check
that a®Ps (") js the only derivable word. Details are in Appendix H.1.

Computational hardness. The lower bounds for downward clo-
sure inclusion and equivalence now follow easily from Theorem 3.2
and results in [58]. In [58], the A(f) property of language classes
is introduced. Roughly speaking, it requires simple closure prop-
erties and that for given n € N, one can construct in polynomial
time the language {af (n) }. Under additional mild assumptions, [58,
Theorem 15] shows that downward closure inclusion and equiva-
lence are coNTIME(f)-hard for A(f) classes. Since all assumptions
besides a small grammar for {a®*P3(n)} are easy to observe, we
may conclude that the indexed languages are A(exps) and the two
problems are co-3-NEXP-hard. See Appendix H.2 for details.

DFA size. For Theorem 3.5, we adapt an idea from [12, Theorem
7], which shows a doubly exponential lower bound for downward
closure DFAs for CFL. It is not difficult to translate the grammar
Gn for {a®Ps(M} into one for L, = {uv | w0 € {0,1}* | |u| =
|o] = exps(n), u # v}. It is easy to see that a DFA for L, requires
exp,(n) states: For distinct u,v € {0,1}* with |u| = ||, the DFA
must accept uv and vu, but reject uu and vo. It therefore must enter
distinct states after reading u and v. See Appendix H.3 for details.

10 CONCLUSION

We have established (asymptotically) tight bounds on the size of
an automaton for the downward closure of an indexed language.
We rely on an algebraic abstraction of stack contents to translate
indexed grammars into context-free ones while preserving the
downward closure.

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

1392

1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449

1450

The complexity of downward closures of indexed languages

REFERENCES

(1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Parosh Aziz Abdulla, Luc Boasson, and Ahmed Bouajjani. 2001. Effective Lossy
Queue Languages. In Automata, Languages and Programming, 28th International
Colloquium, ICALP 2001, Crete, Greece, July 8-12, 2001, Proceedings (Lecture Notes
in Computer Science, Vol. 2076), Fernando Orejas, Paul G. Spirakis, and Jan van
Leeuwen (Eds.). Springer, 639-651. https://doi.org/10.1007/3-540-48224-5_53
Alfred V. Aho. 1968. Indexed Grammars - An Extension of Context-Free Gram-
mars. J. ACM 15, 4 (1968), 647-671. https://doi.org/10.1145/321479.321488

C. Aiswarya, Pascal Baumann, Prakash Saivasan, Lia Schiitze, and Georg Zetzsche.
2026. Bounded Treewidth, Multiple Context-Free Grammars, and Downward
Closures. Proc. ACM Program. Lang. 10, POPL, Article 74 (Jan. 2026), 32 pages.
https://doi.org/10.1145/3776716

C. Aiswarya, Pascal Baumann, Prakash Saivasan, Lia Schiitze, and Georg Zetzsche.
2026. Bounded Treewidth, Multiple Context-Free Grammars, and Downward
Closures. Proceedings of the ACM on Programming Languages 10, POPL (2026),
2142-2173. https://doi.org/10.1145/3776716

C. Aiswarya, Soumodev Mal, and Prakash Saivasan. 2022. On the Satisfiability
of Context-free String Constraints with Subword-Ordering. In LICS °22: 37th
Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August
2 -5, 2022, Christel Baier and Dana Fisman (Eds.). ACM, 6:1-6:13. https://doi.
org/10.1145/3531130.3533329

Ashwani Anand, Sylvain Schmitz, Lia Schiitze, and Georg Zetzsche. 2024. Ver-
ifying Unboundedness via Amalgamation. In Proceedings of the 39th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2024, Tallinn, Estonia,
Fuly 8-11, 2024, Pawel Sobocinski, Ugo Dal Lago, and Javier Esparza (Eds.). ACM,
4:1-4:15. https://doi.org/10.1145/3661814.3662133

Ashwani Anand and Georg Zetzsche. 2023. Priority Downward Closures. In 34th
International Conference on Concurrency Theory, CONCUR 2023, Antwerp, Belgium,
September 18-23, 2023 (LIPIcs, Vol. 279), Guillermo A. Pérez and Jean-Francois
Raskin (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, 39:1-39:18.
https://doi.org/10.4230/LIPICS.CONCUR.2023.39

Mohamed Faouzi Atig, Ahmed Bouajjani, and Shaz Qadeer. 2011. Context-
Bounded Analysis For Concurrent Programs With Dynamic Creation of Threads.
Log. Methods Comput. Sci. 7, 4 (2011). https://doi.org/10.2168/LMCS-7(4:4)2011
Mohamed Faouzi Atig, Ahmed Bouajjani, and Tayssir Touili. 2008. On the
Reachability Analysis of Acyclic Networks of Pushdown Systems. In CONCUR
2008 - Concurrency Theory, 19th International Conference, CONCUR 2008, Toronto,
Canada, August 19-22, 2008. Proceedings (Lecture Notes in Computer Science,
Vol. 5201), Franck van Breugel and Marsha Chechik (Eds.). Springer, 356-371.
https://doi.org/10.1007/978-3-540-85361-9_29

Mohamed Faouzi Atig, Dmitry Chistikov, Piotr Hofman, K. Narayan Kumar,
Prakash Saivasan, and Georg Zetzsche. 2016. The complexity of regular ab-
stractions of one-counter languages. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 16, New York, NY, USA, July 5-8,
2016, Martin Grohe, Eric Koskinen, and Natarajan Shankar (Eds.). ACM, 207-216.
https://doi.org/10.1145/2933575.2934561

Mohamed Faouzi Atig, Roland Meyer, Sebastian Muskalla, and Prakash Saivasan.
2017. On the Upward/Downward Closures of Petri Nets. In 42nd International
Symposium on Mathematical Foundations of Computer Science, MFCS 2017, Aal-
borg, Denmark, August 21-25, 2017 (LIPIcs, Vol. 83), Kim G. Larsen, Hans L. Bod-
laender, and Jean-Francois Raskin (Eds.). Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 49:1-49:14. https://doi.org/10.4230/LIPICS.MFCS.2017.49
Georg Bachmeier, Michael Luttenberger, and Maximilian Schlund. 2015. Fi-
nite Automata for the Sub- and Superword Closure of CFLs: Descriptional and
Computational Complexity. In Language and Automata Theory and Applica-
tions - 9th International Conference, LATA 2015, Nice, France, March 2-6, 2015,
Proceedings (Lecture Notes in Computer Science, Vol. 8977), Adrian-Horia Dediu,
Enrico Formenti, Carlos Martin-Vide, and Bianca Truthe (Eds.). Springer, 473-485.
https://doi.org/10.1007/978-3-319-15579-1_37

David Barozzini, Lorenzo Clemente, Thomas Colcombet, and Pawel Parys. 2022.
Cost Automata, Safe Schemes, and Downward Closures. Fundam. Informaticae
188, 3 (2022), 127-178. https:/doi.org/10.3233/FI-222145

David Barozzini, Pawel Parys, and Jan Wroblewski. 2022. Unboundedness for
Recursion Schemes: A Simpler Type System. In 49th International Colloquium
on Automata, Languages, and Programming, ICALP 2022, Paris, France, July 4-
8, 2022 (LIPIcs, Vol. 229), Mikolaj Bojanczyk, Emanuela Merelli, and David P.
Woodruff (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 112:1-112:19.
https://doi.org/10.4230/LIPICS.ICALP.2022.112

Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam,
and Georg Zetzsche. 2023. Checking Refinement of Asynchronous Programs
Against Context-Free Specifications. In 50th International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2023, Paderborn, Germany, July
10-14, 2023 (LIPIcs, Vol. 261), Kousha Etessami, Uriel Feige, and Gabriele Pup-
pis (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 110:1-110:20.
https://doi.org/10.4230/LIPICS.ICALP.2023.110

Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam,
and Georg Zetzsche. 2023. Context-Bounded Analysis of Concurrent Programs

13

(17]

[21

[22

(23]

[24]

[27]

(28]

[29]

[30

[31

[32

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

(Invited Talk). In 50th International Colloquium on Automata, Languages, and
Programming, ICALP 2023, Paderborn, Germany, July 10-14, 2023 (LIPIcs, Vol. 261),
Kousha Etessami, Uriel Feige, and Gabriele Puppis (Eds.). Schloss Dagstuhl -
Leibniz-Zentrum fir Informatik, 3:1-3:16. https://doi.org/10.4230/LIPICS.ICALP.
2023.3

Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zet-
zsche. 2021. Context-bounded verification of liveness properties for multi-
threaded shared-memory programs. Proc. ACM Program. Lang. 5, POPL (2021),
1-31. https://doi.org/10.1145/3434325

Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zet-
zsche. 2022. Context-bounded verification of thread pools. Proc. ACM Program.
Lang. 6, POPL (2022), 1-28. https://doi.org/10.1145/3498678

Noam Chomsky. 1959. On Certain Formal Properties of Grammars. Inf. Control.
2,2(1959), 137-167. https://doi.org/10.1016/S0019-9958(59)90362-6

Lorenzo Clemente, Pawel Parys, Sylvain Salvati, and Igor Walukiewicz. 2016.
The Diagonal Problem for Higher-Order Recursion Schemes is Decidable. In
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 16, New York, NY, USA, July 5-8, 2016, Martin Grohe, Eric Koskinen, and
Natarajan Shankar (Eds.). ACM, 96-105. https://doi.org/10.1145/2933575.2934527
Thomas Colcombet. 2007. A Combinatorial Theorem for Trees. In Automata,
Languages and Programming, Lars Arge, Christian Cachin, Tomasz Jurdzinski,
and Andrzej Tarlecki (Eds.). Springer, 901-912. https://doi.org/10.1007/978-3-
540-73420-8_77

Thomas Colcombet. 2011. Green’s Relations and Their Use in Automata Theory.
In Language and Automata Theory and Applications - 5th International Conference,
LATA 2011, Tarragona, Spain, May 26-31, 2011. Proceedings (Lecture Notes in
Computer Science, Vol. 6638), Adrian-Horia Dediu, Shunsuke Inenaga, and Carlos
Martin-Vide (Eds.). Springer, 1-21. https://doi.org/10.1007/978-3-642-21254-3_1
Bruno Courcelle. 1991. On Constructing Obstruction Sets of Words. Bull. EATCS
44 (1991), 178-186.

Bruno Courcelle and Géraud Sénizergues. 1994. The Obstructions of a Minor-
Closed Set of Graphs Defined by Hyperedge Replacement can be Constructed.
In Graph Gramars and Their Application to Computer Science, 5th International
Workshop, Williamsburg, VA, USA, November 13-18, 1994, Selected Papers (Lecture
Notes in Computer Science, Vol. 1073), Janice E. Cuny, Hartmut Ehrig, Gregor
Engels, and Grzegorz Rozenberg (Eds.). Springer, 351-367. https://doi.org/10.
1007/3-540-61228-9_98

Joost Engelfriet. 1991. Iterated Stack Automata and Complexity Classes. Inf.
Comput. 95, 1 (1991), 21-75. https://doi.org/10.1016/0890-5401(91)90015-T
Moses Ganardi, Irmak Saglam, and Georg Zetzsche. 2024. Directed Regular
and Context-Free Languages. In 41st International Symposium on Theoretical
Aspects of Computer Science, STACS 2024, Clermont-Ferrand, France, March 12-
14, 2024 (LIPIcs, Vol. 289), Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna
Kupferman, and Daniel Lokshtanov (Eds.). Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 36:1-36:20. https://doi.org/10.4230/LIPICS.STACS.2024.36
Hugo Gimbert, Corto Mascle, and Patrick Totzke. 2025. Optimal Sequential
Flows. arXiv preprint arXiv:2511.13806 (2025).

Hermann Gruber, Markus Holzer, and Martin Kutrib. 2009. More on the Size of
Higman-Haines Sets: Effective Constructions. Fundam. Informaticae 91, 1 (2009),
105-121. https://doi.org/10.3233/FI-2009-0035

Peter Habermehl, Roland Meyer, and Harro Wimmel. 2010. The Downward-
Closure of Petri Net Languages. In Automata, Languages and Programming, 37th
International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceed-
ings, Part II (Lecture Notes in Computer Science, Vol. 6199), Samson Abramsky,
Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G.
Spirakis (Eds.). Springer, 466-477. https://doi.org/10.1007/978-3-642-14162-1_39
Matthew Hague, Jonathan Kochems, and C.-H. Luke Ong. 2016. Unboundedness
and downward closures of higher-order pushdown automata. In Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, Rastislav
Bodik and Rupak Majumdar (Eds.). ACM, 151-163. https://doi.org/10.1145/
2837614.2837627

Leonard H Haines. 1969. On free monoids partially ordered by embedding.
Journal of Combinatorial Theory 6, 1 (1969), 94-98.

Takeshi Hayashi. 1973. On derivation trees of indexed grammars—an extension
of the uvwxy-theorem—. Publications of the Research Institute for Mathematical
Sciences 9, 1 (1973), 61-92.

Graham Higman. 1952. Ordering by Divisibility in Abstract Algebras. Proceedings
of the London Mathematical Society s3-2, 1 (1952), 326-336. https://doi.org/10.
1112/plms/s3-2.1.326

Ismaél Jecker. 2021. A Ramsey Theorem for Finite Monoids. In 38th International
Symposium on Theoretical Aspects of Computer Science, STACS 2021, March 16-
19, 2021, Saarbriicken, Germany (Virtual Conference) (LIPIcs, Vol. 187), Markus
Blaser and Benjamin Monmege (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 44:1-44:13. https://doi.org/10.4230/LIPICS.STACS.2021.44

Ismaél Jecker. 2021. A Ramsey Theorem for Finite Monoids. CoRR abs/2101.05895
(2021). arXiv:2101.05895 https://arxiv.org/abs/2101.05895

1451

1453

1454

1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508

https://doi.org/10.1007/3-540-48224-5_53
https://doi.org/10.1145/321479.321488
https://doi.org/10.1145/3776716
https://doi.org/10.1145/3776716
https://doi.org/10.1145/3531130.3533329
https://doi.org/10.1145/3531130.3533329
https://doi.org/10.1145/3661814.3662133
https://doi.org/10.4230/LIPICS.CONCUR.2023.39
https://doi.org/10.2168/LMCS-7(4:4)2011
https://doi.org/10.1007/978-3-540-85361-9_29
https://doi.org/10.1145/2933575.2934561
https://doi.org/10.4230/LIPICS.MFCS.2017.49
https://doi.org/10.1007/978-3-319-15579-1_37
https://doi.org/10.3233/FI-222145
https://doi.org/10.4230/LIPICS.ICALP.2022.112
https://doi.org/10.4230/LIPICS.ICALP.2023.110
https://doi.org/10.4230/LIPICS.ICALP.2023.3
https://doi.org/10.4230/LIPICS.ICALP.2023.3
https://doi.org/10.1145/3434325
https://doi.org/10.1145/3498678
https://doi.org/10.1016/S0019-9958(59)90362-6
https://doi.org/10.1145/2933575.2934527
https://doi.org/10.1007/978-3-540-73420-8_77
https://doi.org/10.1007/978-3-540-73420-8_77
https://doi.org/10.1007/978-3-642-21254-3_1
https://doi.org/10.1007/3-540-61228-9_98
https://doi.org/10.1007/3-540-61228-9_98
https://doi.org/10.1016/0890-5401(91)90015-T
https://doi.org/10.4230/LIPICS.STACS.2024.36
https://doi.org/10.3233/FI-2009-0035
https://doi.org/10.1007/978-3-642-14162-1_39
https://doi.org/10.1145/2837614.2837627
https://doi.org/10.1145/2837614.2837627
https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.4230/LIPICS.STACS.2021.44
https://arxiv.org/abs/2101.05895
https://arxiv.org/abs/2101.05895

1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

[36]

[37

[38]

[39]

[40]

[41

[42]

[43

[48]

[49

[50]

[51

[52]

[53]

[54

[55]

Prateek Karandikar, Matthias Niewerth, and Philippe Schnoebelen. 2016. On the
state complexity of closures and interiors of regular languages with subwords
and superwords. Theor. Comput. Sci. 610 (2016), 91-107. https://doi.org/10.1016/
J.TCS.2015.09.028

Alexander Kartzow. 2011. A Pumping Lemma for Collapsible Pushdown Graphs
of Level 2. In Computer Science Logic - 25th International Workshop / 20th Annual
Conference of the EACSL, CSL 2011, Bergen, Norway, September 12-15, 2011, Pro-
ceedings (LIPIcs, Vol. 12), Marc Bezem (Ed.). Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 322-336. https://doi.org/10.4230/LIPICS.CSL.2011.322

Teodor Knapik, Damian Niwinski, and Pawel Urzyczyn. 2002. Higher-Order
Pushdown Trees Are Easy. In Foundations of Software Science and Computation
Structures, 5th International Conference, FOSSACS 2002. Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2002 Grenoble,
France, April 8-12, 2002, Proceedings (Lecture Notes in Computer Science, Vol. 2303),
Mogens Nielsen and Uffe Engberg (Eds.). Springer, 205-222. https://doi.org/10.
1007/3-540-45931-6_15

Naoki Kobayashi. 2009. Types and higher-order recursion schemes for verifica-
tion of higher-order programs. In Proceedings of the 36th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA,
USA, January 21-23, 2009, Zhong Shao and Benjamin C. Pierce (Eds.). ACM,
416-428. https://doi.org/10.1145/1480881.1480933

Naoki Kobayashi. 2013. Model Checking Higher-Order Programs. . ACM 60, 3
(2013), 20:1-20:62. https://doi.org/10.1145/2487241.2487246

Salvatore La Torre, Anca Muscholl, and Igor Walukiewicz. 2015. Safety of
Parametrized Asynchronous Shared-Memory Systems is Almost Always Decid-
able. In 26th International Conference on Concurrency Theory, CONCUR 2015,
Madrid, Spain, September 1-4, 2015 (LIPIcs, Vol. 42), Luca Aceto and David
de Frutos-Escrig (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
72-84. https://doi.org/10.4230/LIPICS.CONCUR.2015.72

Théodore Lopez, Benjamin Monmege, and Jean-Marc Talbot. 2025. Regular
D-length: A tool for improved prefix-stable forward Ramsey factorisations. Inf.
Process. Lett. 187 (2025), 106497. https://doi.org/10.1016/].IPL.2024.106497
Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. 2022. General
Decidability Results for Asynchronous Shared-Memory Programs: Higher-Order
and Beyond. Log. Methods Comput. Sci. 18, 4 (2022). https://doi.org/10.46298/
LMCS-18(4:2)2022

Richard Mayr. 2003. Undecidable problems in unreliable computations. Theor.
Comput. Sci. 297, 1-3 (2003), 337-354. https://doi.org/10.1016/S0304-3975(02)
00646-1

Robert McNaughton. 1989. Varieties of Formal Languages (J. E. Pin; A. Howie,
trans.). SIAM Rev. 31, 2 (1989), 347-348. https://doi.org/10.1137/1031081

Luke Ong. 2015. Higher-Order Model Checking: An Overview. In 30th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July
6-10, 2015. IEEE Computer Society, 1-15. https://doi.org/10.1109/LICS.2015.9
Pawel Parys. 2017. The Complexity of the Diagonal Problem for Recursion
Schemes. In 37th IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2017, Kanpur, India, December 11-15,
2017 (LIPIcs, Vol. 93), Satya V. Lokam and R. Ramanujam (Eds.). Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 45:1-45:14. https://doi.org/10.4230/LIPICS.
FSTTCS.2017.45

Pawel Parys. 2018. Intersection Types for Unboundedness Problems. In Pro-
ceedings Twelfth Workshop on Developments in Computational Models and Ninth
Workshop on Intersection Types and Related Systems, DCM/ITRS 2018, Oxford, UK,
8th July 2018 (EPTCS, Vol. 293), Michele Pagani and Sandra Alves (Eds.). 7-27.
https://doi.org/10.4204/EPTCS.293.2

Jacques Sakarovitch. 2009. Elements of Automata Theory. Cambridge Uni-
versity Press. http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=
9780521844253

Sylvain Schmitz. 2017. Algorithmic Complexity of Well-Quasi-Orders. (Complexité
algorithmique des beaux pré-ordres). https://tel.archives-ouvertes.fr/tel-01663266
Sylvain Schmitz and Philippe Schnoebelen. 2011. Multiply-Recursive Upper
Bounds with Higman’s Lemma. In Automata, Languages and Programming -
38th International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011,
Proceedings, Part II (Lecture Notes in Computer Science, Vol. 6756), Luca Aceto,
Monika Henzinger, and Jiri Sgall (Eds.). Springer, 441-452. https://doi.org/10.
1007/978-3-642-22012-8_35

Imre Simon. 1990. Factorization Forests of Finite Height. Theor. Comput. Sci. 72,
1(1990), 65-94. https://doi.org/10.1016/0304-3975(90)90047-L

Tim Smith. 2017. A new pumping lemma for indexed languages, with an appli-
cation to infinite words. Inf. Comput. 252 (2017), 176-186. https://doi.org/10.
1016/J.1C.2016.11.002

Jan van Leeuwen. 1978. Effective constructions in well-partially-ordered free
monoids. Discrete Mathematics 21, 3 (1978), 237-252.

Georg Zetzsche. 2015. An Approach to Computing Downward Closures. In
Automata, Languages, and Programming - 42nd International Colloquium, ICALP
2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II (Lecture Notes in Computer
Science, Vol. 9135), Magnus M. Halldérsson, Kazuo Iwama, Naoki Kobayashi, and
Bettina Speckmann (Eds.). Springer, 440-451. https://doi.org/10.1007/978-3-662-

14

[56]

[57]

(58]

[59]

Anon.

47666-6_35

Georg Zetzsche. 2015. An approach to computing downward closures. CoRR
abs/1503.01068 (2015). arXiv:1503.01068

Georg Zetzsche. 2015. Computing Downward Closures for Stacked Counter
Automata. In 32nd International Symposium on Theoretical Aspects of Computer
Science, STACS 2015, Garching, Germany, March 4-7, 2015 (LIPIcs, Vol. 30), Ernst W.
Mayr and Nicolas Ollinger (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Infor-
matik, 743-756. https://doi.org/10.4230/LIPICS.STACS.2015.743

Georg Zetzsche. 2016. The Complexity of Downward Closure Comparisons.
In 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, Rome, Italy, July 11-15, 2016 (LIPIcs, Vol. 55), Ioannis Chatzigian-
nakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi (Eds.). Schloss
Dagstuhl - Leibniz-Zentrum fur Informatik, 123:1-123:14. https://doi.org/10.
4230/LIPICS.ICALP.2016.123

Georg Zetzsche. 2018. Separability by piecewise testable languages and down-
ward closures beyond subwords. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018,
Anuj Dawar and Erich Gréidel (Eds.). ACM, 929-938. https://doi.org/10.1145/
3209108.3209201

1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623

1624

https://doi.org/10.1016/J.TCS.2015.09.028
https://doi.org/10.1016/J.TCS.2015.09.028
https://doi.org/10.4230/LIPICS.CSL.2011.322
https://doi.org/10.1007/3-540-45931-6_15
https://doi.org/10.1007/3-540-45931-6_15
https://doi.org/10.1145/1480881.1480933
https://doi.org/10.1145/2487241.2487246
https://doi.org/10.4230/LIPICS.CONCUR.2015.72
https://doi.org/10.1016/J.IPL.2024.106497
https://doi.org/10.46298/LMCS-18(4:2)2022
https://doi.org/10.46298/LMCS-18(4:2)2022
https://doi.org/10.1016/S0304-3975(02)00646-1
https://doi.org/10.1016/S0304-3975(02)00646-1
https://doi.org/10.1137/1031081
https://doi.org/10.1109/LICS.2015.9
https://doi.org/10.4230/LIPICS.FSTTCS.2017.45
https://doi.org/10.4230/LIPICS.FSTTCS.2017.45
https://doi.org/10.4204/EPTCS.293.2
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521844253
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521844253
https://tel.archives-ouvertes.fr/tel-01663266
https://doi.org/10.1007/978-3-642-22012-8_35
https://doi.org/10.1007/978-3-642-22012-8_35
https://doi.org/10.1016/0304-3975(90)90047-L
https://doi.org/10.1016/J.IC.2016.11.002
https://doi.org/10.1016/J.IC.2016.11.002
https://doi.org/10.1007/978-3-662-47666-6_35
https://doi.org/10.1007/978-3-662-47666-6_35
https://arxiv.org/abs/1503.01068
https://doi.org/10.4230/LIPICS.STACS.2015.743
https://doi.org/10.4230/LIPICS.ICALP.2016.123
https://doi.org/10.4230/LIPICS.ICALP.2016.123
https://doi.org/10.1145/3209108.3209201
https://doi.org/10.1145/3209108.3209201

1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681

1682

The complexity of downward closures of indexed languages

function defined where in [37] growth w.r.t. |Q|

fo Lemma 14 on p. 329 constant

f Theorem 22 on p. 331 exponential

f Corollary 23 on p. 331 exponential

f Theorem 25 on p. 332 triply exponential
fa Lemma 26 on p. 333 exponential

f Corollary 27 on p. 333 exponential

fo Theorem 32 on p. 334
Table 1: Growth of functions in the paper [37]

triply exponential

A NORMALISING INDEXED GRAMMARS

When describing indexed grammars we sometimes use production
rules of the form not allowed by our definition of indexed grammar

(i) Af puwithue (NUT)*\N
(i) A—> uwithue (NUT)*\ (N2UT*).

We now formally define how these rules should be eliminated
to obtain an indexed grammar as in Definition 2.

We start by eliminating rules of the first type: we replace each
rule Af — uwithu € (NUT)* \ N by two rules Af — A’ and
A’ — u, with A’ a fresh non-terminal.

It remains to eliminate rules of the form A — u withu € (N U
T)* \ (N> UT*).Ifu = B € N then replace the rule with A — BC
and C — ¢ with C a fresh non-terminal. Otherwise, decompose u
asu = woA1wy ... Apwyg with Ay, ..., A € Nand wy, ..., wy € T*.
Introduce fresh non-terminals By, - - - , By, C1, .. ., C._1. We replace
A — u with rules

o A— WyBy,

o W; — w;forallie€ {0,...,k},

e B; —» A;Ciforallie{1,...,k—1},
e C; > W;Bjyi forallie {1,...,k—1},
L] Bk—>Aka

Note that Zf:o |wi| < |u| and k < |u|. Hence, each such rule
A — u is replaced by a set of at most 3|u| + 1 rules, introducing
at most 2|u| — 1 non-terminals whose lengths sum up to at most
8|u|+6. As a consequence, each rule of the form Af — u is replaced
by a set of at most 3|u| + 2 rules whose lengths sum up to at most
8lu| + 8.

B ADDITIONAL MATERIAL FROM SECTION 3

The conclusion section (Section 7) of [37] claims that the pumping
threshold P (see Section 3 for the definition) grows at most doubly
exponentially. Here, we briefly explain the mistake in this claim.
The corresponding results are Theorems 25, 32, and 33 in [37].
Each of them provides a bound ¢ (in terms of the number of states,
the input alphabet, and a target configuration) such that in a (col-
lapsible) order-2 pushdown automaton, if there is an accepting path
of length > ¢, then there are infinitely many. These bounds are in
the form of functions f3 (for Thm. 25) and fz (for Thms. 32 and 33).
However, both f3 and f; grow at least triply exponentially in the
number of states of the pushdown system. To see this, we track the
functions fo, . . ., fs, which are defined across the paper, in Table 1.

15

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

C ADDITIONAL MATERIAL FROM SECTION 4
C.1 Proof of Lemma 4.3

In this subsection, we prove:

LEMMA 4.3. Forevery f € I,z € I*, and X C N, we have fz- X =
f - (z-X). Moreover,z-U =z - 0.

We will prove this in the two separate lemmas below.

LemMma C.1. Forallf €I,z € I* and X C N, we have

fz-X=f-(z-X).

Proor. If A € f - (z - X) then (by definition) A[f]Zu, with
u € (z-X UT)" Let u[z] be the sentential form obtained by
replacing every non-terminal B in u with B[z] (i.e. pushing z onto
every stack). Since all those non-terminals are in z - X, there exists
v € (X UT)* such that u[z]=0, implying that A[fz]Zv and so
Aefz-X.

To show the other inclusion, suppose that A € fz-X and consider
a derivation tree from A[fz] to some v € (X U T)*. Along every
branch there is a first node with a label either in T* or of the form
B[z]. In the latter case we have B € z - X (since the tree from this
node is a derivation tree from B[z] to an element of (X UT)*). After
deleting everything below these nodes and removing the z suffix

from the stack in each label, we obtain a derivation tree from A[f]
to an element of (z - X U T)*, completing the proof. O

Since non-terminals in U derive terminal words, we have:
LEMMA C.2. ForallzeI*,z-U=2z-0={A € N | Ly(A[z]) # 0}.

Proor. Note that the second equality is simply the definition
of z - 0. We proceed by induction on z. For z = 0, the statement is
equivalent to the definition of U. Assuming the statement holds for
z, then two applications of Lemma C.1 yield

fzU=f-(z-U)=f-(z0) = fz-0,

completing the proof. O

C.2 Proof of Lemma 4.4

In this subsection, we prove:
LEMMA 4.4. G and G have the same language, and G is productive.

We prove Lemma 4.4 below, after establishing a preliminary
result, which details the relation between derivations in G and G.
Define 7 : NI UT — NI* U T to be the function projecting each
(AX) € N to A, each (f,X) e ftof and each a € T to itself. We
naturally extend it to a morphism from (N T'u T)* to (NI*UT)*

Lemma C.3. Let (A, Y)[z] € NT' be the X-based annotation of
Alz] € NI* for some X C N.Ifu € Lx(A[z]), then there exists
u e (X x{X}UT)* such that

m(u) =u and (A, Y) [2]=*>§1'4.

In particular, ifu € T* then A[z]=> gu implies that (A, Y) [E]z*:’gu
as well.

Proor. We proceed by induction on the length of the derivation

A[z]® gu, and distinguish cases according to the production rule
used in the first step.

1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739

1740

1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

o If the rule is of the form A — w € T*, then u = w and the
statement is immediate.

o If the rule is of the form A — BC, then u = uguc where
B[z]% gup and C[z]% guc. By our assumption, we have
Y =z - X, and since A[z], B[z] and C[z] can all produce a
word in (X U T)*, we must have A, B,C € Y (also, A € Y by
definition). Consequently, we may apply the corresponding
derivation in G: (A, Y)[2]=5(B, Y)[2](C, Y)[Z]. Note that
(B,Y)[z] and (C,Y)[Zz] are X-based annotations of B|z]
and C|[z] respectively, so by the induction hypothesis there
are ug, ic € (XX{X}UT)" such that r(ug) = ug, 7(uc) =
uc, (B, Y)[2]2 ziip and (C, Y)[2] 2 giic. Setting @ = apiic,
we thus have 7(u) = u and (A, Y) [2]5517, as desired.

o If the rule is of the form A — Bf, then B[fz]% gu. We
have Y = z- X, and A € Y by definition. Let Y’ = f - Y =
fz - X. Since B[fz] can produce a word in (X U T)*, it
must be the case that B € Y’. Hence, we have the cor-
responding derivation (A, Y)|z] :é(B, Y)[(f,Y)z]. Note
that (B, Y')[(f, Y)z] is an X-based annotation of B[fz], so
from the induction hypothesis we obtain # € (X x {X} U
T)* such that n(#4) = u and (B,Y")[(f, Y)E]ééﬁ. Hence,
(AY) [2]5517.

o If the rule is of the form Af — B, then we have z =
f7 for some 2’ such that B[z"]Z gu. Let z’ be such that
z = (f,X’)Z’. Since (A, Y)[z] is the X-based annotation of
A[z], we must have X’ = z’ - X, and since B[z’] derives a
word in (X U T)* it follows that B € X’. Hence, there is a
corresponding derivation (4, Y)[(f, X")Z’] :;(B, XN [Z'].
Since (B, X")[Z’] is easily seen to be the X-based annota-
tion of B[z’], the induction hypothesis yields a derivation
(B, X’) [2’]531’4 for some # € (XX{X}UT)* with 7 (21) = u.
Hence, (A,Y) [2]5551 as desired.

This concludes the proof. O

PRrOOF OF LEMMA 4.4. The inclusion L(G) C L(G) is obtained
as follows. For all w € L(G), we have a derivation tree for G from
(S,U) to w. Since 7 maps the rules in P to rules in P, it is easy
to check that the tree obtained by applying 7 to each node is a
derivation tree from S to w for G, implying that w € L(G).

To obtain L(G) C L(G), suppose that w € L(G). Then there is a
derivation S gw, and since (S, U) is a U-based annotation of S it
follows from Lemma C.3 that (S, U)ééw, implying w € L(G).

It remains to prove productiveness. We wish to show that every
u such that (S, U):>§17 is productive.

First observe that for all u such that (S, U)=>§17, every term
(A, X)[z] of u is a U-based annotation of some A[z] € NI*. This
follows from the definition of G and an easy induction on the deriva-
tion. Then, it is enough to prove that every such term (A, X)[z] is
productive, since a sentential form can produce a terminal word if
and only if all its terms can.

As (A, X)|z] is a U-based annotation of some A[z], we have
X = z-U. Since A € X by definition of N, there is a derivation
from A[z] to a word of T*. As a result, by Lemma C.3 there is a
derivation from (A, X)[z] to a word in T*. O

16

Anon.

D ADDITIONAL MATERIAL FROM SECTION 5

D.1 Proof of Lemma 5.1

LEMMA 5.1. Letz = (fp, Xn) - -+ (f1,X1) € T" be a stack content.
The following are equivalent:
(1) z is feasible
2) ¢(2) # Oy
(3) foralli > 1,X; = fi - Xj—1 and B(fi-1) Rx, a(fi).

Proor. All three properties are clearly true for z = ¢. We now
focus on non-empty stacks.

From the definitions of M and ¢, one sees that property 3 is
necessary and sufficient to ensure that no product of two consecu-
tive infixes in ¢(2) = [17; ¢(fi, X;) is equal to Oyy. It is also clear
from the definitions that [].; ¢(f;, X;) = Oy if and only if two
consecutive infixes multiply to equal 0y, so we immediately obtain
26 3.

We now show that 1 = 3. Let z be feasible, so by definition we
have a derivation

(a(f1), X1)= gu(f(fn), fn - Xn) [Z]0. (%)
We proceed by induction on the derivation length. If (+) has length

one, then it must be of the form (a(ﬁ),Xl)::»?(ﬁ(ﬁ),fl-Xl) [(fi,X1)],

whence 3 holds trivially. We now assume that the length is greater
than one, and that the first operation is of the form (a(f), X1) —
(B,X1)(C, X1). In this case, we may assume without loss of general-
ity that (B, X1) derives u’ (S(fn), fu - Xn)[Z]0” for some u’,v” € SF.
Since (f1, X1) must eventually be pushed (and (a(f1), X1) is the only
nonterminal which allows this), it follows that B Ry, a(f1), and
that there is a derivation (a(ﬁ),Xl)é?u”(ﬂ(fn),fn - Xpn)[z]0”
for some u’’, 0"’ € SF that is strictly shorter than (). Hence, 3 holds
by induction.

Now let us assume that the length of (x) is greater than one, and
that the first operation is a push (the only remaining possibility).
The push operation must be of the form

(a(f). X1)= g (B(f). fi - XD [(1, X1)].

If fi - X1 # Xo, then it is easy to see that the right hand side cannot
derive any term which pushes (f2, X2). Hence, we have

Xz = fi - X1 and f(f1) Rx, a(f2), (¥)

and there is a derivation (a(f2), X2) [(fl,Xl)]éau’(ﬁ(fn),fn-Xn) [z]o’.

Letting 2’ = (f4, Xn) - - - (f2, X2), this implies that Z’ is feasible with
a derivation

(a(f2). X2)= gt (B(fn), fo - Xn)[2']0

that is strictly shorter than (x). Hence, z’ satisfies 3 by induction,
and with («*) we immediately obtain 3 for z.

Finally, we show that 3 = 1. Let us assume that z satisfies 3.
Recall that we assumed that for all f € I there is a rule pushing f.
Thenfori=1,...,n—1we have

(a(fi). Xi)=g (B(fD). Xis) [(fi, Xi)]
and

(B(fi), Xir1)= gui(a(fir), Xis1)oi
for some u;,v; € SF, as well as

(a(fn)’xn)ﬁg(ﬁ(fn)sfn < Xn) [(fos Xn)]-

1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855

1856

1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913

1914

The complexity of downward closures of indexed languages

It is clear that we may combine these derivations to obtain
(a(f1), X1)= gu(f(fn), fn - Xn)[Z]0,

proving that z is feasible. O

D.2 Proof of Lemma 5.2

LEMMA 5.2. Let z € It a non-empty stack content, let X € N
and let (B,Y, M, A, X) = (p(ZX). Then forallC € X and D € Y, the
following are equivalent:

e CRx Aand BRy D
e there exist u,v € SF such that (C, X)=*>éu(D, Y) [EX]U

Proor. From the first condition, we have derivations
(C,X)ééuc(A, X)uc and (B, X)ééuD(D,X)vD

for some uc,ve, up, up € SF.Let z = f;; - - - fi. From the definition
of ¢ (and the fact that qo(EX) # Oyp) it follows easily that A = a(f}),
B = f(fy) and Y = z - X. Hence, Lemma 5.1 ensures that there is a
derivation

(AX)S 5 (B,Y) B
for some u’,v” € SF, which we combine with the derivations above
to obtain

(C.X)55u(D,Y) %],
proving one direction.

For the other implication, suppose such a derivation exists. Even-
tually, (f1,X) must be pushed onto an empty stack, and since
(A, X) is the only non-terminal which facilitates this operation,
it follows that C Rx A. Similarly, the derivation must eventu-
ally push the topmost symbol in zX, and the only non-terminal
which can result from this operation is (B, Y). This implies that
(B,Y) [Ex]ééu(D, Y)[zX v, hence B Ry D, completing the proof.

]

D.3 Proof of Lemma 5.3
LEMMA 5.3. Let z € I a non-empty stack content, let X C N and

let (B,Y, M, A, X) = p(zX). The following are equivalent:

e M(D,C)=T

e Ce€X,D €Y and there existu,v € (X UT)* such that

D[z]= guCu
e C€X,D €Y and there existu,v € SFg such that
(D,Y) [Ex]égu(c, X)o.

Proor. Equivalence of the second and third statements follows
easily from Lemma C.3. Hence, it suffices to prove equivalence of
the first and second statements. We proceed by induction on z. If
|z| = 1 then we have X = (f,X) with ¢(f,X) = (B, Y, M, A, X),
and the equivalence holds simply by definition.

If |z| > 1, then let w be such that z = fw.Let Z = w - X, so that
ZX = (f, Z)WX, and let us write (Bf, Y, Mf,Af, Z) = ¢(f,Z) and
(Bw, Z, My, Ay, X) = (p(WX), Note that M = MyM,,. We prove the
two directions separately.
=: Suppose M(D,C) = T.Then there exists E such that My (D, E) =
My (E,C) = T. From the induction hypothesis applied to f, it fol-
lows that D € Y, E € Z and there exist u;,0; € (Z U T)* such
that D[f]2 gu;Ev;. On the other hand, applying the induction

17

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

hypothesis to w yields C € X and uz,v2 € (X U T)* such that
E[W]éguzcvz.

Since Z = w - X and uy,v1 € (Z UT), there must be u3,v3 €
(X UT)* such that u; [w]% gus and 01 [w]= gos. Combining the
facts above, we get

D[Z]égul [W]E[W]Ul [w]égu3E[w]U35gu3u2C0203

as desired.

<: Suppose D € Y,C € X and there existu,v € (XUT)* such that
D[z]® guCov. Then we must have D[f]1= guiUv1, U[w]= guzCog,
u1[w]® gus and v1[w]Z go3 for some U € N and sentential
forms uq, uy, us, v1, 02,03 such that u = usuy and v = v903. As a
consequence, we have up,us3,v2,03 € (X UT)*. Since w - X = Z,
we get that uy,01 € (Z UT)*, and since C € X, the derivation
U[w]5 gupCuy € (X UT)* proves that U € w - X = Z. By the in-
duction hypothesis, we have M,,(D,U) = Mf(U, C) = T, implying
that M(D,C) = T. O

E ADDITIONAL MATERIAL FROM SECTION 6
E.1 Proof of Proposition 6.1

We prove the following statement:
PRrOPOSITION 6.1. Lpump,skip(é) - L(é)l

The following two auxiliary lemmas are required. The first one
shows that we can eliminate pump rules, the second one that we
can eliminate skip rules.

Call a sentential form u of G reachable if u € Lgp((S, U)). Call a
term (B, X)[z] reachable if it appears in a derivation from (S, U).

LEmMA E.1. Lete = (B, X, M, A, X) € Idem(M) \ {0w, 1}, let
(B,X)[z] be a reachable term of G and let z, € I be such that
¢(ze) = e. Then

Lo((B,X)[zez]) € Lo((B,X)[z])].
ProOF. Letw € Lo ((B,X)[zez]), so there is a derivation

(B, X) [zeé]éaw.

Since ¢(z¢) = e # Oy, by Lemma 5.1, z, is feasible, so there is
a derivation (A, X)ééu(B, X)[ze]o with u,0 € SF. Furthermore,
since e is idempotent, by definition of the product in M we have
B Rx A, i.e., there is a derivation (B, X)é»éu’(A, X)o'. In total, we
obtain

(B,X)[z] ééu' (A, X)[z] v'ééu'u(B, X) [zei]w’é‘»@u'uwvv'.

Moreover, since G is productive and (B, X)|[z] is a reachable
term of é, it follows that u’uwoo’ is reachable as well, and can thus
derive a terminal word w’. Since w’ necessarily contains w as a
subword, the proof is complete. O

Lemma E.2. Let (A Y)[Zuy ... unzeus ... unz] be a reachable
term of G, and let e = (B,X,M,A, X) € Idem(M) be such that
@(u1) == @(un) = ¢(z¢) = e. Then

Lo((A Y)[Zu1...unz]) CLo((A Y)[Z'u1 ... unzeus ... unz])l.
Proor. Letw € Ly((A, Y)[2'u1 ... unZ]), and let 7 be a deriva-

tion tree for (A, Y)[z'uy ... uN2]=*>§w.
Consider the set of nodes v such that either

1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972

1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029

2030

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

(1) v is aleaf with a label in T* and Z is a suffix of the stack
content of each of its ancestors, or

(2) vislabeled (C,X)[ujt+1...unz] for some i € {0,...,|N|}
(where un1 is the empty string) and u;41 . . . unz is a suffix
of the stack content of each of its ancestors.

A node of the second type which also satisfies M(C,C) = T is called
a special node.

Claim. Every branch of t contains either a node of the first type or
a special node.

Proof of the claim: Consider a branch of 7. If the leaf of this branch is
not of the first type, then the prefix z’u; . . . uy must be fully popped.
Clearly there must be distinct nodes vy, . .., vy of the second type
along this branch, where v; is labeled (A;, X;)[ui+1 ... unz] for
some A; € N, and each of its ancestors has a stack content with suf-
fix uj1 ... unz. Consequently, fori = 0,...,|N| — 1 we can define
the derivation tree obtained by restricting 7 to v; and its descen-
dants, and then removing all nodes (and their descendants) where
Uj+1 ... uNZ is not a suffix of the stack, as well as all descendants
of vi41. By construction, vj41 is a leaf of the resulting tree, and so
we obtain a derivation

(A, Xi) [... unZz]2 gwi(Apst, Xivr) [wis1 - . unZ]w]

with wj, wlf € SF. Since ¢(u;) = e, we must have X; = Xj41 = X
and M(A;, Aj+1) = T. Thus, it follows from Lemma 6.2 that there is
some i such that M(A;, Aj) = T, so v; is a special node. [|

Let v be a special node, labeled (C, X) [ujt1 . . . unz] with M(C,C) =
T. Since ¢(u1) = -+ = @(un) = ¢(ze) = e, it follows that
©(Uit1 - . . UNZeUq - .. U;j) = e. As a consequence, since M(C,C) = T,
we have a derivation (C, X) [uj+1 .. . UNZeUl] - - - ui]ééw_ (C, X)w+
with w_, w;. € SF (see Lemma 5.3).

For the following construction we refer to Figure 1 for a visual
presentation.

Consider the set V of minimal nodes (for the ancestor relation)
which are either of the first type or special. Notice that V inter-
sects every branch exactly once: at most once by the minimality
requirement, at least once by the claim above. We can thus define
the subtree whose root is the same as 7 and whose leaves are V.
By construction, every node in this tree is labeled with either a
terminal word or a term whose stack has z as a suffix. Define 7/
the tree obtained by replacing each suffix z with z.u; ... unZ, and
notice that the resulting tree 7’ is still a valid derivation tree.

For each leaf v of 7/ that was a special node of 7, with a la-
bel (C,X)[uit1 ... unzeus ... unz] in 7’ for some (C, X) and i, we
append a derivation tree 7, for

(C,X) [Uir1 - .- unzeUs ...uNE]ééw_ (C, X) [uit1 - .. unz]ws,

where w_, w; € SF. Now take the subtree of 7 rooted at v, and
append it at the leaf of 7, labeled with (C, X) [uj41 ... unZ].

The result is a derivation tree from (A, Y)[2'u1 ... unzeus ... unz]
to a sentential form w of which w is a subword. Since G is produc-
tive and (A, Y)[z'uy ... unzeus ... uNZ] is a reachable term, there
is a word w’ € T* such that Vvééw’, and since w < w we have
w 2 w’, completing the proof. m]

PRrROOF OF PrROPOSITION 6.1. We show the stronger statement
that for all reachable sentential form u in G, for all terminal word

18

Anon.

w € T* such that uépump! skip, G W» there exists w’ € T* such that
us—

gw and w 2 w’. The result then follows by taking u = (S, U).

We proceed by induction on the derivation u=> kin. g Ws dis-
pump, skip, G

tinguishing cases according to the first step. Note that the base case,

where u = w, is trivial.

o If the first step is a production rule in G, say u:>§u’ , then

u épump, skip, g W Witha shorter derivation. By the induction
7

hypothesis,u’ééw' € T* with w=w’, hence uzau’ééw .

o If the first step is a pump rule, say
u = u_ (B, X)[Z]us— pumpi— (B, X) [zeZ]us = 1/,

with ¢(z¢) = e for some idempotent e = (B, X, M, A, X).
then ulépump,skip,?w’ and the induction hypothesis im-
plies that u’=zw’ € T* with w < w’. Let us write w’ =
w_wpwy, where

- u_ééw_,

- u+£>§w+, and

- (B.X)[zez]=gws.
By Lemma E.1 we have that uééw_wngr with wg < wp,.
The desired result follows, since w < w’ < w_w]’BwJ,.

o If the first step is a skip rule, say

u=u_(AX)[Zur...unzeur ... unz]us

Saipt- (A X)[Z'u1 ... unZlup = 0/,

then u’épump,skip,éw’ and by the induction hypothesis
u'=gzw' € T* with w < w’. Let us write w' = w_waw,
where

- u_::»éw_,

- u+£>§w+, and
- (A,X)[z'ul...uNE]é‘»éwA,
Then by Lemma E.2 we obtain
(A,X)[Zu1...unzeus .. .ug\ﬁ]é»?w;1

with wq < W:A' We thus have uééw_wgwh and since
w=w =< W—W:L‘W+, the result follows and the proof is
complete.

[m]

F ADDITIONAL MATERIAL FROM SECTION 7
F.1 Proof of Lemma 7.3
In this section we prove the following statement.

LEMMA 7.3. Foreveryz € T, the summary push(z » ¢) is of size
at most exponential in |N]|.

Its proof is very similar to the one of Theorem 26 in [27]. We
start by recalling some classical facts on Green relations. For a more
in-depth introduction to those, see for instance [45], or [22].

LemMA F.1. In a finite monoid M, every H -class contains at most
one idempotent.

LemmA F.2. In a finite monoid M, for all x,y € M, if xJy and
x<ry (resp. x<gy) then x Ly (resp. xRy).

2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088

2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145

2146

The complexity of downward closures of indexed languages

Define the Ramsey function of M as follows: for all k € N, Ry (k)
is the minimal n such that for every word of length n there exists
e € Idem(M) and uy, ..., u; € M* such that the word contains an
infix ug - - - ug with Ym(u;) = e for all i.

THEOREM F.3 ([34], THEOREM 1). For all finite monoid M, for all
k eN, A
Ru(k) < (kM)

TuroreM F.4 ([34], THEOREM 2). The regular J -length of BN*N
is JL(BN*N) = N2+2N+2.

Tureorem F.5. JL(M) < (NHTNH) Y

PRrROOF. Let us start by using another definition of the regular
J -length. By [35, Appendix B], the regular J-length of M is the
largest m such that there is an injective homomorphism from the
max monoid ({1,...,m}, max, m) to M.

Letm € N, let 6 : {1,...,m} — M be such a homomorphism.

2
We must show that m < w + 2.

If 0y is in the image of 0 then 8(m) = 0y;. If 13 is in the image
of 6 then 6(1) = 1. Since all i in {2, ..., m — 1} are idempotents,
the image of each i by § must also be an idempotent. As a result, we
can set 0(i) = (Bj, Xj, Mj, A;, X;) forall 1 < i < m, with Mi2 =M;.

Furthermore, for all 1 < i < j < m, since max(i, j) = j, we must
have

(Bj, Yj, Mj, Aj, X;) - (Bi, Xi, Mi, Ai, Xi)
=(Bi, Xi, M, Ai, Xi) - (Bj, Y}, Mj, Aj, X;)
=(Bj, Xj, Mj, A}, Xj)

We infer that X; = Xj, Bj = Bjand Aj = A; for all i < j. Since 0 is
injective, My, . .., My, —1 must be distinct.

Define the function 0 : {1,...,m — 2} mapping each i to M], ;.

It suffices to observe that 6, is an injective homomorphism from
the max monoid of size m — 2 to BN*N_ As a consequence, we
have m — 2 < JL(BN*N). By Theorem F.4, we have JL(BN*N) <

2 2
W.Asaresult,ms w+2. O

Observe that the size of M is bounded by N22N “+2N_Define
(N2+N+2)
K = ((2N + 1)NB24N™8N) =42 By combining the results

above, we obtain the following corollary.

CororrarY F.6. Letz € M* with |z| > K, there existug, ..
M* and vy, ...,on € M* and e € Idem(M) such that
® Uj...UuNUp...0N isaninfix of z
o ¢(ur) =---=¢(un) =) =---=p(on) =e

LUN E

In what follows we distinguish the size of a d-summary/d-block
from its length, which is simply its length as a word of d-atoms, e*
letters and d’-summaries for various d’ < d.

Lemma F7. Forallz € T, push(z » ¢) = ¢’uBy ... By is such
that u has length at most K and all Bj at most 2K.

ProoFr. We first show it for u. If push(z » ¢) = o’uBj ... By
then u cannot have an infix of the form u;...unvg...oNn with
o(ui) = ¢(vi) = ¢(vp) = e for all i, for any e € Idem(M). This is
because when such a pattern appears u is turned into a d-block. As
a consequence, by Corollary F.6, u has length at most K — 1.

19

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

For the blocks, we show that in a block uy - - - uneto; - - -oyw
appearing in push(z » ¢), the lengths of u; ... une* and vy ... oW
are always at most K. We show this by induction on |z|. For z = ¢
this is trivial. Now suppose |z| > 0, let (f, X)z’ = z. By induction
hypothesis push(z’ » ¢) has the property.

Let o”u’B] ... By, = push(z’ » ¢) We show the property on
push(z » ¢) (which is equal to push((f, X) » push(z’ » ¢)) by def-
inition) by following the cases of the definition of push(_» _).

In cases (1), (a) and (ii) blocks remain the same, thus the property
still holds. In case (i), we define anew block B = ug - - - unetoy - - - oyw
by concatenating (f, X) with u’. Since we showed that u” has length
at most K — 1, B has length at most K, hence so do u; - - - uye* and
v1---oNyw. In case (B), we obtain the property immediately. In
case (A), we form a new block ug - - - une*o] - - -0, w’ by merging B
with one of the B}. =up---ujeto) -0 yw’. Since ug - - - unyet and

’

1

vjyw’ both have length at most K, the property is maintained.
m]

Lemma F.8. Forallz €T, push(z » &) has at most |[M|47L(V)+1
blocks.

Proor. Let 0 = ¢’uBj ... By, be a d-summary. For each i let
Bi = uj1...uyN€fvi1,. .., 0,yw; and for each i < j define a;; =
@i ... 03 NWiBit1 - Bj_1uj1... ujN).

Note that since ¢(v;,1) = e; and e; € Idem (M) for all i we have
ajj = é€j- (P(Ui,l . Ui,NWiBHl ce Bj_luj,l A uj’N) and thus

aij-ajr=apforali<j<k

Suppose by contradiction that m > [M[4TLAD+ then by pi-
geonhole principle there exist e € Idem(M) and iy < --- < iy €
{1,...,K} such that p > (IM)) L) and ej, = e forall k.

Then by Theorem F.3, there exist k, ¢ such that ¢(a;, ;,) is an
idempotent e’.

Since o is a d-summary, we have depth(e’) = d = depth(e).
In consequence, since e’< ge and they are both idempotent, we
must have e Je;. Furthermore, since e’ <ga, <gopi(7(vi1)) =
e, we have ¢’ <ge and thus eRe’ by Lemma F.1. Similarly, since
e’<rai,<rewehave ¢’< ye and thus eLe’.

We obtain eHe’. By Lemma F.2, this implies e = ¢’. This is a
contradiction since then the blocks from B;, to B;, should have
been merged when B;, was created. As a result, we must have
m < |M|47L(M)+l. o

We now have all necessary tools to show Lemma 7.3.

ProoF oF LEMMA 7.3. We show that for all zand d, if push(z » ¢)
is a d-summary then it has size at most (8|M|47L(M)+1K)d.

We do an induction on d. The property trivially holds for d = 0.
Let d > 0, suppose the property holds for d — 1.

Let push(z » ¢) = ¢’uB; ...By. By Lemma F.8 we must have
k < [M|LOD+L By Lemma F.7 we have |u| < K and |B;| < 2K for
all i.

Therefore push(z » ¢) has length at most (|M|*LM)+1 L 1)K +1,
which is bounded by 4[M|[*LAD+ g

Let ac”’ be a d-atom appearing in z, with ¢’ a (d — 1)-summary.
Note that there must be a (strict) infix z’* of z such that push(z”" » ¢) =
¢’ . By induction hypothesis o’/ has size at most (8|M|*/L(M)+1gyd=1,

2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203

2204

2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261

2262

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Thus every d-atom has size at most (8|M|‘gL(M)HK)d_1 +1 <
2(8|M[4LM+1gyd=1 With the bound on its length, we conclude
that push(z » ¢) has size at most

2(8|M|43L(M)+1K)d—l (4|M|4]L(M)+1K)
S(8(|M|4]L(M)+1K)d

We obtain the result by applying this bound with d = JL(M),

(N%+N+2)
t 2

which is at mos + 2 by Theorem F.5. O

G ADDITIONAL MATERIAL FROM SECTION 8
G.1 Proof of Proposition 8.2
PROPOSITION 8.2. L(G) C L(Cg)-

PrOOF. Let w € L(G). There is a derivation tree from (S, U) to
w. Let 7 its tree structure and A : 7 — NI U T* its labeling.
We now define y : 7 — FTUT™ alabeling of 7 with non-terminals
and (words of) terminals of Cg such that for all v € 7,
e if A(v) € T* then pu(v) = A(v)
o if A(v) = (A X)[z] € NI then u(v) = (A, X, push(z » ¢))
We show that the resulting labeled tree is a derivation tree from
(S,U, ¢) to w in Cg, thereby showing the lemma.
Clearly the leaf word of 7, is w. It remains to show that this is
a derivation tree. Since 7, A is a derivation tree from (S, U) to w, all
stack contents appearing in it must be feasible. As a consequence, y
maps all nodes of 7 to non-terminals of Cg. Let v an internal node
of 7, and (A, X)[z] = A(v). One of the following cases holds.

e vhasone child labeled w’ € T*, and there isarule (A, X) —
w’ in G. Then (A, X, push(z » ¢)) — w’ is a rule of Cg.

e v has two children labeled B[z] and C|z], and there is a rule
(A, X) = (B,X)(C,X) in G. Then (A, X, push(z » ¢)) —
(B, X, push(z » ¢))(C, X, push(z » ¢)) is a rule of Cg.

e vhasachildlabeled B[(f, X)z], and there isarule (4, X) —
(B,Y)(f,X)in G. Then, since push((f, X) » push(z » ¢)) =

push((f,X)z » ¢), it must be that (A, X, push(z » ¢)) —
(B, Y,push((f,X)z » ¢)) is arule of Cg.

e v has a child labeled B[z_] with z = (f, Y)z_, and there
is arule (A, X)(f,Y) — (B,Y) in G. Then, since by def-
inition push((f,X) » z_) = push(z » ¢), we have z_ €

pop((f,Y) < 2).
As aresult, (A, X, push(z » ¢)) — (B,Y,push(z_ » ¢)) is
arule of Cg.
We have shown that every node satisfies the requirements of a
derivation tree for Cg. O

G.2 Proof of Proposition 8.3
ProposITION 8.3. L(Cg) C Lpump’skip(é).

PROOF. A pop step is simply a derivation step of Cg where the
production rule applied is of the form (A, X, 0) — (B, Y, ¢’) with
o =push((f,Y) » ¢’). We prove the following statement:

For all derivation with p pop steps from (A, X, 0)= ¢, w with
w € T, there is a derivation with pump and skip from (A, X)[z] to
w’ in G with w < w’, and Z the p-unfolding of o.

We show this by induction on the derivation, and distinguish
cases according to the rule used in its first step.

20

Anon.

o If the rule is of the form (A,X,0) — w then we apply
the corresponding rule (A, X) — w from (A, X)[z], hence
(A X)[z]=gw.

e If the rule is of the form (A, X, 0) — (B, X, 0)(C, X, o) then
there exist wg, we such that w = wgw, and (B, X, 6)= CoWB
and (C, X, 0)=> CgWC-

We apply the corresponding rule (A, X) — (B,X)(C, X)
of G from (A, X)[z] to obtain (B,X)[z](C,X)[z]. By in-
duction hypothesis, we obtain (B, X)[z]=
well as (C, X) [2]é>pump’ skip, EW,C
w(.. As a consequence,

-1 % / 4
(A X212 ymp, skip, g WBWC

.
pump, skip, gWB’ as
with wg < wj and we <

which yields the result since w = wgwc < wpw(.

o Iftheruleisofthe form (A, X, 0) — (B, Y, push((f,X) » 0)),
then, by Lemma 8.6, the p-unfolding z’ of push((f, X) » o)
satisfies (B, Y) [(f, X)z]= pump, skip (B, V) [Z].

By induction hypothesis, there exists w' € T* such that

(B,Y)[Z']> - =w’ and w X w’. As a consequence,
pump, skip, G

(A, X)[z] =3 (B.Y)[(f. X)z] épump, skip, EW,'

e If the rule is of the form (A, X,0) — (B,Y,0’), with o =

push((f,Y) » ¢’), then by Lemma 8.7 the (p—1)-unfolding

z' of o’ is such that (A, X)[2z] S (AX)[(f,Y)Z']. By
induction hypothesis, there exists w’ € T* such that

AXLFNZT2 o ain gW -

As a consequence,

(AX) 2= AN swin g

We have proven the induction. To obtain the lemma, let w € L(Cg).
There is a derivation in Cg from (S, U, ¢) to w. Let p be its number
of pop steps. Since ¢ is the p-unfolding of ¢, there is a derivation
from (S, U) to some w’ with w < w’. Asaresult, w € L(G)|. O

G.3 Proof of Lemma 8.5
LEmMMA 8.5. For each o and p > 1: unfp(0) g unfp-1(0).

Proor. By induction on the depthd of 0.1fd = 0 then unf, (o) =
unf,_1(0) = . If d > 0, we distinguish cases according to the
shape of . If ¢ is a d-atom (f,X)o’ then we simply apply the
induction hypothesis. The same goes for a sequence of d-atoms:
we apply the previous case to each one of them. In the case of a

d-block, we have

unfy (o) = 24z°((f, X)unfp_1(o1)) - - -
~ ((f. X)unfp_1(0r))z"unfy (w)

with z%,z% o1, ..., o as in the definition.

e if p > 1, then by the previous cases, z¥, z%, and unfp(w)
reduce to their (p—1)-unfolding counterparts. By induction
hypothesis, each unfj,_1(0;) reduces to unf,_2(o;). Hence
unf, (o) reduces to unf,_1 (o).

e If p =1, then we have
unfy_1(0) = unfo(ug - - - un)unfo(og - - - on)unfo(w).

Further, by definition of a d-block, ¢(2}) = ¢(z}) = e
for all i. Moreover, for all j we have ¢((f, X)unfy(o})) =

2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319

2320

2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378

The complexity of downward closures of indexed languages

e, since push((f, X)unfo(oj) » £) = push((f,X) » ;) =
up...uvetor...on and o(u; ... unetvr...on) = e. Asa
consequence, we have

unfy(0) =242°((f, X)unfp_1 (1) -~ ((f. X)unfp_1 (o)) 2 unfy(w)

—aipz 272" Sgpip unfp_1(0)

Finally, for a summary we can simply apply the previous cases to
each of the components. O

G.4 Proof of Lemma 8.6

LEMMA 8.6. Letp € N, let (A, X,01) — (B, Y, 02) bearule of Cg
with oy = push((f,X) » o1). We have

(B,Y) [(faX)unfp(O-l)]z*?pump,skip(Bs Y) [unfp(o-Z)]-

Proor. We prove this statement by induction on the depth of 3.
If 03 has depth 0 then it is ¢, contradicting o3 = push((f,X) » o01).

If 0 has depth d > 0 then we distinguish cases according to its
shape. In cases (1) and (i) we will simply show that (f, Y)unf, (1)
is the p-unfolding of 03. In case (a) we will use the induction hy-
pothesis, and in cases (A) and (B) we will actually apply a pump
rule and skip rules to obtain unf (o2).

We decompose o1 as 01 = ¢’uBj ... Bi. By definition we have
unfy (1) = unfy(o”)unfy(w)unfy(By) - - - unfy (By). We follow the
cases in the definition of push((f, X) » o1).

(1) If depth((f,X)o1) > d then o2 = (f, X)o1. Then by defini-
tion unf,(02) = (f, X)unfy,(o1).
(2) Otherwise, we have depth((f,X)o1) =d
(a) if depth((f,X)o’) < d then

oy = (push((f,X) > U’))uBl ... Bg.
By induction hypothesis, we have

(B, Y)[(f. X)unfp(0")]Z pump, skip (B, Y) [2”']
with 2’/ = unf, (push((f, X) » ¢”)). Therefore,
(B,Y)[unf, (") unfy(uw)unfy(By) - - - unfp (Bg)]
S pump,skip (B, Y) [2"2%21 ... 2;.]
= (B,Y)[oz].

(b) Otherwise, depth((f,X)o’) = d and (f,X)o” is a d-
atom.
(@) I ((f,X)o")uisof the formuy ... uNvov1 ... ONW
with ¢(u;) = ¢(v;) = p(vg) = eforalli > 1, for
some e € Idem(M), then

(f, X)unfy(0") = unfp(u1) ... unfp (un)unfy, (o) . . .
...unfp(on)unfy(w).

Furthermore since oy is obtained by pushing
(f,X) we must have f(f) = Band Y = f - X.
Furthermore, since (B, Y, 02) is a non-terminal
of Cg, o2 must be feasible, hence e # 0y. This
means thate = (B, Y, M, C,Y) for some C and M.
We have two cases.

(A) If there exists j such that B; is of the form

’ [P ’ ’
ul...uNe Ul...UNW

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

and ¢(v1...oNWBy ... Bj_1u] u]’V) =e.

Then this implies

+ 7 o7
09 = (ul...uNe 01...ZJNW)Bj+1...Bk.

In that case, we also have

unf, (Bj) :unfp(ui) ...unfy (u}\,)z;

(B.Y)
=(B,Y)

_>pump (Bs Y)

skip (135)I)

—pump (B, Y)

=(B,Y)

unfy(0]) ... unfp (v})unfy(w)

with ¢(z,) =e.
Let z be the p-unfolding of the summary
up...uyeto] ... 0w’ Then this must be

of the form 2"’ unfy, (07) ... unf, (v} Junfy (w’)

with ¢(z’") = e. Since e = (B, Y, M,C,Y) is
idempotent, we can apply pump rules and
skip rules as follows:

[(fs X)unfp(a1)]

[unfp (uq) ... unfp(un)

unfy (vp) ... unfp(on)unfpy(w)
unfy(B1)...unfy(Bj-1)

unfp (u]) ... unfp (uy)zg
unfp(ui)...unfp(v}J)unfp(M/)
unfy(Bj+1) ... unfp (Bl

[unfy (2]) ... unf,(v})
unfp(ur) ... unfp(uyn)

unfp(o1) ... unfp(on)unfpy(w)
unfy(B1) ...unfy(Bj-1)
unfp(ui)...unfp(uk)zé
unfy(v]) ... unfp (o3 unfy (w)
unfy(Bj+1) ... unfy(Bg)]
[unfp(vi)...unfp(vk)unfp(u/)
unfy(Bj+1) ... unfp (By)]
[z"unfp(v]) ... unfy (0})unf,y(w)
unfy(Bjt1) ... unfy(Bg)]
[unfp(a)]

(B) Otherwise we have the summary

02 = (u1 ce uNe+01 ce UNW)Bl .. -Bk~

We define B = u; ...unetor...onw. Then
the p-unfolding unf, (B) is of the form

2" unfy(v1) ... unfp (on)unfy (w)

with ¢(z”") = e. Since e = (B, Y, M,C,Y) is
idempotent, we can apply pump rules and
skip rules as follows:

2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435

2436

2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493

2494

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

(BY) [(f.X)unfp(o1)]
=(B,Y) [unfy (ug) ... unfp(un)
unfy (vo)unfy, (v1) ... unfy (on)unf, (w)
unfy(B1) ... unfy(By)]
—pump (B, Y) [unfy(o1) ... unfp(oN)
unfy(u1) ... unfy(un)
unfy (1) ... unfy(on)unfy(w)
unfy(By) ... unfp (By)]
—sip(B,Y) [unfy(o1) ... unfp(oN)
unfy(By) ... unfp(By)]
—pump (B, Y) [z"unfp(v1) ... unfy(on)
unfy(Bj+1) ... unfy(Bg)]
=(BY) [unfp(a)]
The resulting stack content is the p-unfolding
of oy.

(i) Otherwise, we have o2 = ((f,X)o”)uB; ... By
and thus (f, X)unf,(o1) = unfy (02).
O

G.5 Proof of Lemma 8.7

LEMMA 8.7. Letp > 1, let (A, X,01) — (B,Y,02) a rule of Cg
with oy € pop((f,Y) < 01). We have

(A, X) [unfp(01)] Sskip (A X)[(f, Y)unfy_1(02)].

Proor oF LEMMA 8.7. We prove this statement by induction on
the depth of o1. If depth(o) = 0 then it is € and pop((f,Y) < o)
is empty.

If 01 has depth d > 0 then we distinguish cases according to
its shape. Recall that by Lemma 8.5 a p-unfolding of a summary o
always reduces to its (p — 1)-unfolding through skip rules. We will
use this fact often throughout the proof.

Let 02 = 0’uB; ... By.

(1) If depth((f,Y)o2) > d then o1 = (f, Y)o2. Then by defini-
tion unf, (a1) = (f, Y)unf,(02), hence

(A, X)[unfp(01)] Ssekip (A X)[(f, X)unfp-1(02)]

by Lemma 8.5.
(2) Otherwise, we have depth((f,Y)oz) =d
(a) if depth((f,Y)o’) < d then

o1 = (push((f,Y) » ¢’))uBy ... B.
Then we have
unfy(o1) =
unfy (push((f,Y) » o"))unfy(u)unf,(By) ... unfy(By).

Since (A, X, 01) — (B,Y,02) isarule of Cg, 01 and o7
must be feasible, thus so are ¢/, and push((f,Y) » ¢’).
Thus, by construction of C, > We must have the rule
(A, X, push((f,Y) » ¢’)) = (B,Y,0’) in Cg. Hence,
by induction hypothesis,

(A, X) [unf, (push((f,Y) » o’))] Sskip (AX)[(f, Y)unf,_1(c”)].

22

Anon.
As a result, we have

(A, X)[unfp(o1)]
Skip (AX)[(f, Y)unfp_l(a')unfp(u)unfp (B1) ...unfy(Bg)]

By Lemma 8.5, we thus have

(A, X) [unfp(01)]

i>Skip(A,X)[(f, Y)unfp_1(o")unfp_1(u)unfp_l(Bl) ...unfy_1(By)]

=(AX)[(f.Y)unfp_1(02)]

(b) Otherwise, depth((f,Y)o’) = d and (f,Y)o’ is a d-
atom.

(i) I ((f,Y)o)uisofthe formuy ...uNvovy ... oNW
with ¢(u;) = ¢(vi) = (vg) = e forall i > 1, for
some e € Idem(M), we have two cases.

(A) If there exists j such that B; is of the form

’ ’ +,..7 ’ ’
up . .ouyetol Lo w and

@(v1...oNWBy ... Bj_quy...uy) =e

then we pick the maximal such j. We have
o1 = BBj+1 .. ‘Bk, where

B=uy...uneto] .. .opyw'.
In that case,
unfy(o1) = unfy (B)unfy (Bj41) . .. unfp(By).

1o upeto ,UI’V, that is, B;
without the w’ suffix. Let us also define z’ =
unfy_1(c’uB; . .,Bj_lB;). Then (f,Y)z’

is of the form

Let B;. =u ... uetv ..

unfp_1(ug) - - unfp_l(uN)zéunfp_l(v{) e unfp_l(vllv)

for some z,, such that ¢(z,) =e.
By definition of the p-unfolding, since

push((f,X) » ¢’uBj . ..Bj_lB;-) =B
and p > 1, unf,(B) is of the form
unfp(u1) ... unfy(un)z— (f, Y)z' zyunfp (0]) - - - unfy (v Junf, (w')

with ¢(z-) = ¢(z4) =e.

2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552

2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609

2610

The complexity of downward closures of indexed languages

We can use skip rules:

(A, X)
=(A,X)
=(A,X)

[unfp(o1)]

[unf, (B)unfy (Bj+1) . .. unfp(Bg)]
[unfp(ur) ... unfp(un)z-(f, Y)Z zy

unfy (07) - - - unf, (o))
unfp(w')unfp(Bj+1) ...unfy (By)]
[unfy_1(u1)...unfy_1(un)z-

(f. V)2’ zyunfp_1(v]) - - - unfp 1 (v})
unfp_1(w)unfp_1(Bjs1) ... unfp_1(B)]
[unfy_1(u1) ... unfy_1(un)z-
unfp_q(ug) -+ unfp_l(uN)z;

unfp_1(v]) - - - unfp_1 (o))

zyunfp_1(0]) -+ - unfp_1 (v))unfp 1 (W)
unfp_1(Bj+1) ... unfp_1(Bg)]
[unfp_1(u1) ... unfp 1 (un)zg
unfp_l(vi) e unfp_l(o}\])
unfp_1(w)unfp_1(Bjs1) ... unfp_1(By)]
[(£. V)2 unfp-1 (Bjan) ... unfpoi (By)]
[(f. Vunfp_1(02)]

i>skip(A) X)

=(A,X)

_>skip2 (A, X)

=(A,X)
=(A,X)

(B) Otherwise our summary is of the form oy =
(u1...une*vy...oNyw)Bj ... Bg. In partic-
ular, its p-unfolding is the stack content

unfy(o1) = unfy(B)unfy (By) - - - unf, (By).

Since (f,Y)o'u = uj...unvg ...onw, the
(p—1)-unfolding of u; ... uNvo .. .vN must
be of the form (f, Y)z’ for some z’. Hence

(f. V)" =unfp_1(u1) - - unfp_1(un)unfy_1(v9) - - -unfp_1 (on).

By definition of the p-unfolding, unf, (B)
is of the form

unfy (u1) - - - unfp (un)z— (f, Y)z'zpunfy (01) - - - unfp (on)unfp (w)

with ¢(z-) = ¢(z4) =e.

23

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

We can use skip rules:

[unfp(o1)]

[unf, (B)unfy, (By) - - - unf, (By)]

[unfp (u1) - - - unfp(un)z-

(f.)2’ zyunfp(v1) - - - unfy (on)
unfy(w)unfy, (Br) - - - unfy (By)]
[unfp(ug) - - unfp(un)z-

unfy_q(u) - - unfp_1(un)
unfy_1(vo)unfp_1(01) - - - unfp_1(oN)
zyunfy (1) - - - unfy (on)unfy (w)
unfy(By) - - - unfy (By)]

[unfp_1(u1) -+ unfp_1(un)z-
unfp_1(u1) - - unfp_1(un)
unfy_1(vo)unfp—1(01) - - - unfp_1(vN)
zyunfy_1(01) - - unfp_1(on)unfp_1(w)
unfp—1(B1) - -unfp_1(Bg)]
[(f.Y)z'unfp_1(w)unfp_1(B1) - - - unfp_1(By)]
[unfp_1(u1...uNvo ... 0N)
unfy_1(w)unfy_1(B1) - - - unfp_1(By)]
[unfy—1(02)]

(A, X)
=(A,X)
=(A,X)

=(A,X)

i)skip(As X)

_)skip2 (A’ X)
=(A,X)

=(A,X)
(ii) Otherwise, we have the summary
o1 = ((f,Y)o")uB; ... B

and thus unfy (o1) = (f, Y)unf) (o2). According
to Lemma 8.5, we obtain the derivation

(A X)[01] Sskip (A X)[(f, Y)unfp-1(o2)].

O

H ADDITIONAL MATERIAL FROM SECTION 9
H.1 Proofs for NFA lower bound

Lemma H.1. There is an derivation of G that produces the word
3exp3(n)

ProoF. Let a; - -- am € X, be the unique word accepted by all
Aj, with m = 2" For all by, ..., by, € {0,1}, we write by - - - by, for
the number in [0, 2™ — 1] whose binary representation over m bits
is by - - - by, where by is the least significant digit.

We show that for all by,...,b,, € {0,1},if M = by - - - by, then

Z(a1,b1) -+ - (am, bm) L produces azzm

.....

of A(a1,b1) - - (am, bm) L. This is because a1 - - - ay, is accepted by
all A;. We are left with

Al(ay, by) - - (@m, bm) L1A[(a1, b1) - - - (@m, bm) L].

If b; = 1 for all i, then we can apply A(aj, 1) — A for each i and

then AL — F and F — a to obtain aa, which is what we want

2

2M-M
since we would then have M = 2™ — 1 and thus a? =a“.

_M, by induction on 2™ — M.

2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667

2668

2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Otherwise, let j be the least index such that b; = 0. It suffices
to show that A(a1, b1) - - - (@m, bm) L produces a? ™. We have
M+1= 1j_1@bj+1 by +1= Oj_l1bj+1 s by

We can apply:

o A(aj, 1) — Afor each i < j until we get
A(aj, 0)(atjr1,bje1) - - (Am, bn) L,
o then apply A(a;,0) — Band B — Z(aj, 1) to get
Z(aj,) (ajr1,bjr1) -+ (om, bm) L,
e and Z — Z(«a;,0) for each i < j, in decreasing order, until

we obtain
Z(a1,0) -+ - (aj—1,0) (), 1) (@j+1, bj1) - - (@m, bm) L, which
produces a2t M by induction hypothesis.

The induction is proved. To obtain the lemma, it suffices to start
with S, apply S — Z1 and then Z — Z(a;,0) for each i € [1,n]
in decreasing order. We get Z (a1, 0) - - - (an, ©), which produces
a®xps(n) by applying the induction with M = 0. O

LEMMA H.2. For all E € Ny, and z € I, the language Ly (Ez)
contains at most one word. In particular, L(Gr,) is empty or a singleton.

Proor. We prove this for each E € N, one by one.

(1) We first observe that from a configuration Zz there is al-
ways at most one rule which can lead to a complete deriva-
tion tree: if z does not contain L then L¢(Zz) = 0. If
z=(a1,b1) - (am, bm) L2 then:

B, Bn .
o if m # 2" we cannot apply Z 127", D since z has
no prefix accepted by all B;. Furthermore, if m > 2™,
we have Ly(Zz) = 0 since we can only push more

pairs (@, @) on the stack, so we will never be able to

Bi,...Bn
apply Z = p.

e if m = 2" then we cannot apply Z — Z(«,0), by
the previous item, as we would obtain more than 2"
symbols before the first L.

(2) Note that B, D and S all have a single rule. Meanwhile, A
has several but the top stack symbol determines which rule
can be applied. In conclusion, from every configuration Ez,
there is at most one rule that can be applied to lead to a
complete derivation. As a consequence, the language of G
contains at most one word.

O

By combining the two previous statements we conclude that
Gn recognizes the singleton language {a®Ps (M} while having size
only quadratic in n. A trim NFA for this language must be acyclic,
as otherwise it would recognize an infinite language, and thus have
at least exps(n) states.

H.2 Computational hardness

We now use methods from [58] to derive Theorem 3.5 and co-3-NEXP-
hardness in Theorem 3.6 from our construction above. For this, we
rely on the notion of A(f) language classes [58], which requires
some terminology. A transducer is a tuple T = (Q, 2, T, E, qo, F),
where Q is a finite set of states, X is its input alphabet, T is its output
alphabet, E C Q X ¥* X T'* x Q is its finite set of edges, qo € Q is its
initial state, and F C Q is its set of final states. It describes a relation

24

Anon.

R(7) € *xT*, namely the set of all pairs (u, v) for which there are
decompositions u = ug - - - up and v = v1 - - - vy, states qo, q1, - . ., qn,
and edges (g;j—1,ui,v;,qi) € Efori=1,...,nwith g, € F.Foralan-
guage L C 3", we write 7 (L) ={v € I'* | Ju € L: (u,0) € R(7T)}.

A language class is a class of formal languages, together with
some means to represent them, such as grammars or automata. A
language class C is an effective full trio if for a given language L
from C, we can effectively compute a description of 7 (L). Now
suppose f: N — N is an amplifying function meaning there is
a polynomial p such that f(p(n)) > f(n)2. Then, C is said to be
A(f) if (i) computing 7 (L) can be done in polynomial time and
(ii) given n, one can compute a description of the language {a/ (")}
in polynomial time.

In these terms, Theorem 3.2 tells us that the class of indexed lan-
guages (represented by indexed grammars) are A(exp3): Applying
rational transductions to indexed languages is well-known to be
possible in polynomial time (see, e.g. [56, Section 3.1]).

ProrosiTION H.3. The indexed languages (represented by indexed
grammars) are A(exps).

We will also need the notion of simple substitutions. For alpha-
bets 2, T, a substitution is a map o: £ — 2T that replaces each
letter in ¥ by a language over I'. For language L C %, the language
o(L) is defined in the obvious way. The substitution o is said to
be simple for L C 2* if ¥ C T and there is a letter a € ¥ such that
o(a’) = {d’} foreach a’ € 3\ {a}. We say that a language class C is
closed under simple subsititutions if for any given L from C, and any
simple substitution o for L, the language o (L) belongs to C, and a
representation can be computed in polynomial time. It is easy to see
that the indexed languages are closed under simple substitutions. In
[58, Theorem 15], it is shown that downward closure inclusion and
equivalence are both coNTIME(¢)-hard for any language class that
is A(t) and closed under simple substitutions. Hence, Theorem 3.2
implies co-3-NEXP-hardness of downward closure inclusion and
equivalence.

H.3 Proofs for DFA lower bound

Here, we prove a slightly more general result than discussed in
Section 9: We show that for any A(f) language class, DFAs for
downward closures of languages with polynomial-sized descrip-
tions require at least size 2f (n), provided that the language class is
also closed under simple subsitution:

ProrosiTioN H4. Let f: N — N be a function such that a lan-
guage class C is A(f) and let C be closed under simple substitutions.
Then there is a family languages (L,) n>1 with polynomial description
sizes such that any DFA for Ly requires at least 2/ (") states.

Proor. We claim that we can construct a representation of
Ly ={uo |u0€{0,1}", |ul = |o| = f(n), u # v}

in polynomial time. Note that a DFA for L, | requires at least 2f (n)
states: After reading distinct prefixes u, u” € {0, 1}* of length f(n),
the DFA must enter distinct states, as otherwise, it would accept
uu, which does not belong to L.

To construct L, for given n € N, we begin by building a represen-
tation of {af(")}. Using a transducer, we then insert a single occur-
rence of a letter b into every word, and then substitute this b with

2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783

2784

2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842

The complexity of downward closures of indexed languages

{baf(W¢}. This yields the language {a"bafWcas | r+5 = f(n)}.
Using another transducer, we can remove two occurrences of a
within a” and a® to obtain {a"baf (M cas | r+s = f(n)—2}. Afinal
transducer then replaces (i) each a with @ or 1 and (ii) b and c by
distinct letters in {9, 1}. This results in the language L.]

25

Conference acronym *XX, June 03-05, 2018, Woodstock, NY

Now, Proposition H.4 and Proposition H.3 together directly imply
Theorem 3.5.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900

	Abstract
	1 Introduction
	2 Preliminaries
	3 Main results
	4 Productiveness
	5 The stack monoid
	6 Pumping and skipping
	7 Summarizing stack contents
	8 Building the context-free grammar
	9 Lower bounds
	10 Conclusion
	References
	A Normalising indexed grammars
	B Additional material from Section 3
	C Additional material from Section 4
	C.1 Proof of Lemma 4.3
	C.2 Proof of Lemma 4.4

	D Additional material from Section 5
	D.1 Proof of Lemma 5.1
	D.2 Proof of Lemma 5.2
	D.3 Proof of Lemma 5.3

	E Additional material from Section 6
	E.1 Proof of Proposition 6.1

	F Additional material from Section 7
	F.1 Proof of Lemma 7.3

	G Additional material from Section 8
	G.1 Proof of Proposition 8.2
	G.2 Proof of Proposition 8.3
	G.3 Proof of Lemma 8.5
	G.4 Proof of Lemma 8.6
	G.5 Proof of Lemma 8.7

	H Additional material from Section 9
	H.1 Proofs for NFA lower bound
	H.2 Computational hardness
	H.3 Proofs for DFA lower bound

