
ar
X

iv
:2

20
4.

12
40

9v
5

 [
cs

.L
O

]
 1

7
Ju

n
20

25

DISTRIBUTED CONTROLLER SYNTHESIS FOR DEADLOCK

AVOIDANCE

HUGO GIMBERT a, CORTO MASCLE b, ANCA MUSCHOLL b, AND IGOR WALUKIEWICZ a

aUniversité de Bordeaux, CNRS, France
e-mail address: hugo.gimbert@labri.fr, igw@labri.fr

bUniversité de Bordeaux, France and MPI-SWS Kaiserslautern, Germany
e-mail address: cmascle@mpi-sws.org

cUniversité de Bordeaux, France
e-mail address: anca@labri.fr

Abstract. We consider the problem of distributed control for systems synchronizing over
locks. The goal is to find a local controller for each of the processes so that global deadlocks
of the system are avoided. Without restrictions this problem is shown to be undecidable,
even for a fixed number of processes and locks. We identify two restrictions that help to
recover decidability. The first one is that each process can use at most two locks. The
control problem is shown to be ΣP

2 -complete in this case, and even in Ptime under some
additional assumptions. The paradigmatic example of the dining philosophers satisfies
these assumptions. The second restriction is the nested usage of locks. In this case the
distributed control problem is shown to be NExpTime complete. The drinking philosophers
problem falls in this case.

1. Introduction

Automatic synthesis of distributed systems has a big potential since such systems are
difficult to write, test, or verify. The state space and the number of different behaviors
grow exponentially with the number of processes. This is where distributed synthesis can
be more useful than centralized synthesis, because an equivalent, sequential system may
be too big to handle. The other important point is that distributed synthesis produces
by definition a distributed system, while a central controller may not be implementable
on a given distributed architecture. Unfortunately, very few settings are known for which
distributed synthesis is decidable, and those we know of require very high complexity.

Distributed synthesis was first formulated in a synchronous setting by Pnueli and
Rosner [PR90]. Subsequent research showed that, essentially, the only decidable architec-
tures are pipelines, where each process can send messages only to the next process in the
pipeline [KV01,MT01,FS05]. In addition, the complexity is non-elementary in the size of
the pipeline. These negative results motivated later a strand of work around distributed
controller synthesis in the setting of Zielonka automata, in particular synthesis with so

Key words and phrases: distributed synthesis, lock synchronisation, deadlock avoidance.

Preprint submitted to
Logical Methods in Computer Science

© H. Gimbert, C. Mascle, A. Muscholl, and I. Walukiewicz
CC⃝ Creative Commons

https://orcid.org/0000-0003-1227-9718
https://orcid.org/0009-0007-7976-7480
https://orcid.org/0000-0002-8214-204X
https://orcid.org/0000-0001-8952-7201
http://creativecommons.org/about/licenses
https://arxiv.org/abs/2204.12409v5

2 H. GIMBERT, C. MASCLE, A. MUSCHOLL, AND I. WALUKIEWICZ

called causal memory. Here the problem was shown decidable for co-graph action alpha-
bets [GLZ04], and for tree architectures of processes [GGMW13,MW14]. Yet the complexity
can be again non-elementary, e.g. in the depth of the tree representing the acyclic architecture.
Worse, it has been recently established that distributed synthesis with causal memory is
undecidable for unconstrained process architectures [Gim22]. Distributed synthesis for (safe)
Petri nets [FO17] has encountered a similar line of limited advances, and due to [Gim22], is
undecidable in the general case, too, since it is inter-reducible to distributed synthesis for
asynchronous automata [BFHH19]. This situation raised the question if there is any natural
setting for distributed synthesis that covers some standard examples of distributed systems,
and is manageable algorithmically.

In this work we consider distributed systems with a weaker synchronization mechanism,
namely lock sharing. Here each process can take or release a lock from a pool of locks.
Locks are a classic concept in distributed systems, and one of the most frequently used
synchronization mechanism in concurrent programs. We formulate our results in a control
setting rather than synthesis – this avoids the need for a specification formalism. The
objective is to find a local strategy for each process so that the global system does not
deadlock. Note that local strategies are purely local: they do not involve any information
exchange as in the case of synthesis with causal memory (Zielonka automata or Petri nets).
In this sense the synthesis problem resembles the Pnueli and Rosner framework, but for the
asynchronicity of processes.

For unrestricted lock-sharing systems we hit again an undecidability barrier, as for the
models discussed above. Undecidability was known already for the verification of systems
where each process is modeled as a pushdown automaton [KIG05], since unrestricted usage
of locks allows for inter-process communication. Yet, we are able to find quite interesting
restrictions making distributed control synthesis for lock-sharing systems decidable, and even
algorithmically manageable. The first restriction is to limit the number of locks available to
each process to two. The standard example is the dining philosophers problem, where each
philosopher has two locks corresponding to the left and the right fork. It is important to note
that we do not limit the total number of locks in the system. We show that for such systems
the complexity of the synthesis problem is at the second level of the polynomial hierarchy.
The problem gets even simpler when we restrict the local strategies such that they cannot
block the process when all locks are available. We call such strategies locally live. In this
case we obtain an NP-algorithm, and even a Ptime algorithm when the access to locks is
exclusive. The latter means that once a process tries to acquire some lock it cannot switch to
another action before getting it. In other words, a process that tries to get a lock is blocked
as long as the lock is not available. The second restriction is nested lock usage. This is a
very common restriction in concurrent programs [KG06], sometimes enforced syntactically
by associating locks with program blocks. Nested lock usage simply says that acquiring and
releasing locks should follow a stack discipline. Verification of concurrent programs with
nested locks has been shown decidable in [KIG05,KG06], and this triggered further work on
extensions of lock usage policies [Kah09,BCMV13,LMSW13]. In distributed computing,
the drinking philosophers setting [CM84] is an example of nested lock usage. We show that
in this case the distributed synthesis problem is Nexptime-complete, where the exponent
in the algorithm depends only on the number of locks available to the process. A decision
procedure for the verification of such systems, based on similar ideas on lock orderings,
appeared already in [KIG05]. We study here a more general problem, namely distributed

DISTRIBUTED CONTROLLER SYNTHESIS FOR DEADLOCK AVOIDANCE 3

control. Our results are stated for finite-state processes only, in order to keep the setting
simple, but they hold for pushdown processes as well.

As mentioned above, we formalize the distributed synthesis problem as a control
problem [RW89]. A process is given as a transition graph where transitions can be local
actions, or acquire/release of a lock. Some transitions are controllable, and some are not.
A controller for a process decides which controllable transitions to allow, depending on
the local history. In particular, the controller of a process does not see the states of other
processes. Our techniques are based on analyzing patterns of taking and releasing locks. In
decidable cases there are finite sets of patterns characterizing potential deadlocks.

The notion of patterns resembles locking disciplines [ELM+16], which are commonly
used to prevent deadlocks. An example of a locking discipline is “take the left fork before
the right one” in the dining philosophers problem. Our results allow to check if a given
locking discipline may result in a deadlock, and in some cases even list all deadlock-avoiding
locking disciplines.

To summarize, the main results of our work are:

• ΣP
2 -completeness of the deadlock avoidance control problem for systems where each process

has access to at most 2 locks (2LSS for short).
• An NP algorithm for 2LSS with locally live strategies.
• A Ptime algorithm for 2LSS with locally live strategies and exclusive lock access.
• A Nexptime algorithm and the matching lower bound for lock-sharing systems with
nested lock usage.
• Undecidability of the deadlock avoidance control problem for systems with unrestricted
access to locks (with fixed number of processes and locks).

Related work. Distributed synthesis is an old idea motivated by Church’s synthesis
problem [Chu57]. Actually, the logic CTL has been proposed with distributed synthesis in
mind [CE81]. Given this long history, there are relatively few results on distributed synthesis.
Three main frameworks have been considered: synchronous networks of input/output
automata, asynchronous automata, Petri games.

The synchronous synthesis model has been proposed by Pnueli and Rosner [PR89,
PR90]. They established that controller synthesis is decidable for pipeline architectures and
undecidable in general. The undecidability result holds for very simple architectures with
only two processes. Subsequent work has shown that in terms of network shape pipelines
are essentially the only decidable case [KV01,MT01,FS05]. Several ways to circumvent
undecidability have been considered. One was to restrict to local specifications, specifying
the desired behavior of each automaton in the network separately. Unfortunately, this does
not extend the class of decidable architectures substantially [MT01]. A furthergoing proposal
was to consider only input-output specifications. A characterization, still very restrictive, of
decidable architectures for this case is given in [GSZ09].

The asynchronous (Zielonka) automaton setting was proposed as a reaction to these
negative results [GLZ04]. The main hope was that causal memory helps to prevent unde-
cidability arising from partial information, since the synchronization of processes in this
model makes them share information. Causal memory indeed allowed to get new decidable
cases: co-graph action alphabets [GLZ04], connectedly communicating systems [MTY05],
and tree architectures [GGMW13,MW14]. There is also a weaker condition covering these
three cases [Gim17]. This line of research suffered however from a very recent result showing
undecidability in the general case [Gim22].

4 H. GIMBERT, C. MASCLE, A. MUSCHOLL, AND I. WALUKIEWICZ

Distributed synthesis in the Petri net model, called Petri games, has been proposed
recently in [FO17]. The idea is that some tokens are controlled by the system and some by
the environment. Once again causal memory is used. Without restrictions this model is
inter-reducible with the asynchronous automata model [BFHH19], hence the undecidability
result [Gim22] applies. The problem is Exptime-complete for one environment token and
arbitrary many system tokens [FO17]. This case stays decidable even for global safety
specifications, such as deadlock, but undecidable in general [FGHO22]. As a way to
circumvent the undecidability, bounded synthesis has been considered in [Fin15,HM19],
where the bound on the size of the resulting controller is fixed in advance. The approach is
implemented in the tool AdamSYNT [GHY21].

The control formulation of the synthesis problem comes from the control theory commu-
nity [RW89]. It does not require to talk about a specification formalism, while retaining
most useful aspects of the problem. A frequently considered control objective is avoidance
of undesirable states. In the distributed context, deadlock avoidance looks like an obvious
candidate, since it is one of the most basic desirable properties. The survey [Wal21] discusses
the relation between the distributed control problem and Church synthesis. Some distributed
versions of the control problem have been considered, also hitting the undecidability barrier
very quickly [RW92,Tri04,Thi05,AW07].

We would like to mention two further results that do not fit into the main threads outlined
above. In [WLK+09] the authors consider a different synthesis problem for distributed
systems: they construct a centralized controller for a scheduler that would guarantee absence
of deadlocks. This is a very different approach to deadlock avoidance. Another recent
work [BBB+20] adds a new dimension to distributed synthesis by considering communication
errors in a model with synchronous processes that can exchange their causal memory. The
authors show decidability of the synthesis problem for 2 processes.

Outline of the article. In the next section we define systems with locks, strategies, and
the control problem. We introduce locally live strategies as well as the 2-lock, exclusive,
and nested locking restrictions. This permits to state the main results of the article. The
following three sections consider systems with the 2-lock restriction. First, we briefly give
intuitions behind the Σp

2-completeness in the general case. Section 3.2 presents an NP
algorithm for 2LSS with locally live strategies. Section 3.3 gives a Ptime algorithm for the
exclusive case with locally live strategies. Next in Section 4 we consider systems with nested
locks, and show that the problem is NExpTime-complete in this case. Finally, in Section 5
we prove that without any restrictions the problem is undecidable.

This paper is an extended version of [GMMW22].
To help the reader we use the LaTeX package knowledge that hyperlinks definitions

with their usage.

2. Preliminaries

A lock-sharing system is a parallel composition of processes sharing a pool of locks. Processes
do not communicate, but they may acquire or release locks from the pool. Some transitions
of processes are uncontrollable, meaning that the environment decides if such a transition is
taken. The goal is to find a local strategy for each process so that the system never deadlocks.
The challenge is that the strategies are purely local, in the sense that each process only
knows its previous actions.

https://ctan.org/pkg/knowledge?lang=en

DISTRIBUTED CONTROLLER SYNTHESIS FOR DEADLOCK AVOIDANCE 5

hungry

think
left

right

acqtp+1

acqtp

acqtp

acqtp+1

reltp

reltp+1

Figure 1: A dining philosopher p. Dashed transitions are controllable.

A process p is an automaton Ap = (Sp,Σp, Tp, δp, initp) with a set of locks Tp that it

can acquire or release. The transition function δp : Sp × Σp
·→ Op(Tp)× Sp associates with

a state from Sp and an action from Σp an operation on some lock and a new state; it is a
partial function. The lock operations consist in acquiring (acqt) or releasing (relt) some
lock t from Tp, or doing nothing: Op(Tp) = {acqt, relt | t ∈ Tp} ∪ {nop}. Figure 1 gives an
example. For simplicity we write action names in our examples only for nop, otherwise we
just write the lock operation of the action.

A local configuration of process p is a state from Sp together with the locks p currently

owns: (s,B) ∈ Sp × 2Tp . The initial configuration of p is (initp, ∅), namely the initial state

and p owns no locks. A transition between two local configurations (s,B)
(a,op)−−−→p (s′, B′)

exists when δp(s, a) = (op, s′) and one of the following holds:

• op = nop and B = B′;
• op = acqt, t /∈ B and B′ = B ∪ {t};
• op = relt, t ∈ B, and B′ = B \ {t}.
A local run (a1, op1)(a2, op2) . . . (an, opn) of Ap is a finite sequence over Σp×Op(Tp) such that

there exists a sequence of local configurations (initp, ∅) = (s0, B0)
(a1,op1)−−−−−→p (s1, B1)

(a2,op2)−−−−−→p

. . . (sn, Bn). While the run is determined by the sequence of actions, we prefer to make lock
operations explicit. We write Runsp for the set of local runs of Ap. We call a local run
neutral if it starts and ends with the same set of locks.

A lock-sharing system (LSS) S = ((Ap)p∈Proc ,Σ
s,Σe, T) is a set of processes together

with a partition of actions between controllable actions from Σs and uncontrollable actions
from Σe, and a set T of locks. We write T =

⋃
p∈Proc Tp, for the set of all locks. Controllable

and uncontrollable actions belong to the system and to the environment, respectively.
We write Σ =

⋃
p∈Proc Σp for the set of actions of all processes and require that (Σs,Σe)

partitions Σ. The sets of states and action alphabets of processes are disjoint: Sp ∩ Sq = ∅
and Σp ∩ Σq = ∅ for all p ̸= q. The sets of locks are not disjoint, in general, since processes
may share locks.

Example 2.1. The dining philosophers problem can be formulated as a control problem for a
lock-sharing system S = ((Ap)p∈Proc ,Σ

s,Σe, T). Let Proc = {1, . . . , n} and T = {t1, . . . , tn}
as the set of locks. For every p ∈ Proc, process Ap is as in Figure 1, with the convention
that tn+1 = t1. Actions in Σs are marked by dashed arrows. These are controllable actions.
The remaining actions are in Σe. Once the environment makes a philosopher p hungry, p
has to get both the left (tp) and the right (tp+1) fork to eat. She may however choose the
order in which she takes them; actions left and right are controllable.

6 H. GIMBERT, C. MASCLE, A. MUSCHOLL, AND I. WALUKIEWICZ

A global configuration of S is a tuple of local configurations C = (sp, Bp)p∈Proc provided
the sets Bp are pairwise disjoint: Bp ∩ Bq = ∅ for p ̸= q. This is because a lock can be
taken by at most one process at a time. The initial configuration is the tuple of initial
configurations of all processes.

The semantics of such systems is asynchronous, as a step of computation is simply

defined as one process taking a local transition: C
(a,op)−−−→ C ′ with C = (sp, Bp)p∈Proc and

C ′ = (s′p, B
′
p)p∈Proc if for some process p, (sp, Bp)

(a,op)−−−→p (s′p, B
′
p) and (sq, Bq) = (s′q, B

′
q) for

every q ̸= p. A global run is a sequence of transitions between global configurations. Since
our systems are deterministic we usually identify a global run by the sequence of transition
labels. Observe that any action name determines the process that executes it, since the Σp

are disjoint. A global run w determines a local run of each process: w|p is the projection of
w on Σp.

A local strategy σp says which actions p can take depending on its local run so far.
Moreover, it cannot block environment actions. Formally, for every u ∈ Runsp define
out(u) ⊆ Σp as the set of actions that are possible after u. Then σp : Runsp → 2Σp is
such that σp(u) ⊆ out(u) provided that (Σe ∩ out(u)) ⊆ σp(u). A control strategy for a
lock-sharing system is a tuple of local strategies, one for each process: σ = (σp)p∈Proc .

A local run u of p respects σp if for every non-empty prefix v (a, op) of u, we have
a ∈ σp(v). Observe that local runs are affected only by the local strategy of that process,
there is no inter-process communication. A global run w respects σ if for every process p,
the local run w|p respects σp. We often say just σ-run, instead of “run respecting σ”.

As an example consider the system for two philosophers from Example 2.1. Suppose that
both local strategies always say to take the left transition. So hungry1, left1, acq1t1 , acq

1
t2

is a local run of process 1 respecting the strategy; similarly hungry2, left2, acq2t2 , acq
2
t1

for
process 2. (We use superscripts to indicate the process doing an action.) The global
run hungry1, hungry2, left1, left2, acq1t1 , acq

2
t2

respects the strategy. It deadlocks, since each
philosopher needs a lock the other one owns.

Definition 2.2 (Deadlock avoidance control problem). A σ-run w leads to a deadlock in σ
if w cannot be prolonged to a σ-run. A control strategy σ is winning if no σ-run leads to
a deadlock in σ. The deadlock avoidance control problem is to decide if for a given system
there is some winning control strategy.

In this work we consider several variants of the deadlock avoidance control problem.
Maybe surprisingly, we get more efficient algorithms when we exclude strategies that can
block a process by itself:

Definition 2.3 (Locally live strategy). A local strategy σp for process p is locally live if
every σp-run u of p can be prolonged: there is some b ∈ Σp and op ∈ Op(Tp) such that
u (b, op) is a σp-run, too. A strategy σ is locally live if each of its associated local strategies
is so.

In other words, a locally live strategy guarantees that a process does not block if it
runs alone according to σp. Back to Example 2.1: a strategy always offering one of the left
or right actions is locally live. A strategy that offers none of the two is not. Observe that
blocking one process after the hungry action is a very efficient strategy to avoid a deadlock,
but it is not the intended one. This is why we consider locally live to be a desirable property
rather than a restriction.

DISTRIBUTED CONTROLLER SYNTHESIS FOR DEADLOCK AVOIDANCE 7

Note that being locally live is not exactly equivalent to a strategy always proposing
at least one transition. This is because with our definition, a process blocks if it tries to
acquire a lock that it already owns, or to release a lock it does not own. But it becomes
equivalent thanks to the following:

Remark 2.4. We can assume w.l.o.g. that LSS are lock-aware: by this we mean that every
process knows from its local state which locks it holds, and it never tries to acquire a lock that
it already owns, or release a lock that it does not own. Note that enforcing lock-awareness
does not compromise the complexity results when processes can access only a fixed number
of locks. We will not use lock-awareness in Section 4, where a process can access arbitrarily
many locks (in nested fashion).

Without any restrictions our synthesis problem is undecidable. The proof of the theorem
below is in Section 5.

Theorem 2.5. The deadlock avoidance control problem for arbitrary LSS is undecidable
(even when the number of locks and processes is fixed).

We propose then two interesting cases when the control problem becomes decidable.
In the first case each process accesses at most two different locks. In the following

definition, we require each process to use exactly two locks, as it is more convenient to avoid
case distinctions on the number of locks used by a process. This is not more restrictive as
we can always add some dummy locks, which are never used.

Definition 2.6 (2LSS). A process Ap = (Sp,Σp, Tp, δp, initp) uses two locks if |Tp| = 2. A
system S = ((Ap)p∈Proc ,Σ

s,Σe, T) is a 2LSS if every process uses two locks.

Note that in the above definition we do not bound the total number of locks in the
system, just the number of locks per process. The process from Figure 1 is a 2LSS. Our first
main result says that the control problem is decidable for 2LSS.

Theorem 2.7. The deadlock avoidance control problem for 2LSS is Σp
2-complete.

The second main result says that restricting to locally live strategies helps to obtain a
quite tractable case:

Theorem 2.8. The deadlock avoidance control problem for 2LSS is in NP when strategies
are required to be locally live.

We do not know if the above problem is in Ptime. We get a Ptime algorithm under
one more assumption:

Definition 2.9 (Exclusive systems). A process p is exclusive if for every state s ∈ Sp: if s
has an outgoing transition with some acqt operation then all outgoing transitions have the
same acqt operation. A system is exclusive if all its processes are.

Example 2.10. The process from Figure 1 is exclusive, while the one from Figure 2 is not.
The latter has a state with one acqtp+1

and one reltp outgoing transition. Observe that in

this state the process cannot block, and has the possibility to take a lock at the same time.
Exclusive systems do not have such a possibility, so their analysis is much easier.

Theorem 2.11. The deadlock avoidance control problem for exclusive 2LSS is in Ptime,
when strategies are required to be locally live.

8 H. GIMBERT, C. MASCLE, A. MUSCHOLL, AND I. WALUKIEWICZ

hungry

think
left

right
acqtp+1

acqtp

acqtp acqtp+1

reltp

reltp+1 reltp
reltp+1

Figure 2: A flexible philosopher p. She can release a fork if the other fork is not available.

Without local liveness, the problem for exclusive 2LSS remains Σp
2-hard.

The second case we consider is a common restriction on the usage of locks:

Definition 2.12 (Nested-locking). A local run is nested-locking if the order of acquiring
and releasing locks in the run respects a stack discipline, i.e., the only lock a process can
release is the last one it acquired.

A process is nested-locking if all its local runs are, and an LSS is nested-locking if all its
processes are.

Note that none of the processes in Figures 1 and 2 are nested-locking. However, both
can be made nested-locking by remembering in the local state in which order the locks were
obtained. With this information one can easily determine if an LSS is nested-locking.

Theorem 2.13. The deadlock avoidance control problem for nested-locking LSS is Nexptime-
complete.

3. Two locks per process

We describe how to solve the deadlock avoidance control problem for 2LSS, so for systems
where every process uses at most two locks. We present the three results announced in the
previous section, namely, Theorems 2.7, 2.8, and 2.11.

The general case, treated in Theorem 2.7, puts no restriction on strategies or on the
system, besides being a 2LSS. The main idea is that each winning strategy can be decomposed
into local strategies, each summarized by an object of polynomial size, called its behavior. We
show that from a computational complexity perspective we cannot do better than guessing
these behaviors to solve the problem.

The next case is when we require strategies to be locally live. With such strategies, a
process can only block if all locks it asks for are taken forever. This simplifies the analysis
and enables us to reason on a graph because of the two-locks restriction.

Finally, we consider the restriction of the deadlock avoidance problem to exclusive
systems, still with locally live strategies. Here, whenever a process can execute an action
acquiring a lock it is the only thing it can do. This means that a process gets blocked
whenever it tries to get a certain lock that is not available. Recall that the system in Figure 2
is not exclusive, whereas the one in Figure 1 is so.

Throughout this section we fix a 2LSS S = ((Ap)p∈Proc ,Σ
s,Σe, T) over the set of

processes Proc. We also assume that the 2LSS is lock-aware (cf. Remark 2.4). We also fix a
control strategy σ = (σp)p∈Proc .

DISTRIBUTED CONTROLLER SYNTHESIS FOR DEADLOCK AVOIDANCE 9

The three following subsections present the three cases.

3.1. The general case of 2LSS. We will use summaries of local runs through so-called
patterns, that describe the most recent lock operations. We will see later that this information
is sufficient to decide if the strategy is winning (Lemma 3.3). Informally, a pattern of a local
run of process p in a 2LSS describes which of the four following situations are possible for p
at the end of its run:

• p owns both locks;
• p owns no lock;
• p owns exactly one of its locks, say t, and either
– its last operation on locks was acqt; or
– the last operation on locks was relt′ with t ̸= t′.

Before defining patterns formally we introduce the runs for which we need them, which
are runs that lead potentially to deadlocks:

Definition 3.1 (Risky run). Consider a local σ-run u of a process p. We say that u is
σ-risky if after executing u all transitions allowed by σ are acq transitions1. We simply write
risky when σ is clear from the context.

We write Ownsp,σ(u) for the set of locks owned by p after u, or simply Ownsp(u) when
σ is clear from context. We write Blocksp,σ(u) = {t : acqt ∈ σp(u)}, or simply Blocksp(u)
when σ is clear from context.

Note that if a σ-run u is risky and the strategy σ is locally live, then Blocksp(u) ̸= ∅; if
σ is not locally live then Blocksp(u) can be empty. If the run is not risky then the process
can do some local action or a release action.

We can now define patterns formally.

Definition 3.2 (Patterns). Consider a risky local σ-run u of process p. We say that u has
a strong pattern Ownsp(u)=⇒Blocksp(u) if Ownsp(u) ̸= ∅ and the last operation on locks in
u is a release. Otherwise we say that u has a weak pattern Ownsp(u)99KBlocksp(u). We also
write Ownsp(u) −−→ Blocksp(u) if we do not specify if a pattern is strong or weak.

We say that σ admits a pattern Ownsp −−→ Blocksp (Ownsp=⇒Blocksp, Ownsp99KBlocksp,
resp.) for process p if there exists some risky σ-run u of p with Ownsp = Ownsp(u),
Blocksp = Blocksp(u) and this kind of pattern (strong, weak, resp.).

We write Pσ
p for the set of patterns for p admitted by σ. We write Pσ = (Pσ

p)p∈Proc and
denote Pσ as the behavior of σ.

We will refer to patterns of process p as Ownsp −−→ Blocksp, in order to stress the
name of the process, and we always assume that Ownsp ∩ Blocksp = ∅. Since in a 2LSS any
process uses two locks, a strong pattern Ownsp=⇒Blocksp for p is such that Ownsp = {t1},
and Blocksp is either {t2} or ∅, where t1, t2 are the two locks used by p. For example, the
2LSS in Figures 1 and 2 admit only weak patterns. Consider now the 2LSS in Figure 3.
If the strategy of process pi takes only the lower branch, then its patterns are ∅99K{xi},
{xi}99K{xi} and {xi}=⇒∅. If the strategy allows both branches then we add another strong
pattern, {xi}=⇒∅.

The next lemma characterizes winning strategies in terms of patterns.

1A particular case is where after u no transitions are possible at all.

10 H. GIMBERT, C. MASCLE, A. MUSCHOLL, AND I. WALUKIEWICZ

Lemma 3.3. Let σ = (σp)p∈Proc be a strategy and Pσ = (Pσ
p) its behavior. Then σ is not

winning if and only if for every p there is some pattern Ownsp −−→ Blocksp in Pσ
p such that

all conditions below hold:

•
⋃

p∈Proc Blocksp ⊆
⋃

p∈Proc Ownsp,
• the sets Ownsp are pairwise disjoint,
• there exists a total order < on T such that for all p, if p admits a strong pattern
{t}=⇒Blocksp then t < t′, where t′ is the other lock used by p.

Proof. Suppose that σ is not winning, let u be a global σ-run ending in a deadlock, and for
each process p let up be the corresponding local run.

For every p, the local run up has to be risky, otherwise up could be extended into a
longer run consistent with σ. Thus up has a pattern Ownsp −−→ Blocksp in Pσ

p .
We check that these patterns meet all requirements of the lemma. Clearly as we are in

a deadlock, the only actions available to each process acquire locks that are already taken,
hence the first condition is satisfied. Furthermore, no two processes can own the same lock,
implying the second condition. Finally, let < be a total order on locks compatible with the
order in u between the last operation on each lock, that is: t < t′ if the last operation on
t in u is before the last one on t′. If one of t, t′ is untouched throughout the run then the
order is taken arbitrarily.

Consider a process p using locks t, t′ and such that up has a strong pattern {t}=⇒Blocksp.
So up is of the form u1(a, acqt)u2(b, relt′)u3 with no action on t in u2 or u3. Hence t < t′

since the last action on t is before the last action on t′.
We now prove the other direction of the lemma. Suppose that for each p there is a

pattern Ownsp −−→ Blocksp in Pσ
p such that those patterns satisfy all three conditions of the

lemma. Let < be a total order on locks witnessing the third condition.
By definition, for all p there exists a risky local run up with Ownsp = Ownsp(up) and

Blocksp = Blocksp(up). We show now the existence of a global run u with up = u|p for every
p ∈ Proc. We start by executing one by one, in some arbitrary order, all the up such that
Ownsp = ∅. After executing each such run, all locks are free, hence we can execute the next
one. At the end all locks are still free.

For all p such that Ownsp = {t} and Ownsp99KBlocksp is weak, we can write up as
up1(a, acqt)u

p
2 with up1 neutral and up2 not containing any operation on locks. We can execute

up1, which again leaves all locks free as it is neutral.
Next we consider all the processes p where up has a strong pattern {tp}=⇒Blocksp. We

execute all runs up according to the order <. This is possible, as for each such p we have
tp < t′p, where t′p is the other lock used by p. The order < guarantees that before executing
up all locks t ≥ tp are free. In particular, since tp and t′p are free, we can execute up.

At this point all locks are free except for locks tp of processes p with a strong pattern
{tp}=⇒Blocksp. We now come back to the up with weak patterns. We execute the remaining
parts of up, namely (a, acqt)u

p
2 as above. As up2 contains no operation on locks, we only need

t to be free to execute this run. As all Ownsq are disjoint, and all locks taken at that point
belong to some other Ownsq, t is free, hence all such runs can be executed.

Finally, the remaining runs up are the ones such that Ownsp = {t, t′} contains both
locks of p. As all Ownsp are disjoint, both t, t′ are free, hence up can be executed.

We have executed all local runs, therefore we reach a configuration where all processes
need some lock from

⋃
p∈Proc Blocksp to keep running, and all locks in

⋃
p∈Proc Ownsp are

taken. As
⋃

p∈Proc Blocksp ⊆
⋃

p∈Proc Ownsp, we have reached a deadlock.

DISTRIBUTED CONTROLLER SYNTHESIS FOR DEADLOCK AVOIDANCE 11

Thanks to Lemma 3.3, in order to decide if there is a winning strategy for a given system
it is enough to come up with a set of patterns Pp for each process p and show two properties:

• there exists a strategy σ such that Pσ
p ⊆ Pp for each process p;

• the sets of patterns Pp do not meet the conditions given by Lemma 3.3.

Note that in the first condition we only require an inclusion because by the previous
lemma, the less patterns a strategy allows, the less likely it is to create a deadlock.

We start by showing that given a set of patterns for each process, we can check the first
condition in polynomial time.

Lemma 3.4. Given a behavior (Pp)p∈Proc, it is decidable in Ptime whether there exists a
strategy σ such that for every p we have Pσ

p ⊆ Pp.

Proof. First of all recall that we only need to check for each p that there exists a local
strategy σp that does not allow any risky run of p with pattern not in Pp.

Let p ∈ Proc and Ap = (Sp,Σp, Tp, δp, initp) be its transition system. Recall that we
assume that Ap is lock-aware. We can do a bit more: in a state where p owns lock t1, we
store an additional bit of information saying whether p released its other lock t2 since the
last acquisition of t1. This way, the risky nature of a local run and its pattern depend only
on the state in which the run ends and the outgoing transitions. For instance if a state has
no outgoing transitions and is such that when reaching it p holds t1 and released t2 since
acquiring it, then the pattern of runs ending there is {t1}=⇒∅.

A local state is called bad if all its outgoing transitions have acquire operations, and
there is no subset of outgoing transitions that includes all uncontrollable such transitions
and that yields only patterns in Pp. Otherwise, the state is called good.

Clearly, a strategy σ satisfies Pσ
p ⊆ Pp iff all states reached by σp-runs are good.

To know whether there exists a local strategy σp such that all its patterns are in Pp

we proceed as follows. We iteratively delete bad states and all their ingoing transitions. If
one of those transitions is uncontrollable we declare its source state as bad (as reaching
that state would allow the environment to take that transition, leading us to a bad state).
Note that deleting transitions may create more bad states by reducing the choice of the
system. If we end up deleting initp, we conclude that there is no suitable local strategy.
Otherwise the subsystem we obtain has only good states, and it corresponds to a strategy
σp as desired.

Proposition 3.5. The deadlock avoidance control problem for 2LSS is decidable in ΣP
2 .

Proof. The algorithm first guesses a set of patterns Pp for each process p. Note that the
overall size of P is polynomial in |Proc|. By Lemma 3.4, we can then check in polynomial
time if there exists a strategy σ = (σp)p∈Proc with σp admitting only patterns in Pp. By
Lemma 3.3 we can determine in coNP whether σ is winning.

For the correctness of the algorithm observe that if there exists a winning strategy σ
then it suffices to guess its behavior Pσ. Conversely suppose the algorithm guessed a behavior
not meeting the requirements of Lemma 3.3. Then the strategy obtained by Lemma 3.4 is
winning.

Theorem 2.7. The deadlock avoidance control problem for 2LSS is Σp
2-complete.

Proof. The upper bound follows immediately from Proposition 3.5.
For the lower bound we reduce from ∃∀-SAT. Suppose that we are given a formula in

3-disjunctive normal form
∨s

k=1 αk, so each αk is a conjunction of three literals ℓk1 ∧ ℓk2 ∧ ℓk3

12 H. GIMBERT, C. MASCLE, A. MUSCHOLL, AND I. WALUKIEWICZ

over a set of variables {x1, . . . , xn, y1, . . . , ym}. The question is whether the formula φ =
∃x1 . . . ∃xn∀y1 . . . ∀ym,

∨s
k=1 αk is true.

We construct a 2LSS for which there is a winning strategy iff the formula is true. The
2LSS will use locks:

{tk | 1 ≤ k ≤ s} ∪ {xi, xi | 1 ≤ i ≤ n} ∪ {yj , yj | 1 ≤ j ≤ m} .

For each 1 ≤ i ≤ n we have a process pi for each existentially quantified variable, as
depicted in Fig. 3. In that process the system has to take both xi and xi, and then may
release one of them before being blocked in a state with no outgoing transitions. Similarly,
for each universally quantified variable we have a process qj , 1 ≤ j ≤ m, in which the
environment has to take yj or yj , and then it blocks.

For each clause αk we have a process p(αk) which just has one transition acquiring lock
tk towards a state with a local loop on it. Hence to block all those processes the environment
needs to have all tk taken by other processes.

The environment can block all processes p(αk) with the last type of processes. For each
clause αk and each literal ℓ of αk there is a process p(αk, ℓ). There the process has to acquire
tk and then ℓ before entering a state with a self-loop. In order to block all processes p(αk),
each tk has to be taken by a process p(αk, ℓ) for some literal ℓ of αk. For process p(αk, ℓ) to
be blocked, lock ℓ has to be taken before, by some pi or qj .

A strategy for the system amounts to choosing whether pi should release xi or xi, for
each i = 1, . . . , n. It may also choose to release neither. Since the environment has a global
view of the system, it can afterwards choose one of yj , yj in process qj , for each j = 1, . . . ,m.
Those choices represent a valuation, a lock remaining free corresponds to the literal being
true.

If the formula φ is true, then the system chooses the valuation of the xi’s in order
to make φ true. As soon as processes pi, qj have reached their final state, we also have a
valuation for the yj ’s. At this point there is at least one clause αk true, so with all its literals

ℓk1, ℓ
k
2, ℓ

k
3 true. Observe that among the 4 processes p(αk) and p(αk, ℓ

k
1), p(αk, ℓ

k
2), p(αk, ℓ

k
3)

at least one can reach its self-loop, namely the one that acquires tk first. Hence, the system
does not deadlock. Note also that no winning strategy here can be locally live, because of
processes pi and qj .

Otherwise, if the formula φ is not true, then for each choice of the system for the
xi’s, the environment can chose afterwards a suitable valuation of the yj ’s that falsifies φ
(“afterwards” means that we look at a suitable scheduling of the acquire actions). For such
a valuation, for every αk there is some literal ℓk of αk that is false. Consider the scheduling
that lets p(αk, ℓ

k) acquire tk first. Since tk is taken, this implies that p(αk, ℓ
k) is blocked.

Also, p(αk) is blocked because of tk. The other two processes p(αk, ℓ) with ℓ ̸= ℓk are also
blocked because of tk. So overall the entire system is blocked.

3.2. Locally live strategies. We now consider the case of 2LSS with locally live strategies.
Such a strategy ensures that no process blocks when running alone. Hence a process can
only block if all its available transitions need to acquire a lock, but all these locks are taken.
This restriction prevents a construction like the one used to obtain the lower bound of
Theorem 2.7.

DISTRIBUTED CONTROLLER SYNTHESIS FOR DEADLOCK AVOIDANCE 13

pi

acqxi
acqxi

relxi

relxi

qj

acqyj

acqyj

p(αk)

acqtk

p(αk, ℓ)

acqtk acqℓ

Figure 3: Processes used in Theorem 2.7. Transitions of the system are dashed. All unlabeled
transitions carry nop as operation. Processes pi and qj handle existentially and
universally quantified variables, resp.; process p(αk, ℓ) handles literal ℓ in clause
αk, and process p(αk) handles clause αk.

In the last subsection we were guessing a behavior of a strategy and then checking in
coNP if the condition from Lemma 3.3 does not hold. Here we show that this check can be
done in Ptime.

The argument is quite lengthy and requires a precise analysis of the graph representing
the guessed behavior. We represent a behavior as a lock graphGP, with vertices corresponding
to locks and edges to patterns. Then, thanks to local liveness, instead of Lemma 3.3 we get
Lemma 3.10 characterizing when a strategy is not winning by the existence of a subgraph
of GP, called (full) deadlock scheme. The main body of the proof is a polynomial time
algorithm to decide the existence of full deadlock schemes.

As we are in a locally live framework, some patterns of local runs are impossible. We do
not have patterns of the form Ownsp → ∅ as a local run can block only because it requires
some locks that are taken. This leaves two possible types of patterns, {t1} → {t2} and
∅ → Blocksp for some non-empty Blocksp ⊆ {t1, t2}. The set of patterns of the first type
defines a graph: an edge labeled by p from t1 to t2 represents the pattern {t1} → {t2} of
process p. Recall that this corresponds to a local run ending in a situation when p holds t1
and all actions need to acquire t2. The second type of patterns will be incorporated later in
form of fragile processes.

We define weak and strong patterns and cycles, as well as solid and fragile processes.
We are from the point of view of the controller: we want to obtain strong patterns and solid
processes, as they make deadlocks less likely.

Definition 3.6 (Lock graph GP). For a behavior P = (Pp)p∈Proc , we define a labeled graph
GP = ⟨T,EP⟩, called lock graph, whose nodes are locks and with two types of edges, weak or
strong. Edges are labeled by processes.

There is a weak edge t1
p

99Kt2 in GP whenever there is a weak pattern {t1}99K{t2} in Pp.

There is a strong edge t1
p

=⇒t2 whenever there is a strong pattern {t1}=⇒{t2} in Pp and

there is no weak pattern {t1}99K{t2} in Pp. We write t1
p−−→ t2 when the type of the edge is

irrelevant.
A path (resp. cycle) in GP is called simple if all its edges are labeled by different processes.

A cycle is weak if it contains some weak edge, and strong otherwise.

14 H. GIMBERT, C. MASCLE, A. MUSCHOLL, AND I. WALUKIEWICZ

The next definition provides some notions for patterns of the form ∅ −−→ Blocksp.

Definition 3.7 (solid/fragile). For a behavior P = (Pp)p∈Proc , a process p is called solid in P
(or just solid, if P is clear from the context) if there is no pattern of the form ∅ −−→ Blocksp
in Pp; otherwise it is called fragile in P (or just fragile).

A process p is called Z-fragile if there is some pattern ∅ → B in Pp with B ⊆ Z. Note
that a process is fragile if and only if it is Z-fragile for some Z ⊆ T .

A solid edge of GP is one that is labeled by a solid process. A solid cycle is one that
only has solid edges.

What the previous definition says is that a solid process needs to take a lock to be
blocked, whereas a fragile one can be blocked without owning a lock. So we take into account
only solid processes in the deadlock schemes defined next:

Definition 3.8 (Z-deadlock scheme). Consider a behavior P = (Pp)p∈Proc , and the associated
lock graph GP. Let Z ⊆ T be a set of locks. We set ProcZ as the set of those processes that
can access only locks in Z.

A Z-deadlock scheme for P is a partial function dsZ : ProcZ
·→ EGP such that all

conditions below are satisfied:

(1) For all p ∈ ProcZ , if dsZ(p) is defined then it is a p-labeled edge of GP.
(2) If p ∈ ProcZ is solid then dsZ(p) is defined.
(3) For all t ∈ Z there exists a unique p ∈ ProcZ such that dsZ(p) is an outgoing edge of t.
(4) The subgraph of GP restricted to dsZ(ProcZ) does not contain any strong cycle.

A deadlock scheme for P is a Z-deadlock scheme for P for some set Z.

The idea underlying the previous definition is that a Z-deadlock scheme witnesses a
way to reach a configuration in which all locks of Z are taken, and all processes from ProcZ
are blocked. Each solid process from ProcZ is mapped to an edge telling which lock it holds
in the deadlock configuration and which one it needs in order to advance.

For every lock in Z there is a unique outgoing edge in dsZ , corresponding to the process
owning that lock. Note that this implies that the subgraph induced by dsZ is a union of
cycles, with some non-branching paths going into these cycles.

The fourth condition excluding strong cycles is required as to be able to schedule the
local runs according to the edges of the deadlock scheme into a global run.

A Z-deadlock scheme is not a full witness for deadlock because fragile processes are
missing. The next definition takes care of fragile processes. Note that dsZ(p) is always
undefined if p /∈ ProcZ .

Definition 3.9 (Full deadlock scheme). A full Z-deadlock scheme for a behavior P is a
Z-deadlock scheme dsZ for P for some Z ⊆ T such that for every process p ∈ Proc either
dsZ(p) is defined, or p is Z-fragile. A full deadlock scheme for P is a full Z-deadlock scheme
for P, for some set Z ⊆ T .

We now prove an analogous result to Lemma 3.3: a strategy is not winning if and only
if its lock graph admits a full deadlock scheme. The existence of a winning strategy will
be established by non-deterministically guessing a behavior, verifying that there exists a
strategy respecting it, computing the corresponding lock graph and then checking that it
has no full deadlock scheme. The most involved step is the last one.

Lemma 3.10. Consider a locally live control strategy σ and Pσ = (Pσ
p)p∈Proc the behavior

of σ. The strategy σ is not winning if and only if there is a full deadlock scheme for Pσ.

DISTRIBUTED CONTROLLER SYNTHESIS FOR DEADLOCK AVOIDANCE 15

Proof. Suppose that σ is not winning. Then by Lemma 3.3, there exist patterns Ownsp −−→
Blocksp ∈ Pσ

p , one for each p, such that:

•
⋃

p∈Proc Blocksp ⊆
⋃

p∈Proc Ownsp,
• the sets Ownsp are pairwise disjoint,
• there exists a total order ≤ on T such that for all p, if Ownsp −−→ Blocksp is a strong
pattern of the form {t}=⇒Blocksp then t ≤ t′ where t, t′ are the two locks used by p.

Let Z =
⋃

p∈Proc Ownsp. For every process p ∈ ProcZ , define dsZ(p) as t1
p−−→ t2 if

Ownsp = {t1} and Blocksp = {t2}. Note that dsZ(p) is undefined if Ownsp = ∅.
Moreover, there are no other possible cases above, as σ is locally live and thus Blocksp

cannot be empty.
We show that dsZ is a full Z-deadlock scheme for Pσ by checking the four conditions

from Definition 3.8. The first condition holds by definition of dsZ . For the second condition
let p ∈ ProcZ and suppose p is solid. Thus, Ownsp is not empty, hence ds(p) is defined. For
the third condition let t ∈ Z. As Z is the disjoint union of the sets Ownsp there exists a
unique p ∈ ProcZ such that t ∈ Ownsp, so a unique edge ds(p) outgoing from t. For the last

condition note that for all strong edges t
p

=⇒t′ the pattern Ownsp=⇒Blocksp must be strong
as well, hence t ≤ t′. As ≤ is a total order on locks, there cannot be any strong cycle.

Finally, suppose that p /∈ ProcZ or ds(p) is undefined. In both cases Ownsp = ∅, thus
p is Blocksp-fragile, and hence Z-fragile as Blocksp ⊆ Z. As a consequence, ds is a full
Z-deadlock scheme for Pσ.

For the other direction, suppose we have a full Z-deadlock scheme ds for Pσ, for some
set Z of locks. For each process p ∈ Proc we can find a pattern Ownsp −−→ Blocksp ∈ Pσ

p as
follows:

• If ds(p) is undefined or p /∈ ProcZ then p is Z-fragile. In this case we choose Blocksp ⊆ Z
such that ∅ −−→ Blocksp ∈ Pσ

p and set Ownsp = ∅.
• If ds(p) = t1

p−−→ t2 then there exists a pattern {t1} −−→ {t2} ∈ Pσ
p with {t1, t2} ⊆ Z. We

set Ownsp = {t1} and Blocksp = {t2}.
We check now the conditions of Lemma 3.3.
As all locks of Z have exactly one outgoing edge in ds(ProcZ), and as all Ownsp with

p /∈ ProcZ or ds(p) undefined are empty, the sets Ownsp are pairwise disjoint. Moreover,⋃
p∈Proc Blocksp ⊆ Z ⊆

⋃
p∈Proc Ownsp.

It remains to check the last condition. Consider a strong pattern Ownsp=⇒Blocksp with
Ownsp = {t}. Since σ is locally live we have that Blocksp = {t′}, where t, t′ are the two locks
used by p. As ds(ProcZ) does not contain any strong cycle, we can pick a total order ≤ on

locks such that for every strong edge t1
p

=⇒t2 belonging to ds(ProcZ), we have t1 < t2. In
particular, t < t′, which finishes the proof.

From now on we fix a behavior P and its lock graph GP. We will show how to decide
if there is a full deadlock scheme for P in Ptime. For this we need to be able to certify in
Ptime that there is no Z-deadlock scheme for P, as in Definition 3.8. Our approach will
be to eliminate edges from GP and try to construct a Z-deadlock scheme on increasingly
larger sets Z of locks. We will show that this process either yields a set Z that provides a
full deadlock scheme for P, or it fails, and in this case there is no full deadlock scheme for P.

The next lemma provides a condition that allows to extend a Z-deadlock scheme towards
a full deadlock scheme for P, if one exists. This lemma is a basic ingredient to construct a
Z-deadlock scheme for increasingly larger sets Z of locks.

16 H. GIMBERT, C. MASCLE, A. MUSCHOLL, AND I. WALUKIEWICZ

Lemma 3.11. Let Z ⊆ T be such that there is no solid edge from Z to T \Z in GP. Suppose

that dsZ : ProcZ
·→ E is a Z-deadlock scheme for P. If there exists some full deadlock

scheme for P then there is one which is equal to dsZ over ProcZ .

Proof. Suppose that ds is a full deadlock scheme for P, so ds is a B-deadlock scheme for
some B ⊆ T such that for every p ∈ Proc either ds(p) is defined or p is B-fragile in P. We
construct a (B ∪ Z)-deadlock scheme ds ′ which is equal to dsZ over ProcZ . Then we show
that ds ′ is a full (B ∪ Z)-deadlock scheme for P.

For every process p ∈ Proc, set ds ′(p) as:

• dsZ(p) if p ∈ ProcZ ,
• ds(p) if p /∈ ProcZ and p does not label any edge of GP from Z to T \ Z.

First we check that ds ′ is a (B ∪ Z)-deadlock scheme. The first condition of a deadlock
scheme is satisfied by construction. Recall that we assume that there are no solid edges from
Z to T \ Z. In particular, all processes p such that ds ′(p) is undefined are fragile, so the
second condition is satisfied as well. By definition of Z-deadlock scheme there is a unique
outgoing edge of dsZ from every lock in Z. A lock t ∈ B \ Z has exactly one outgoing edge
in ds(Proc), and this edge in conserved in ds ′. Thus, the third condition is satisfied, too.
Finally, there cannot be any strong cycle in ds ′(Proc) as there are none within Z, nor in
B \ Z, and there are no edges from Z to T \ Z in ds ′.

It remains to show that ds ′ is a full (B ∪ Z)-deadlock scheme for P. Let p ∈ Proc be an
arbitrary process. We make a case distinction on the locks of p. The first case is when both
locks are in Z. If p is solid then ds ′(p) = dsZ(p) is defined. If p is fragile then it is Z-fragile,
so also (B ∪ Z)-fragile. The second case is when one lock is in B \ Z and the other one in
B ∪ Z. If p is solid then ds(p) must be defined because ds is a full B-deadlock scheme. We
must have ds ′(p) = ds(p) as there are no solid edges from Z to T \ Z. If p is fragile then p
is B-fragile, so also (B ∪ Z)-fragile. The final case is when one lock of p is not in B ∪ Z.
Since ds is a full B-deadlock scheme, p must be B-fragile, so also (B ∪ Z)-fragile.

Recall that we have fixed a behavior P, and that GP = (T,EP) is its lock graph. We
will describe in the following several polynomial-time algorithms operating on a subgraph
H = (T,EH) of GP, so EH ⊆ EP, and a set Z of locks.

We will say that H has a deadlock scheme to mean that there is a deadlock scheme
using only edges in H. The notion of full is the same as for GP.

Each of the four algorithms introduced below will either eliminate some edges from H
or extend Z, while maintaining the following three invariants:

Invariant 1. GP has a full deadlock scheme for P if and only if H does.

Invariant 2. There are no solid edges from Z to T \ Z in H.

Invariant 3. There exists a Z-deadlock scheme for P in GP.

Invariant 1 expresses that the edges we removed from GP to get H were not essential
for finding a full deadlock scheme for P. Invariant 2, along with Lemma 3.11, will guarantee
that we can always extend a Z-deadlock scheme to a full one, if one exists. Invariant 3
maintains the existence of a Z-deadlock scheme, while Z is growing.

Our algorithm will extend Z as much as possible while maintaining the three invariants.
In the end we either obtain a full Z-deadlock scheme for P, or a Z-deadlock scheme that is
not full, but cannot be extended anymore. In the second case we show that no full deadlock
scheme exists.

DISTRIBUTED CONTROLLER SYNTHESIS FOR DEADLOCK AVOIDANCE 17

We may also at some point observe contradictions in the edges of H that exclude the
existence of any full deadlock scheme for H, in which case we can conclude immediately
thanks to Invariant 1.

We start with H = GP and Z = ∅. All invariants are clearly satisfied.
Our first two algorithms will analyze solid edges in H, since any Z-deadlock scheme is

defined over solid processes. The first algorithm will possibly remove some edges, and the
second one will look for cycles and possibly enlarge Z. The third algorithm will extend Z
by locks that can reach it. Finally, the fourth algorithm will also add to Z weak cycles that
are outside of Z.

Definition 3.12 (Double and solo solid edges). Consider a solid process p. We say that

there is a double solid edge t1
p←→ t2 in H if both t1

p−→ t2 and t1
p←− t2 exist in H. We say

that t1
p−→ t2 in H is a solo solid edge if there is no t1

p←− t2 in H.

Algorithm 1 below looks for a solo solid edge t1
p−→ t2 in H and erases all other outgoing

edges from t1. It will be proven correct exploiting the following property:

(⋆) If t1
p−→ t2 is a solo solid edge in H, then any deadlock scheme dsH in H

is such that dsH(p) = t1
p−→ t2.

The argument behind Property (⋆) is that a deadlock scheme needs to map every solid
process to one of the two possible edges of the lock graph. So if there is only one (remaining)
edge labeled by p, this edge is needed and cannot be deleted.

We repeat this algorithm until no edges are removed. If some call of the algorithm fails
then there can be no full deadlock scheme for P in H. Otherwise the resulting H satisfies
the property:

(Trim) if a lock t in T \ Z has an outgoing solo solid edge then it has no
other outgoing edges.

We denote H as trimmed if it satisfies property (Trim).

Algorithm 1 Trimming the graph for one solo solid edge

1: Look for t ∈ T \ Z with a solo solid edge t
p−→ t′ ∈ EH and some other outgoing edges.

2: if there is no such edge then stop and report success.

3: for every edge t
q−→ t′′ ∈ EH from t with q ̸= p do

4: if q is solid and t
q←− t′′ /∈ EH then

5: return “H has no deadlock scheme for P”
6: else
7: delete t

q−→ t′′ from EH

8: end if
9: end for

Lemma 3.13. Suppose (H,Z) satisfies Invariants 1 to 3. If Algorithm 1 fails then H has
no full deadlock scheme for P. After a successful execution of the algorithm all the invariants
are still satisfied. If a successful execution does not remove any edge from H then H satisfies
(Trim).

Proof. Let H ′ be the graph after an execution of Algorithm 1. Observe that the algorithm
does not change Z. If H = H ′ then (Trim) holds. If the algorithm fails then there is a lock

18 H. GIMBERT, C. MASCLE, A. MUSCHOLL, AND I. WALUKIEWICZ

with two outgoing solo solid edges. In this case it is impossible to find a full deadlock scheme
in H, because of Property (⋆) above and since a deadlock scheme has exactly one outgoing
edge from each lock.

Finally, if the algorithm succeeds but H ′ is smaller than H, we must show that all the
invariants on page 16 hold. Since the algorithm does not change Z, Invariants 2 and 3
continue to hold. For Invariant 1 we use Property (⋆) and the fact that a deadlock scheme
has a unique outgoing edge from each lock to conclude that any full deadlock scheme in H
is also a full deadlock scheme in H ′. For the other direction, a full deadlock scheme in H ′ is
also full in H, as H ′ is a subgraph of H with the same set of vertices.

Algorithm 2 below searches for simple cycles formed by solid edges and eventually adds
them to Z. If such a cycle is weak then it can be added to Z. If the cycle is strong, it may
still be the case that its reversal is weak (see p1, p2, p3 in Figure 4). More precisely it may

be the case that for every solid edge ti
pi−−→ ti+1 in the cycle there is also a reverse edge

ti
pi←−− ti+1 (which is solid by definition, since pi is so). If the reversed cycle is also strong

then there is no H-deadlock scheme. Otherwise, it is weak and it can be added to Z. We
will show that the result still satisfies the invariants thanks to property (Trim).

Algorithm 2 Find a simple solid cycle.

1: Look for a simple cycle of solid edges t1
p1−→ t2 · · ·

pk−→ tk+1 = t1 not intersecting Z and
with all ti distinct.

2: if there is no such cycle, stop and report success.
3: if all the edges on the cycle are strong then

4: if for some j there is no reverse edge tj
pj←− tj+1 ∈ EH then

5: return “H has no deadlock scheme for P”
6: else if all edges tj

pj←− tj+1 are strong then
7: return “H has no deadlock scheme for P”
8: end if
9: end if

10: Z ← Z ∪ {t1, . . . , tk}
11: For every ti remove from EH all edges outgoing from ti except for ti

pi−→ ti+1.
12: if some solid process p has no edge in H then
13: return “H has no deadlock scheme for P”
14: end if
15: repeat
16: Apply Algorithm 1
17: until no more edges are removed from H

Figure 4 presents a case where Algorithm 2 detects an inconsistency in the solid edges,
proving the non-existence of a deadlock scheme.

Lemma 3.14. Suppose (H,Z) satisfies the Invariants 1 to 3 and H is trimmed. If the
execution of Algorithm 2 does not fail then the resulting H and Z also satisfy all invariants
and (Trim). If the execution fails then H has no full deadlock scheme for P.

Proof. Suppose that the algorithm finds a simple cycle t1
p1−→ t2 · · ·

pk−→ tk+1 = t1 where all pi
are solid processes, and all ti are distinct. By definition of a simple cycle, all pi are distinct

DISTRIBUTED CONTROLLER SYNTHESIS FOR DEADLOCK AVOIDANCE 19

t1

t2

t3

t4

t5

t6

t7 t8

This graph does not have a full
deadlock scheme (all processes are
solid, weak edges are displayed in
red). However a first execution of
Algorithm 1 has no effect as all
edges are double.

p1

p2
p3

p4

p5

p6

p7

p8

p9

t1

t2

t3

t4

t5

t6

t7 t8

We apply Algorithm 2, which finds
solid cycles, erases all other edges
going out of those cycles, and
makes sure that those cycles are
weak.

p1

p2
p3

p4

p5

p6

p7
p8

p9

We now apply Algorithm 1 again.

It detects that t8
p9−→ t5 is a solo

solid edge and it erases the other

outgoing edge t8
p8−→ t7. It then

concludes that there is no full
deadlock scheme as t7 has two out-
going solo solid edges.

t1

t2

t3

t4

t5

t6

t7 t8!

p1

p2
p3

p4

p5

p6

p7
p8

p9

Figure 4: An example of application of Algorithm 2.

as well. If there is a full deadlock scheme for H then it should assign either ti
pi−→ ti+1 or

ti
pi←− ti+1 to pi, because pi is solid.
We examine the cases when the algorithm fails. The first reason for failure may appear

when all the edges on the cycle are strong. If for some j there is no reverse edge tj
pj←− tj+1

in EH then a full deadlock scheme for H, call it dsH , should assign the edge tj
pj−→ tj+1 to

pj , because the edge is solo solid (recall Property (⋆)). As a consequence, as dsH has to
give each ti at most one outgoing edge and all edges of the cycle are solid, all the edges in
the cycle should be in the image of dsH . But this is forbidden by the last condition in the
definition of deadlock scheme, as the cycle is strong.

When there are reverse edges ti
pi←− ti+1 ∈ EH for all i, the algorithm fails if all of them

are strong. Indeed, there cannot exist any full deadlock scheme for H in this case either,
because either the cycle or its reverse would need to be in the image of dsH , but both are
strong.

The last reason for failure is when there is some solid process p and all the p-labeled

edges were removed by the algorithm. These must be edges of the form ti
p−−→ t that are not

on the cycle, for some i = 1, . . . , k and p ̸= pi. Those edges cannot belong to a deadlock

20 H. GIMBERT, C. MASCLE, A. MUSCHOLL, AND I. WALUKIEWICZ

scheme as it has to contain the cycle in one direction or the other and thus cannot contain
other outgoing edges from that cycle. As a deadlock scheme cannot assign any edge to p,
and p is solid, there cannot exist any full deadlock scheme in that case.

If the algorithm does not fail then either the cycle t1
p1−→ t2 · · ·

pk−→ tk+1 = t1 is weak, or
its reverse is. Thanks to Lemma 3.13, we only need to show that all three invariants hold
after line 11. Let (H ′, Z ′) be the values at that point. So Z ′ = Z ∪ {t1, . . . , tk}, and H ′ is H
after removing edges in line 11. We show now that all invariants on page 16 continue to
hold.

For Invariant 2, we observe that thanks to (Trim) for every lock in Z ′ there is exactly
one outgoing edge in H ′. So there is no solid edge from Z ′ to T \ Z ′ as there was none from

Z to T \ Z and the only solid edge of H ′ outgoing from ti is ti
pi−−→ ti+1.

For Invariant 3, we extend our Z-deadlock scheme to a Z ′-deadlock scheme: we choose
the cycle found by the algorithm or its reversal, depending on which one is weak. For every
pi we define dsZ′(pi) to be the edge in the chosen cycle. For all p ∈ ProcZ′ \ ProcZ other
than p1, . . . , pk, dsZ′(p) is undefined. We must show that such any such p is fragile. If both
locks used by p are among the {t1, . . . , tk} then p must be fragile because Algorithm 2 does
not fail at line 12. The other case is where p has one lock t in Z, and the other, t′ in Z ′ \ Z.
If p was solid, then given that the algorithm does not fail at line 12, there must be some
(solid) edge labeled by p in H ′. However, by Invariant 2 for H, an edge from t to t′ cannot
be solid. Moreover, the edge from t′ to t is removed at line 11. Therefore, p is fragile.

For Invariant 1 suppose that H ′ has a full deadlock scheme for P. Then this is also a
full deadlock scheme for H as well, as H ′ is a subgraph of H over the same set of locks.
For the other direction consider a full B-deadlock scheme dsH in H, for some B ⊆ T . By
Lemma 3.11, as we showed that Invariant 2 is maintained for Z ′, we can assume that Z ′ ⊆ B
and dsH is equal to dsZ′ on ProcZ′ . We define a deadlock scheme dsH′ for H ′ as follows.
If dsH(p) is undefined then dsH′(p) is undefined, too. Otherwise, if the source vertex of
dsH(p) is not in Z ′ then dsH′(p) = dsH(p). This edge is guaranteed to exist also in H ′

because only some edges outgoing from the ti were removed. If the two locks of p are both

in Z ′ let dsH′(p) = dsH(p) = dsZ′(p). The remaining case is when dsH(p) is an edge t
p−→ t′

with t ∈ Z ′ and t′ /∈ Z ′. Note that t, t′ are both in B. If t ∈ Z then this would contradict
Condition 3 in the definition of deadlock scheme, as p /∈ ProcZ . Hence t = ti for some i, and

p is fragile as the only solid edge leaving ti in H ′ is ti
pi−−→ ti+1. We let dsH′(p) be undefined

in this case, and Condition 2 of deadlock scheme is satisfied.
We establish now that dsH′ is a full B-deadlock scheme in H ′. All we need to check

is that any process p with dsH′(p) undefined is B-fragile. If dsH(p) was already undefined
then we get that p is Z-fragile, so B-fragile as well. If dsH(p) was defined, but dsH′(p) is
not, then since both locks of p are in B and p is fragile, we obtain that p is B-fragile. This
concludes the proof.

Lemma 3.15. If Algorithm 2 succeeds but does not increase Z nor decrease H then (H,Z)
satisfies three properties:

H1 : H is trimmed.
H2 : H has no solid cycle that intersects T \ Z.
H3 : Every solid process has an edge in H.

Proof. Property H1 is satisfied because H was not modified by Algorithm 1.
Invariant 2 is satisfied by Lemma 3.14, hence any solid simple cycle intersecting T \Z in

H must lie entirely in T \Z. Moreover, it is easy to see that if there is some solid cycle in H

DISTRIBUTED CONTROLLER SYNTHESIS FOR DEADLOCK AVOIDANCE 21

intersecting T \ Z, then there exists also a simple one. In this case Algorithm 2 would not
have stopped in line 2, and thus would have either failed or increased Z. There is therefore
no solid cycle intersecting T \ Z in H, hence property H2 is also satisfied.

Finally, Property H3 is satisfied because Algorithm 2 did not fail at line 12-13.

The next algorithms will not modify H anymore and only increase Z. Therefore, all
three properties stated in the previous lemma will continue to hold.

Definition 3.16. Given a pair (H,Z) consisting of a subgraph H of GP and a set Z ⊆ T of
locks we define the following equivalence relation on T : t1≡Ht2 if t1, t2 ∈ T \ Z and there is
a path of double solid edges in H between t1 and t2.

Intuitively, once we have trimmed the graph and eliminated simple cycles of solid edges
with Algorithm 2, the equivalence classes of ≡H are “trees” made of double solid edges
(c.f. Lemma 3.18 below) with no outgoing edges (except for singletons, c.f. Lemma 3.17).

Lemma 3.17. If H satisfies property H1 and t1
p−→ t2 is in H for a solid process p then

either the ≡H-equivalence class of t1 is a singleton, or t1
p←− t2 is in H, hence t1≡Ht2.

Proof. If the ≡H -equivalence class of t1 is not a singleton then t1 /∈ Z and there is a double
solid edge from t1. By property H1, there cannot be any outgoing solo solid edge from t1, so

t1
p←− t2 must be in H, too.

Lemma 3.18. Suppose that H satisfies properties H1 and H2. Let t1, t2 ∈ T \Z. If t1≡Ht2
then H has a unique simple path of solid edges from t1 to t2.

Proof. If t1 = t2 then any non-empty simple path of solid edges from t1 to t2 would contradict
property H2, hence the empty path is the only simple path from t1 to t2. If t1 ̸= t2 then by
definition of ≡H there is a path of double solid edges from t1 to t2, hence there is such a
simple path from t1 to t2.

Suppose there exist two distinct simple paths from t1 to t2, then by Lemma 3.17 all the
locks on those paths are in the ≡H -equivalence class of t1 and t2. Hence as t1 /∈ Z, there is
a cycle of double solid edges intersecting H \ Z, contradicting property H2.

Our third algorithm looks for an edge t1
p−→ t2 with t1 /∈ Z and t2 ∈ Z, and adds the

full ≡H -equivalence class C of t1 to Z. This step will be shown correct by showing that a
Z-deadlock scheme extends to a (Z ∪ C)-deadlock scheme by orienting edges in C towards
Z, as displayed in the example in Figure 5.

Algorithm 3 Extending Z by locks that can reach it.

1: while there exists t1
p−→ t2 ∈ EH with t1 /∈ Z and t2 ∈ Z do

2: Z ← Z ∪ {t ∈ T | t≡Ht1}
3: end while

Lemma 3.19. Suppose that H satisfies properties H1, H2 and H3, and (H,Z) satisfies
Invariants 1 to 3. After executing Algorithm 3, the resulting H and Z also satisfy all these
properties, and H has no edges from T \ Z to Z.

Proof. Let (H ′, Z ′) be the pair obtained by applying Algorithm 3. Invariant 1, and properties
H1 and H3 continue to hold because H ′ = H. Also property H2 continues to hold, because
Z ⊆ Z ′.

22 H. GIMBERT, C. MASCLE, A. MUSCHOLL, AND I. WALUKIEWICZ

It remains to show that Invariant 2 (no solid edges from Z to T \ Z) and Invariant 3
(existence of Z-deadlock scheme) are preserved.

Let Zm+1 be the value of Z at the end of the m-th iteration. So Zm+1 = Zm ∪ {t ∈ T |
t≡Ht1}, where t1

p−→ t2 is the edge found in the guard of the while statement. We verify that
Zm+1 satisfies Invariants 2 and 3 if Zm does.

For Invariant 2, Lemma 3.17 says that there are no outgoing solid edges from the
≡H -equivalence class of t1, unless that class is a singleton. If it is a singleton, there are no

outgoing solid edges from t1 or t1
p−→ t2 is the only outgoing edge of t1. In both cases, there

are no solid edges from Zm+1 to T \ Zm+1 in H.
For Invariant 3 we extend a Zm-deadlock scheme dsm to a Zm+1-deadlock scheme dsm+1.

If the two locks of some process q are both in Zm then dsm+1(q) = dsm(q). We set dsm+1(p)

to be the edge t1
p−→ t2 found by the algorithm, so here t1 ∈ Zm+1 \ Zm and t2 ∈ Zm. Let C

be the ≡H -equivalence class of t1: C = {t ∈ T | t≡Ht1}. By Lemma 3.18 there is a unique

simple path from t ∈ C to t1. Let t
q−→ t′ be the first edge on this path. We set dsm+1(q) to

be this edge. We let dsm+1(q) be undefined for all remaining processes q.
We verify now that dsm+1 is a Zm+1-deadlock scheme. By construction every lock in C

has a unique outgoing edge in dsm+1, hence every lock in Zm+1 does so. It is also immediate
that dsm+1(ProcZm+1) does not contain a strong cycle as it would need to be already the
case for dsm and Zm: every lock of C has exactly one outgoing edge in dsm+1 and the path
obtained by following those edges from an element of C leads to Zm.

It remains to show that dsm+1 is defined for every solid process q ∈ ProcZm+1 . Suppose
by contradiction that dsm+1(q) is not defined by the procedure. If both locks of q are in
Zm then dsm+1(q) must be defined because dsm(q) is. If q = p, the process labeling the
transition chosen by the algorithm, then dsm+1(q) is defined. In the remaining case both

locks of q, say t, t′, are in C. If neither t
q−→ t′ is on the shortest path from t to t1, nor is

t
q←− t′ on the shortest path from t′ to t1 then there must be a solid cycle in C. But this is

impossible as we assumed that there are no solid cycles intersecting T \ Z (property H2)
and Z ⊆ Zm. Hence dsm+1(q) is defined, and dsm+1 is a Zm+1-deadlock scheme.

All what is left to prove is that H has no edges from T \ Z to Z, which is immediate as
otherwise Algorithm 3 would not have stopped.

Our last algorithm looks for weak cycles in the remaining graph. If it finds one, it adds
to Z not only all locks in the cycle but also their ≡H -equivalence classes.

Algorithm 4 Incorporating weak cycles

1: if there exists a weak cycle t1
p1−→ t2 · · ·

pk−→ tk+1 = t1 with tk
pk−→ t1 weak and ti /∈ Z for

some i, then

2: Z ← Z ∪
⋃k

i=1{t | t≡Hti}
3: end if

Lemma 3.20. Suppose H satisfies H1, H2 and H3, (H,Z) satisfies Invariants 1 to 3, and
moreover there are no edges from T \ Z to Z. After an execution of Algorithm 4, H still
satisfies H1, H2 and H3, and the resulting (H,Z) satisfies Invariants 1 to 3.

Proof. Let (H ′, Z ′) be the pair obtained after execution of Algorithm 3. Observe that
H ′ = H, hence Invariant 1 holds. For the same reason H1 and H3 are still satisfied.
Furthermore, as Z ⊆ Z ′, so is H2. It remains to verify Invariants 2 and 3.

DISTRIBUTED CONTROLLER SYNTHESIS FOR DEADLOCK AVOIDANCE 23

t1 t2

t3

t4

t5

t6

t7

Z
p1

p4p2

p3

p5

t1 t2

t3

t4

t5

t6

t7

Z

p1
p4p2

p3

p5

Figure 5: Illustration of Algorithm 3. A deadlock in Z can be extended to all these processes
by orienting all edges/processes towards Z (black arrows in the bottom part).

Consider the weak cycle found by the algorithm t1
p1−→ t2 · · ·

pk−→ tk+1 = t1, and note

that ti /∈ Z for all i because H has no edges from T \Z to Z. Let Z ′ = Z ∪
⋃k

i=1{t | t≡Hti}
as in line 2.

Towards showing Invariant 2 consider some ti on the cycle. Lemma 3.17 says that
there are no outgoing solid edges from the ≡H -equivalence class of ti, unless that class is a

singleton. If this class is a singleton, there are no outgoing solid edges from ti or ti
p−→ ti+1 is

the only outgoing edge of ti. In both cases, there are no solid edges from Z ′ to T \ Z ′ in H.
For Invariant 3 we extend a Z-deadlock scheme dsZ to a Z ′-deadlock scheme dsZ′ . For

every lock t ∈ Z ′ \ Z let j be the biggest index among 1, . . . , k with t≡Htj . If t = tj then

set dsZ′(pj) to be the edge tj
pj−→ tj+1. Otherwise, take the unique path from t to tj in the

≡H-equivalence class of the two locks; this is possible thanks to Lemma 3.18. If the path

starts with t
p−→ t′ then set dsZ′(p) to this edge. For all remaining processes p we let dsZ′(p)

be undefined.
We show now that dsZ′ is a Z ′-deadlock scheme. First, note that there is an outgoing

dsZ′ edge from every lock in Z ′ by definition, and this edge is unique.
Next we show that dsZ′(p) is defined for every solid process p. This is clear if the two

locks, t and t′, of p are in Z. If both locks are in Z ′ \ Z then either t≡Ht′ or there is a solo

solid edge between the two, say t
p−→ t′. In the latter case this is the only edge from t, as H

is trimmed. As the ≡H -equivalence class of t is then a singleton, this must be an edge on
the cycle and dsZ′(p) is defined to be this edge. Suppose now that t≡Ht′ and dsZ′(p) is not

24 H. GIMBERT, C. MASCLE, A. MUSCHOLL, AND I. WALUKIEWICZ

defined. Let j be the biggest index among 1, . . . , k such that t≡Htj . If neither t
p−→ t′ is on

the shortest path from t to tj , nor t
p←− t′ is on the shortest path from t′ to tj then there

must be a cycle in C. But this is impossible as we assumed that there are no solid cycles
intersecting T \ Z in H (Property H2). The last case is when one of the locks of p is in Z
and the other in Z ′ \ Z. There is no solid edge leaving Z by Invariant 2. There is no solid
edge entering Z by the assumption of the lemma. So p is a solid process labeling no edge in
H which contradicts H3.

The last thing to verify for a Z ′-deadlock scheme is that there is no strong cycle in

dsZ′(ProcZ′). We first check that dsZ′(ProcZ′) contains tk
pk−→ t1. This is because tk is

necessarily the last one from its ≡H -equivalence class. A strong cycle cannot contain locks

from Z as there are no edges entering Z in dsZ′ . Let t′1
p′1−→ t′2 . . .

p′l−→ t′l+1 = t′1 be a
hypothetical strong cycle in Z ′ \ Z using transitions in dsZ′ .

Consider x such that t′1≡Ht′j for j ≤ x but t′1 ̸≡H t′x+1. By definition of dsZ′ we must

have that t′x is the last lock among t1, . . . , tk equivalent to t′1, say it is ty. As each lock only
has one outgoing transition in the image of dsZ′ , and as there is a path from ty to tk in that

image, tk must be on that cycle, and thus the weak edge tk
pk−→ t1 as well, contradicting the

assumption that this is a strong cycle.

We conclude with our complete algorithm (if one of our sub-algorithms returns a result,
then the entire algorithm stops):

Algorithm 5 Algorithm to check the existence of a full deadlock scheme for Pσ

1: H ← GPσ

2: Z ← ∅
3: repeat
4: apply Algorithm 1
5: until no more edges are removed from H
6: repeat ▷ H is trimmed
7: apply Algorithm 2
8: until no more edges are removed from H
9: repeat ▷ from now on H satisfies properties H1, H2 and H3

10: apply Algorithm 3 ▷ no edges from T \ Z to Z
11: apply Algorithm 4
12: until Z does not increase anymore
13: if there is a process p /∈ ProcZ that is not Z-fragile then
14: return “σ is winning”
15: else
16: return “σ is not winning”
17: end if

Lemma 3.21. Algorithm 5 terminates in polynomial time, and return “σ winning” if and
only if no full deadlock scheme for Pσ exists.

Proof. Let P = Pσ. Suppose that the algorithm fails before reaching the end. If this happens
before line 13 then using Lemma 3.13, Lemma 3.14 and Invariant 1 we obtain that GP does
not have any full deadlock scheme for P. If the algorithm fails at line 14 then there exists

DISTRIBUTED CONTROLLER SYNTHESIS FOR DEADLOCK AVOIDANCE 25

a process p /∈ ProcZ that is not Z-fragile. Suppose towards a contradiction that H has a
full deadlock scheme dsH , and assume that dsH is a B-deadlock scheme for some B ⊆ T .
By Lemma 3.11 we can assume that Z ⊆ B and dsH is equal to dsZ on ProcZ . Observe
that one of the locks of p must belong to B, by the definition of full deadlock scheme. So
there must exist some outgoing edge from a lock of p, say t, in dsH(ProcB). Since dsZ(p)
was undefined, and dsH , dsZ coincide on ProcZ , the lock t cannot belong to Z.

By definition, every lock with an incoming edge in dsH must also have an outgoing
edge in dsH . Following these edges we get a cycle in the image of dsH . During the last
iteration of lines 9-12, Z did not increase, hence by Lemma 3.19 there are no edges from
T \ Z to Z. This cycle is therefore outside Z. It has to be a weak cycle by definition of a
deadlock scheme, which is a contradiction because Algorithm 4 did not increase Z in its last
application.

If the algorithm reaches the end then by Invariant 3 we know that a Z-deadlock scheme
for P, say dsZ , exists. We construct a full deadlock scheme (Z, ds) in GP as follows. First,
we set ds(p) = dsZ(p) for all p ∈ ProcZ . For p /∈ ProcZ , as the algorithm did not fail at
lines 13-14, p is Z-fragile, and we let ds(p) undefined.

Finally, this algorithm runs in polynomial time as all steps of all loops in the algorithms
either decrease H or increase Z. Furthermore, the condition on line 13 is easily verifiable
by checking in the behavior (Pσ

p)p∈Proc of σ whether there exists ∅ −−→ B ∈ Pp such that
B ⊆ Z.

Theorem 2.8. The deadlock avoidance control problem for 2LSS is in NP when strategies
are required to be locally live.

Proof. We start by guessing a behavior P = (Pp)p∈Proc such that no Pp contains any pattern
of the form Ownsp −−→ ∅. Its size is polynomial in the number of processes. We can check
in polynomial time that there exists a strategy respecting the patterns in P by Lemma 3.4.
Note that if there is one, by the requirement we made on P it must be locally live.

If yes, then we compute the lock graph GP for P and check if there is a full deadlock
scheme for P in polynomial time by Lemma 3.21.

By Lemma 3.10, this algorithm answers yes if and only if the system has a locally live
strategy that avoids deadlocks. More formally, if there exists a winning, locally live strategy
σ then it suffices to guess the behavior Pσ and the Algorithm 5 will return “σ is winning”.
For the other direction, assume that we guess a behavior P such that no pattern Ownsp −−→ ∅
belongs to Pp, for any p. Assume also that Lemma 3.4 tells that there exists some strategy σ
such that Pσ

p ⊆ Pp for every p. If Algorithm 5 returns “σ is winning” then by Lemma 3.21 we
know that there is no full deadlock scheme for P, so there cannot be any for Pσ either.

3.3. Exclusive 2LSS. In this section we study exclusive 2LSS. These systems enjoy enough
properties to be able to decide the deadlock avoidance control problem with locally live
strategies in polynomial time.

Recall that in an exclusive system, if a state has an outgoing acqt transition, then all
its outgoing transitions are labeled with acqt. So in such a state the process is necessarily
blocked until t becomes available.

Behaviors of exclusive systems have some special properties, see Lemma 3.24. First,
whenever a strategy has a strong pattern {t1}=⇒{t2} for a process p, it also allows a reverse
weak pattern {t2}99K{t1}. This will imply that the strong cycle condition in our deadlock

26 H. GIMBERT, C. MASCLE, A. MUSCHOLL, AND I. WALUKIEWICZ

schemes can be satisfied automatically, because any strong cycle can be replaced by a reverse
cycle of weak edges. Second, all processes that have some pattern are fragile.

The above observations simplify the analysis of the lock graph. First, we get a much
simplified NP argument (Proposition 3.25). This allows us to eliminate guessing and obtain
a Ptime algorithm (Proposition 3.29).

Throughout this section we fix an exclusive 2LSS S, and consider only locally live
strategies. As we have seen in the previous section, whether or not a strategy σ is winning is
determined by its behavior Pσ. More precisely, σ is winning if and only if Pσ does not admit
a full deadlock scheme, see Lemma 3.10. In this section we show that the latter property
can be decided in Ptime for exclusive 2LSS.

Definition 3.22. We call a behavior P exclusive if

• whenever Pp contains {t1}=⇒{t2} then it contains either {t1}99K{t2} or {t2}99K{t1}, and
• whenever Pp contains {t1} −−→ {t2} then p is {t1, t2}-fragile in Pp.

Remark 3.23. Assume that we have a strong cycle t1
p1
=⇒t2

p2
=⇒· · · pk=⇒tk+1 = t1 in the lock

graph GP of an exclusive behavior P. Then by definition of strong edges, every pi has pattern
{ti}=⇒{ti+1} but not {ti}99K{ti+1}. Then by definition of exclusive behavior, they all have

a pattern {ti+1}99K{ti}, hence there is a weak cycle t1 = tk+1
pk
99K · · ·

p2
99Kt2

p1
99Kt1.

Lemma 3.24. If σ is a locally live strategy in an exclusive 2LSS and Pσ = (Pp)p∈Proc is its
behavior, then Pσ is exclusive.

Proof. Consider the first statement. Suppose there is a strong pattern {t1}=⇒{t2} in Pp,
then there exists a local σ-run of p of the form

u = u1(a1, acqt1)u2(a1, relt2)u3(a3, acqt2) ,

with no relt1 in u2 or u3. Hence, there is a point in the run at which p holds both locks. In
consequence, there must be two acquires in u with no release in-between. As the process is
exclusive, the state from which the second lock is taken is such that all outgoing transitions
take this lock. Thus there is a weak pattern from the first lock taken to the second one. For
the second statement, suppose that {t1} −−→ {t2} is in Pp. Thus there exists a σ-run of p
making it acquire t1, so there must be some σ-run u of the form u = u1(a, acqti)u2 for some
i ∈ {1, 2} and u1 containing only local actions. As S is exclusive, this means that u1 makes
p reach a configuration where all outgoing transitions acquire ti, and p owns no lock. Since
σ is locally live this means that u1 has the pattern ∅ −−→ {ti}, so p is {ti}-fragile, hence also
{t1, t2}-fragile.

Now consider a decomposition of the lock graph GP of a given behavior P into strongly
connected components (SCC for short). An SCC of GP is a direct deadlock if it contains
a simple cycle. A deadlock SCC is a direct deadlock SCC or an SCC from which a direct
deadlock SCC can be reached.

Figure 6 illustrates these concepts: the left graph has a direct deadlock SCC formed by
the three locks at the top. The two remaining locks form a deadlock SCC, because there is
a path towards a direct deadlock SCC. Observe that the two locks at the bottom are not a
direct deadlock SCC because there is only one process between the two locks and thus no
simple cycle within the SCC.

Let BP ⊆ T be the set of all locks appearing in some deadlock SCC of GP.

DISTRIBUTED CONTROLLER SYNTHESIS FOR DEADLOCK AVOIDANCE 27

Proposition 3.25. Consider an exclusive behavior P. There is a full deadlock scheme for P
if and only if all processes in Proc are BP-fragile.

The proof of Proposition 3.25 follows from the lemmas below. In all these lemmas we
assume that P is an exclusive behavior.

Lemma 3.26. If all processes are BP-fragile then there is a full deadlock scheme for P.

Proof. We construct a deadlock scheme for GP as follows. For all direct deadlock SCCs we
select a simple cycle inside. By Remark 3.23 and Lemma 3.24, this cycle is weak or has a
reverse weak cycle. We select a direction in which the cycle is weak, and for all t in the cycle
we set pt as the process labeling the edge outgoing from t in the cycle.

While there is some edge t
p−→ t′ in GP such that pt is not yet defined but pt′ is, we

set pt = p. When this ends we have defined pt for all locks t ∈ BP. We define ds as

ds(pt) = t
pt−→ t′ for all t ∈ BP. For all other p ∈ Proc, ds(p) is undefined.

We show now that ds is a full deadlock scheme for P. Clearly, for all p ∈ Proc, if ds(p)
is defined then it is a p-labeled edge of GP. Furthermore, as all processes are BP-fragile, in
particular all processes p with ds(p) undefined are BP-fragile. It is also clear that all locks of
BP have a unique outgoing edge. Finally, by construction we ensured that ds has no strong
cycle.

Lemma 3.27. Any full Z-deadlock scheme for P is such that Z ⊆ BP.

Proof. Suppose that dsZ full Z-deadlock scheme for P. If there is some t ∈ Z \ BP, then

there exists p such that dsZ(p) = t
p−→ t′, for some t′ ∈ Z. By definition of BP, there are no

edges from T \BP to BP in GP, hence t′ ∈ Z \BP. By iterating this process we eventually
find a simple cycle in GP outside of BP, which is impossible, as this cycle should be part of
a direct deadlock SCC, and thus included in BP.

Lemma 3.28. If some process p is not BP-fragile then there is no full deadlock scheme for
P.

Proof. Suppose there exists p that is not BP-fragile. Towards a contradiction assume that
there is some full Z-deadlock scheme dsZ for P, for some Z.

As p is not BP-fragile, then by Lemma 3.27 it is not Z-fragile either. Hence, ds(p) is an

edge t1
p−→ t2 in GP, with t1, t2 ∈ Z, and thus t1, t2 ∈ BP. By Lemma 3.24, p is {t1, t2}-fragile,

and therefore also BP-fragile, yielding a contradiction.

This concludes the proof of Proposition 3.25.

Deciding the existence of a winning strategy for exclusive systems. Until now
we have assumed that we were given a strategy σ, and we described how to check if it is
winning, by constructing BP and checking that every process is BP-fragile, where P = Pσ.
Now we want to decide if there is any winning strategy. We use the insights above, but we
cannot simply enumerate all exclusive behaviors, as they are exponentially many.

We say below that a strategy σ for p induces the edge t1
p−−→ t2 if σp admits the pattern

{t1} −−→ {t2}.
For every process p and every set of edges between two locks of p we can check if there

is a strategy for p inducing only edges within this set, as a consequence of Lemma 3.4.

We call an edge t1
p−→ t2 unavoidable if it is induced by every locally live strategy of p.

28 H. GIMBERT, C. MASCLE, A. MUSCHOLL, AND I. WALUKIEWICZ

p3

p1

p4 p2

p3

p1

p6p5

p4 p2

Figure 6: Semi-deadlock SCCs: the blue double edge is not in Gu, but every strategy of the
system will induce one of those two edges.

Let Gu be the graph whose nodes are locks and whose edges are the unavoidable edges.
We will compute a set of locks Bu in a similar way as BP in the previous section except that
we will use slightly more general basic SCCs of Gu.

A direct semi-deadlock SCC of Gu is either a direct deadlock SCC, or an SCC containing
only double edges, with two locks t1 and t2 such that for some process p using t1 and t2,
every strategy for p induces at least one edge between t1 and t2. Then a semi-deadlock SCC
of Gu is either a direct semi-deadlock SCC or an SCC from which a direct semi-deadlock
SCC can be reached.

Let Bu be the set of locks appearing in semi-deadlock SCCs.
In the graph on the right of Figure 6 the black edges are in Gu, the double blue ones

are not, but indicate that every strategy σ of process p2 induces one of the two blue edges
in GPσ . The four locks do not form a direct deadlock SCC of Gu as there is no simple
cycle (without the blue edges, which do not belong to Gu). However they do form a direct
semi-deadlock SCC, as p2 will induce an edge no matter its strategy, forming a simple cycle.

Proposition 3.29. There is a winning strategy for deadlock avoidance iff there exists some
process p and a local strategy σp that prevents p from acquiring a lock from Bu.

Proof. One direction is easy: if all strategies make all processes acquire a lock from Bu then
there is no winning strategy. Let σ be a strategy, P = Pσ its behavior and GP its lock graph.
Note that Gu is a subgraph of GP, hence every SCC in GP is a superset of an SCC in Gu.
Observe that if an SCC in GP contains a direct semi-deadlock SCC of Gu then it is a direct
deadlock SCC. Indeed, if an SCC in Gu is a direct semi-deadlock but not a direct deadlock

one then σ adds one of edges between the locks of p, say edge t1
p−→ t2, to this SCC in GP.

As t1, t2 are in that SCC of Gu, there is a simple path from t2 to t1 not involving p. Hence,
a direct semi-deadlock SCC becomes a direct deadlock SCC. This implies Bu ⊆ BP.

Let p ∈ Proc, as there is a σ-run of p acquiring a lock of Bu, either p is Bu-fragile (and
thus BP-fragile) or there is an edge labeled by p towards Bu, meaning that both locks of p
are in BP and thus that p is BP-fragile by Lemma 3.24. As a consequence, all processes are
BP-fragile. We conclude by Proposition 3.25.

In the other direction we suppose that there exists a process p and a strategy σp
forbidding p to acquire any lock of Bu. We construct a strategy σ such that p is not
BP-fragile. This will show that σ is winning by Proposition 3.25.

Let Fu = T \ Bu be the set of locks not in Bu. By definition of Bu, in Gu no node of
Fu can reach a direct semi-deadlock SCC. In particular, there is no direct semi-deadlock

DISTRIBUTED CONTROLLER SYNTHESIS FOR DEADLOCK AVOIDANCE 29

SCC in Gu restricted to Fu. We construct a strategy σ such that, when restricted to Fu,
the SCCs of GP and Gu are the same, where P = Pσ.

Let us linearly order the SCC of Gu restricted to Fu in such a way that if a component
C1 can reach a component C2 then C1 is before C2 in the order.

We use strategy σp for p. For every process q ̸= p we have one of the two cases: (i) either
there is a local strategy σq inducing only the edges that are already in Gu; or (ii) every local
strategy induces some edge that is not in Gu. In the second case there are no q-labeled
edges in Gu, and for each of the two possible edges there is a local strategy inducing only
this edge.

For a process q from the first case we take a local strategy σq that induces only the
edges present in Gu.

For a process q from the second case,

• If both locks of q are in Bu then take any local strategy for q.
• If one of the locks of q is in Bu and the other in Fu then choose a strategy inducing an
edge from the lock in Bu to the lock in Fu.
• If both locks of q are in Fu then choose a strategy inducing an edge from a smaller to a
bigger SCC of Gu.

In the last case, both locks cannot be in the same SCC of Gu: As they are in Fu, this
would have to be an SCC with no simple cycles, i.e., a tree of double edges. But then the
existence of q implies that this is a direct semi-deadlock SCC, which contradicts the fact
that those locks are in Fu.

Consider the graph GP of the resulting strategy σ. Restricted to Fu this graph has the
same SCCs as Gu. Moreover, there are no extra edges in GP added to any SCC included in
Fu, and there are no edges from Fu to Bu. As a result, we have Bu = BP. As p acquires no
lock from Bu, it is not Bu-fragile and thus not BP-fragile either.

Theorem 2.11. The deadlock avoidance control problem for exclusive 2LSS is in Ptime,
when strategies are required to be locally live.

Proof. First we need to compute the unavoidable edges. An edge t1
p−−→ t2 is avoidable iff

there exists some locally live strategy σp that does not admit the pattern {t1} −−→ {t2}.
Recall that we assume that Ap is lock-aware. Then the above means that we look for a
locally live strategy σp that avoids all states in Ap where p owns t1 and needs to acquire t2.
This question reduces to a usual safety game.

Next we have to determine which SCCs of Gu are a direct deadlock, which amounts to
check the existence of a simple cycle. Observe that an SCC does not contain such a cycle iff
it is a tree of double edges, which is easy to check in Ptime. Knowing whether an SCC is a
direct semi-deadlock or a semi-deadlock can also be done in Ptime.

Finally we have to check the condition from Proposition 3.29, so the existence of a
locally live strategy σp that prevents p to take a look from Bu. As above, this amounts to a
safety game.

4. Nested locks

We consider now nested-locking LSS, in which the system has to ensure that locks are
acquired and released in a stack-like manner. So a process can release only the last lock it
has acquired.

30 H. GIMBERT, C. MASCLE, A. MUSCHOLL, AND I. WALUKIEWICZ

Throughout the section the action associated with each operation is omitted, to simplify
the presentation.

Local runs of nested-locking LSS have a natural decomposition into staircases:

Definition 4.1. A stair decomposition of a local run u is of the form

u = u1 acqt1u2 acqt2 · · ·uk acqtkuk+1

where u1, . . . , uk+1 are neutral runs, and no ui uses locks from {t1, . . . , ti−1}.

Lemma 4.2. Every nested-locking local run u has a unique stair decomposition.

Proof. We set u = u1acqt1u2acqt2 · · ·ukacqtkuk+1 such that {t1, . . . , tk} is the set of locks
held by the process, call it p, at the end of the run u, and the distinguished acqti are the
last acquisitions of these locks in u. All properties are immediate.

We now define patterns of risky local runs that will serve as witnesses of reachable
deadlocks, in a similar manner as in Definition 3.2.

Definition 4.3. Consider a local risky σ-run u of process p, and its stair decomposition u =
u1 acqt1u2 acqt2 · · ·uk acqtkuk+1. We associate with u a stair pattern (Ownsp,Blocksp,⪯p),
where Ownsp = {t1, . . . , tk}, Blocksp is the set of locks requested by outgoing transitions
allowed by σ in the state reached by u, and ⪯p is the smallest partial order on Tp satisfying:

For all 1 ≤ i ≤ k and all t ∈ Tp, if the last operation on t in u is after the
last acqti then ti ⪯p t.

A behavior of σ is a family of sets of stair patterns (Pσ
p)p∈Proc, where Pσ

p is the set of
stair patterns of local risky σ-runs of p.

Example 4.4. Consider the local run displayed in Figure 7. It is nested-locking and risky,
hence we can define its stair pattern ({t1, t2, t4}, (t2 < t1 < t3 < t5 < t4), {t3, t5}). This
pattern describes the set of locks held at the end, the order on the last operations on each
lock appearing in the run, and the set of locks that can be acquired at the end.

Lemma 4.5. A control strategy σ with behavior (Pσ
p)p∈Proc is not winning if and only if for

every p ∈ Proc there is some stair pattern (Ownsp,Blocksp,⪯p) ∈ Pσ
p such that:

•
⋃

p∈Proc Blocksp ⊆
⋃

p∈Proc Ownsp,
• the sets Ownsp are pairwise disjoint,
• there exists a total order ⪯ on the set of all locks that is compatible with all ⪯p.

Proof. Suppose σ is not winning, and let w be a run leading to a deadlock. For all p let
Ownsp be the set of locks owned by p after w. Let up = w|p be the local run of p in
w. Since w leads to a deadlock every up is risky. For every p, consider the stair pattern
(Ownsp,Blocksp,⪯p) of up. By definition, this is a pattern from Pσ

p .
We need to show that these patterns satisfy the requirements of the lemma. Since the

configuration reached after w is a deadlock, every process waits for locks that are already
taken so

⋃
p Blocksp ⊆

⋃
pOwnsp, proving the first condition. Moreover, the sets Ownsp are

pairwise disjoint.
For the last requirement of the lemma consider some order ⪯ on T satisfying: t ⪯ t′

if the last operation on t appears before the last operation on t′ in w. Let p ∈ Proc, let
up = up1 acqtp1

up2 acqtp2
· · ·upk acqtpku

p
k+1 be the stair decomposition of up. As p never releases

tpi , the distinguished acqtpi
, is the last operation on tpi in the global run. Consequently, for all

DISTRIBUTED CONTROLLER SYNTHESIS FOR DEADLOCK AVOIDANCE 31

acqt1 relt1 acqt2

♦

acqt1

♦

acqt3 relt3 acqt4

♦

acqt5 relt5

acqt3

acqt5

t1

t3, t5

t2 t1 t4

Figure 7: Example of a nested-locking local run. The dotted arrows are the available
transitions at the end of the run. Blue diamonds mark transitions taking a lock
that is not released later in the run. The lower part shows the stair pattern of
this run (without the Blocks part). Steps represents the points at which a lock is
taken and not released later. On each step we write the set of locks used in the
corresponding section of the run.

t we have tpi ⪯ t whenever t is used in upi+1acqtpi+1
· · ·upkacqtpku

p
k+1. Hence, ⪯ is compatible

with all ⪯p.
For the converse implication, suppose that there are patterns satisfying all the conditions

of the lemma. We need to construct a run w ending in a deadlock. For every process
p we have a stair pattern (Ownsp,Blocksp,⪯p) coming from a local σ-run up of p, with
up = up1 acqtp1

up2 acqtp2
· · ·upk acqtpku

p
k+1 as stair decomposition. There is also a linear order

⪯ compatible with all ⪯p. Let ≺ be its strict part. Let t1, . . . , tk be the sequence of locks
from

⋃
pOwnsp listed according to ≺. Let {p1, . . . , pn} = Proc. We claim that we can get a

suitable global run w as up11 . . . upn1 w′ where w′ is obtained from t1 . . . tk by substituting each
tpi by acqtpi

upi+1. Observe that every tj from the sequence t1 . . . tk corresponds to exactly one

tpi , as the sets Ownsp1 , . . . ,Ownspn are disjoint.
All upi are neutral, hence after executing up11 . . . upn1 all locks are free. Let tpi ∈ Tp,

suppose furthermore that all acqtqj
uqj+1 with tqj ≺ tpi have been executed after up11 . . . upn1 .

Then the set of taken locks is {tqj | t
q
j ≺ tpi }. As ⪯ is compatible with all ⪯p, all locks t used

in acqtpi
upi+1 are such that tpi ⪯ t. Moreover, since all tqj that were taken before are such that

tqj ≺ tpi , the run acqtpi
upi+1 uses only locks that are free and can therefore be executed.

To sum up, w can be executed. It ends in a deadlock as
⋃

p Blocksp ⊆
⋃

pOwnsp.

Lemma 4.6. Given a nested-locking LSS S, a process p ∈ Proc and a set of patterns Pp, we

can check in polynomial time in |Ap| and 2|T | log(|T |) whether there exists a strategy σ with
Pσ
p ⊆ Pp.

Proof. Fix a process p. We extend the states of p to keep track of the set of locks held by p as
well as the order ≼ induced by the stair pattern of the run seen so far (as in Definition 4.3).

This increases the number of states by the factor |T |! · 2|T |.

32 H. GIMBERT, C. MASCLE, A. MUSCHOLL, AND I. WALUKIEWICZ

As the set of locks owned by p is now a function of the current state, this also allows us
to eliminate all non-realizable transitions which acquire a lock that p owns or release one it
does not have.

Consider a state s where all outgoing transitions have a lock acquisition as operation.
Thanks to the previous paragraph, s determines the set of locks Owns(s) and an order ≺s

such that every local run ending in s has a pattern (Ownss, B,≺s), where B depends on the
choices a strategy for p makes in s. We mark s bad if none of these possible patterns is in
Pp.

We iteratively delete all bad states and all their ingoing transitions, as we need to ensure
that we never reach them. If we delete an uncontrollable transition then we mark its source
state as bad because reaching that state would make the environment able to reach a bad
state. If this process marks the initial state bad then there is no local strategy with patterns
included in Pp. Otherwise, we look for new bad states as in the previous paragraph. Indeed,
a state may satisfy the conditions of the previous paragraph after removing some of its
outgoing transitions, for example a transition not accessing locks. If some new state is
marked bad then we repeat the whole procedure.

When this double loop stabilizes and if the initial state is not marked bad, then the
remaining transitions form a strategy for p with all patterns in Pp.

Proposition 4.7. The deadlock avoidance control problem is decidable for nested-locking
lock-sharing systems in non-deterministic exponential time.

Proof. First we apply the first step of Lemma 4.6 so that every state encodes which locks
are taken, and in which order. In this way we ensure that every release is applied in nested
manner.

The decision procedure for the existence of a winning strategy guesses a behavior Pp for

each process p. The size of the guess is at most 22|T | · |T |!, hence 2O(|T | log(|T |). Then it checks
if there exist local strategies yielding subsets of those behaviors. This takes exponential time
by Lemma 4.6. If the result is negative then the procedure rejects. Otherwise, it checks if
some condition from Lemma 4.5 does not hold. It it finds one then it accepts, otherwise it
rejects.

Clearly, if there is a winning strategy then the procedure can accept by guessing the
family of behaviors corresponding to this strategy. For these behaviors the check from
Lemma 4.6 does not fail, and one of the conditions of Lemma 4.5 must be violated.

Conversely, if the decision procedure concludes that there exists a winning strategy,
then let (Pp)p∈Proc be the guessed family of behaviors. We know that there exists a strategy
σ with behaviors (P′

p)p∈Proc such that P′
p ⊆ Pp for all p ∈ Proc. Furthermore, as there are

no patterns in (Pp)p∈Proc satisfying the requirements of Lemma 4.5, there cannot be any in
the P′

p either. Hence σ is a winning strategy.

Theorem 2.13. The deadlock avoidance control problem for nested-locking LSS is Nexptime-
complete.

Proof. The upper bound is given by Proposition 4.7. For the lower bound, we reduce from
the domino tiling problem over an exponential grid. In this problem, we are given an
alphabet Σ with a special letter b, an integer n (in unary) and a set D of dominoes, each
domino d being a 4-tuple (upd, downd, rightd, leftd) of letters of Σ. The question is whether
there exists a mapping t : {0, . . . , 2n − 1}2 → D representing a valid tiling of the grid,
i.e. such that for all x, y, x′, y′ ∈ {0, . . . , 2n − 1}:

DISTRIBUTED CONTROLLER SYNTHESIS FOR DEADLOCK AVOIDANCE 33

• if x′ = x and y′ = y + 1 then upt(x,y) = downt(x′,y′)

• if x′ = x+ 1 and y′ = y then right t(x,y) = left t(x′,y′)

• if x = 0 then left t(x,y) = b
• if x = 2n − 1 then right t(x,y) = b
• if y = 0 then downt(x,y) = b
• if y = 2n − 1 then upt(x,y) = b

The above problem is well-known to be Nexptime-complete.
Let n,Σ, D, b be an instance of the tiling problem. We construct a LSS as follows: We

have three processes p, p and q. Process p uses locks from {0xi , 1xi , 0
y
i , 1

y
i | 1 ≤ i ≤ n},

together with a lock td for each domino d ∈ D, and an extra lock called simply ℓ. Process p

will use similar locks but with a bar: 0xi , 1
x
i , 0

y
i , 1

y
i , td, ℓ. Process q will use all the locks of

p and p.
Let us describe process q represented in Figure 9. In the initial state the environment

can choose between several actions: equality , vertical , horizontal , bleft , bright , bup and bdown .
Each of these actions leads to a different transition system, but the principle behind all the
systems is the same. In the first phase, for each 1 ≤ i ≤ n, the environment can choose
to take either lock 0xi or 1xi , and then take either 0xi or 1xi . In the second phase the same
happens for y locks. After these two phases the environment has chosen two pairs of n-bit
numbers, call them #x,#y and #x,#y. Where the three systems differ is how the choice
of x’s and y’s is limited in these two phases. This depends on the first action done by the
environment:

• If it is equality then #x = #x and #y = #y.
• If it is vertical , then #x = #x and #y + 1 = #y.
• If it is horizontal , then #x+ 1 = #x and #y = #y.
• If it is bleft (resp. bright) then #x = 0 (resp. #x = 2n − 1).
• If it is bdown (resp. bup) then #y = 0 (resp. #y = 2n − 1).

All these constraints are easily implemented. For example, after equality the environment
must take the same bits for x as for x (similarly for y).

In the third phase, process q has to take and then immediately release locks ℓ and ℓ,
before it reaches a state called dominoes. Note that every state in the three phases before
dominoes has a loop on it, meaning that q cannot deadlock while being in one of these states.
In state dominoes, the system chooses to take two dominoes d and d such that:

• If the environment has chosen equality then d = d.
• If it has chosen vertical then upd = downd.
• If it has chosen horizontal then rightd = leftd.
• If it has chosen bleft (resp. bright , bup , bdown) then leftd = b (resp. rightd, upd, downd).

Each choice leads to a different state sd,d. From there transitions force the system to

take every lock td′ and td′ , except for td and td, in order to reach a state called win with a
local loop on it and no other outgoing transitions.

We now describe process p represented in Figure 9. It starts by taking the lock ℓ, which
it never releases. Then the environment chooses to take one of 0xi and 1xi and one of 0yi and
1yi for all 1 ≤ i ≤ n. Finally, the system chooses a domino d and takes the lock td before
reaching a state with no outgoing transitions. Process p behaves identically, but uses locks
with a bar.

We need to show that if there is a tiling t : {0, . . . , 2n− 1}2 → D then there is a winning
strategy. The strategy for q is to respond with the correct tiles: if the environment chooses

34 H. GIMBERT, C. MASCLE, A. MUSCHOLL, AND I. WALUKIEWICZ

d1

dm

· · · ...acqℓ

acq0x1

acq1x1

acq0yn

acq1yn

acqtd1

acqtdm

Figure 8: Transition system for process p for the proof of Theorem 2.13 (with D =
{d1, . . . , dm}). Dashed arrows are controlled by the system.

1

k

n

· · ·
...

...

· · ·
...

...

hor.

eq.

bleft
vertical

acq{0x1 , 0x1}

acq{1x1 , 1x1}

acq{0xn, 0xn}

acq{1xn, 1xn}

· · ·· · ·
acq{1y1, 0

y
1}acq{0yk, 1

y
k}

acq{0yk+1, 0
y
k+1}

acq{1yk+1, 1
y
k+1}

acq{0yn, 0yn}

acq{1yn, 1yn}

dominoes d, d win
acq (D \ {d, d})

acqℓ

acqℓ relℓ relℓ

Figure 9: Transition system for process q in the proof of Theorem 2.13. Dashed arrows are
controllable, every state before dominoes has a self-loop (not drawn) and acq S
means a sequence of forced transitions with the operations acqt for each t ∈ S (in
some order). For simplicity only the vertical case is shown.

#x, #y, #x, #y the strategy chooses locks corresponding to d1 and d2 with d1 = t(#x,#y)
and d2 = t(#x,#y). The strategy of p does the same but uses inverse encoding of numbers:
considers 0 as 1, and 1 as 0. Similarly for p.

Assume for contradiction that the strategy is not winning, so we have a run leading
to a deadlock. First, observe that the environment must have process q go through state
dominoes before p and p start running, because all states before dominoes have a self-loop,
so q cannot block there. If either p or p starts before q has reached dominoes, then q can
never reach it, as one of the locks ℓ, ℓ will never be available again.

If q reached state dominoes then process p has no choice but to take ℓ, and then the
remaining locks among x, y. Similarly for p. At this stage the strategy σ is defined so that
the three processes will never take the same lock. So q cannot be blocked before reaching
state win. Thus deadlock is impossible.

For the other direction, suppose there is a winning strategy σ for the system. Observe
that the strategy σp for process p decides which domino to take after the environment has

DISTRIBUTED CONTROLLER SYNTHESIS FOR DEADLOCK AVOIDANCE 35

decided which x and y locks to take. So σp defines a function t : {0, . . . , 2n − 1}2 → D.
Similarly σp defines t.

We first show that t(i, j) = t(i, j) for all i, j ∈ {0, . . . , 2n − 1}. If not then consider
for example the run where the environment chooses equality and then x, x to be the
representations of i, and y, y to be representations of j. Suppose we have a run where
process q reaches state dominoes, and assume that q’s strategy tells to go to state (d, d).
Next the environment makes processes p and p reach the states where they chose their
dominoes, t(i, j) and t(i, j) respectively. The two processes p and p then reach a deadlock
state. Since we assumed that t(i, j) ̸= t(i, j), process q cannot reach state win from any
state sd,d. Hence we have a deadlock run, a contradiction.

Once we know that the strategies σp and σp define the same tiling function it is easy to
see that in order to be winning when the environment chooses one of the actions vertical ,
horizontal or bleft , bright , bdown , bup , the tiling function must be correct.

5. Undecidability in the general case

In this section we show that the deadlock avoidance control problem is undecidable. With a
more involved proof we show undecidability using only 4 locks per process in [GMMW23].
The case of 3 locks per process remains open. In this section we present a lightweight proof,
where processes use a larger (but still fixed) number of locks.

Theorem 2.5. The deadlock avoidance control problem for arbitrary LSS is undecidable
(even when the number of locks and processes is fixed).

We begin by showing undecidability under the assumption that processes can already
hold some locks in the initial configuration. We then reduce this problem to the deadlock
avoidance control problem, where all processes start holding no lock.

P P

C

check b1b2 · · · = b1b2 · · ·

choose i1i2 · · · and
check αi1αi2 · · · = b1b2 · · · and
check βi1βi2 · · · = b1b2 · · ·

b1b2 · · · b1b2 · · ·

Figure 10: High-level view of the undecidability proof.

36 H. GIMBERT, C. MASCLE, A. MUSCHOLL, AND I. WALUKIEWICZ

5.1. Deadlock avoidance with initialization. The input for the deadlock avoidance
control problem with initialization is a lock-sharing system S = ((Ap)p∈Proc ,Σ

s,Σe, T) and
an initial configuration Cinit = (initp, Ip)p∈Proc with pairwise disjoint sets Ip ⊆ Tp. The
question is whether there exists a strategy that guarantees that no run from Cinit yields
a global deadlock. It turns out that this generalization of the deadlock avoidance control
problem is not more difficult than our original problem, as we will later see in Lemma 5.4.

Theorem 5.1. The control problem for LSS with initial configuration and at most 7 locks
per process is undecidable.

The proof of Theorem 5.1 follows a well-known schema. We reduce from the question
whether a PCP instance has an infinite solution.

Two processes P and P send independently sequences of bits b1, b2, . . . and b1, b2, . . .
to process C. The environment asks C either to check that b1b2 · · · = b1b2 . . . or choose a
sequence of indices i1, i2, . . . and check that αi1αi2 · · · = b1b2 · · · and βi1βi2 · · · = b1b2 · · · .
Since P and P do not know what is being checked, they have to send sequences of letters
and indices that satisfy both conditions, i.e., an infinite PCP solution. The difficulty here is
that P and P use only locks to communicate.

Formally, let (αi, βi)
m
i=1 be a PCP instance with αi, βi ∈ {0, 1}∗. We construct a system

with three processes P, P ,C, using locks from the set

{c, s0, s1, p, s0, s1, p} .
Process P will use locks from {c, s0, s1, p}, process P locks from {c, s0, s1, p}, and C all
seven locks. For the initial configuration we assume that Ip = {p}, IP = {p} and IC =
{c, s0, s1, s0, s1}.

We describe now the three processes P, P ,C. Define first for b = 0, 1:

uP (b) = acqsbrelp acqc relsbacqprelc

uP (b) = acqsbrelp acqc relsbacqprelc

The automatonAP (AP , resp.) allows all possible action sequences from (uP (0)+uP (1))
ω

((uP (0) + uP (1))
ω, resp.). If e.g. process P manages to execute a sequence uP (b1)uP (b2) . . .

then this will mean that C,P synchronize over the sequence b1, b2, . . . , as we show below.
Process C’s behavior for checking word equality consists in repeating the following

procedure: she chooses a bit b ∈ {0, 1} through a controllable action, then tries to execute
uC(P, b)uC(P , b), where:

uC(P, b) = relsb acqp relc acqsbrelp acqc

uC(P , b) = relsbacqp relc acqsbrelp acqc

For index equality C’s behavior is similar: she chooses an index i ∈ {1, . . . ,m} and then
tries to do uC(P, b1) . . . uC(P, bk)uC(P , b′1) . . . uC(P , b′r), where αi = b1 . . . bk, βi = b′1 . . . b

′
r.

Let us now prove that there is a winning strategy if and only if there is an infinite
solution to the PCP instance.

We start by formalizing the intuition that the sequences uP (b) and uC(P, b) make the
processes P,C synchronize over bit b.

Lemma 5.2. Let ρ be a finite global run between two configurations γ and γ′, such that
the sequence of operations of C in ρ is uC(P, b), and C holds s0, s1, s0, s1 in γ . Then the
sequence of operations executed by P in ρ is uP (b) and P stays idle in ρ. Furthermore C
holds s0, s1, s0, s1 in γ′.

DISTRIBUTED CONTROLLER SYNTHESIS FOR DEADLOCK AVOIDANCE 37

PAP P AP

AC

i

1

m

...

...

· · ·
· · ·

uC(P, 0)

uC(P, 1)

uC(P , 0)

uC(P , 1)

uP (0) uP (0)

uP (1) uP (1)

uC(P, αi[0]) uC(P, αi[ki])

uC(P , βi[0])uC(P , βi[k
′
i])

Figure 11: The system used for the undecidability proof. The letters αi[0], . . . , αi[ki] and
βi[0], . . . , βi[k

′
i] are defined so that αi[0] · · ·αi[ki] = αi and βi[0] · · ·βi[k′i] = βi.

Dashed transitions are controlable.

Proof. Let us start with P . At the start it cannot be holding c, s0 or s1 as C holds all of
them. This implies that it is in its initial state, and not in one of the loops uP (0) or uP (1).
Therefore its next action can only be to acquire s0 or s1. As those locks are never released
by C in uC(P, b), P has to stay idle.

It is easy to see from C’s sequence of actions that in γ′ it holds s0, s1, s0, s1.
Concerning P , for the same reason it has to be in its initial state in γ. From γ, process

C releases sb and acquires p, meaning that P has started executing the uP (b) loop, acquired
sb and released p and is waiting for c. Then C releases c and acquires sb, which means that
P has taken c and released sb, and is waiting for p. Finally C releases p and acquires c,
which implies that P has acquired p and released c, and is stuck in its initial state as C
holds both s0 and s1. Therefore, P has executed precisely uP (b).

Assume that there is a winning strategy for the problem with initialization. We can
observe that P has no incentive to allow both uP (0) and uP (1) at any point, since this
leaves the choice to the environment. On the other hand, if P disallows both choices, then
he keeps p forever, thus C will eventually be blocked as it needs to acquire p infinitely often.
Hence the lock c will be held indefinitely by C. Then P will also be blocked since it needs
to acquire c infinitely often. As a consequence, we can assume that P uses a strategy that
allows exactly one of uP (0), uP (1) each time.

Therefore, the strategy of P boils down to choosing a sequence of bits b0b1b2 · · · and
executing uP (b0)uP (b1)uP (b2) · · · . Similarly, P chooses a sequence of bits b0b1b2 · · · and
executes uP (b0)uP (b1)uP (b2) · · · . Also, if the environment makes C verify word equality,
then C chooses a sequence of bits b′′0b

′′
1b

′′
2 · · · and executes uP (b

′′
0)uP (b

′′
0)uP (b

′′
1)uP (b

′′
1) · · · .

Otherwise, C chooses a sequence of indices i0i1i2 · · · and executes an interleaving of

uP (b
′
0)uP (b

′
1)uP (b

′
2) · · · with b′0b

′
1 · · · = αi0αi1 · · · and uP (b

′
0)uP (b

′
1)uP (b

′
2) · · · with b

′
0b

′
1 · · · =

βi0βi1 · · · .

38 H. GIMBERT, C. MASCLE, A. MUSCHOLL, AND I. WALUKIEWICZ

Let us now observe the relations between those sequences. First of all note that if any
process gets blocked forever, then so do the other two, by Lemma 5.2. Thus a winning
strategy should ensure that all processes run forever. To do so, by Lemma 5.2, the case of
checking word equality implies that we should have b0b1 · · · = b′′0b

′′
1 · · · = b0b1 · · · .

Moreover, the case of index equality imposes that b0b1 · · · = αi0αi1 · · · and b0b1 · · · =
βi0βi1 · · · . As a result, we must have αi0αi1 · · · = βi0βi1 · · · , hence the PCP instance has an
infinite solution.

Let us now show the other direction. Suppose there are indices i0i1 · · · such that
αi0αi1 · · · = βi0βi1 · · · . Let b0b1 · · · = αi0αi1 · · · A winning strategy is to make P and P
choose that same sequence of bits b0b1 · · · . If C has to check word equality, it chooses the
sequence b0b1 · · · , otherwise it chooses indices i0i1 · · · . In the following lemma we say that a
process wants to execute a sequence of operations if those are the operations of the next
transitions chosen by its strategy.

Lemma 5.3. Assume that C owns {s0, s1, c, s0, s1}, P owns {p}, C wants to execute
uC(P, b), P wants to execute uP (b) and P wants to execute uP (b

′). Then C and P finish

executing uC(P, b) and uP (b) without encountering a global deadlock, P stays idle, and the
lock ownership is the same as before the execution.

Proof. Locks s0, s1 will never be released in the sequence we describe, thus P has to stay
idle.

It suffices to observe that the environment has no choice for the sequence of operations.
At first every lock is taken, and C is the only process which can release one (sb), so it does.
Then process P is the only one which can move, by taking sb, and then releasing p, and so
on. Eventually P will have executed uP (b) and C will have executed uC(P, b).

By construction of the strategy, no matter if the environment chooses to check word
equality or index equality, the sequence of operations of C is an interleaving of the sequences
uC(P, b0)uC(P, b1) · · · and uC(P , b0)uC(P , b1) · · · . The sequences of operations on P and P
are respectively uP (b0)uP (b1) · · · and uP (b0)uP (b1) · · · . As a consequence of this lemma, we
obtain that the system cannot reach a global deadlock.

We have shown that there is a winning strategy if and only if the PCP instance has an
infinite solution.

5.1.1. Removing the initialization. We aim to prove the following lemma:

Lemma 5.4. There is a polynomial-time reduction from the deadlock avoidance control
problem for lock-sharing systems with initialization to the control problem where all locks are
initially free. The reduction adds one process and |Proc|+ 1 new locks in total.

Proof. The system S = ((Ap)p∈Proc ,Σ
s,Σe, T) with initial ownership (Ip)p∈Proc is trans-

formed into a new system S∅ with one extra process and additional locks. The transformation
introduces one extra lock for each process p, denoted kp and called the key of p. The extra
process is called q and also has a key kq. Each process p ∈ Proc uses in addition to Tp the
locks kp and kq.

The automaton Aq of q consists of a sequence of states connected with uncontrollable
transitions where q first acquires kq, then acquires and releases each kp in some arbitrary,
fixed order. Additionally, every state except the last one has an uncontrollable nop self-loop.

DISTRIBUTED CONTROLLER SYNTHESIS FOR DEADLOCK AVOIDANCE 39

This is to make sure that q must execute the full sequence in any run leading to a global
deadlock.

The automaton Ap of process p is extended by new states and transitions, which define
a specific finite run called the init sequence. The new states and transitions can occur only
during the init sequence. When a process p completes his init sequence in S∅, he owns
precisely all locks in Ip, plus the key kp, and has reached his initial state initp in Ap. After
that, further actions and transitions played in S∅ are actions and transitions of S, unchanged.
All the new actions are uncontrollable, thus there is no strategic decision to make for the
controller of a process p until his init sequence is completed.

The init sequence. For process p, the init sequence IS p consists of three steps.

(1) First, p takes one by one (in a fixed arbitrary order) all locks in Ip.
(2) Second, p takes and releases kq.
(3) Finally, p acquires its key kp and reaches the initial state initp of Ap.

In addition, an uncontrollable nop self-loop labels every state of this sequence (except for
initp). The uncontrollable self-loops on every state of IS p guarantee that a deadlock may
occur only after all processes have fully completed their init sequences.

Linking runs in S∅ and S. We establish that there is a winning strategy in one system if
and only if there is one in the other. The reason for this is that essentially, in order to reach
a deadlock in S∅ the environment is forced to execute the init sequences of all processes and
then continue with an execution of S.

Claim 1. If there is a winning strategy in S∅, then there is one in S.

Proof. Let σ′ = (σ′
p)p∈Proc∪{q} be a winning strategy in S∅. We define a strategy σ =

(σp)p∈Proc in S by letting σp(u) = σ′
p(IS p u) for every local run u of p in S. Since all

transitions in IS p are uncontrollable, σp is well-defined.
Suppose by contradiction that there is a σ-run leading to a global deadlock in S. We

can execute the first two steps of IS p for each process p, one by one, then let q execute all
its transitions (acquire kq, then acquire and release each kp). At this point q is deadlocked.
Finally we execute the third step of IS p, for each process (acquire kp). We can then execute
the σ-run leading to a global deadlock in S, which also leads to a global deadlock in S∅.
This contradicts the assumption that σ′ is winning.

Claim 2. If there is a winning strategy in S, then there is one in S∅.

Proof. Let σ = (σp)p∈Proc be a winning strategy in S. We define σ′ = (σ′
p)p∈Proc such that

σp(u) = σ′
p(IS p u) for every local run u of p in S.

Suppose by contradiction that we have a σ′-run leading to a global deadlock in S∅. As
every state along the init sequence has a nop self-loop, they must all have executed their init
sequence in full. Similarly, q must have entirely executed its sequence of operations. Each p
must hence have executed steps (1) and (2) of IS p, and this before q has taken kq. On the
other hand, each p ∈ Proc must have taken kp after q has taken and released it.

As a consequence, there is a point in the run at which each p has taken all locks in Ip,
but none of them has reached initp yet. Consider the rest of the run from that point and
remove every action from the init sequences and from q. We obtain a σ-run of S leading to
a global deadlock. This contradicts the assumption that σ is winning.

40 H. GIMBERT, C. MASCLE, A. MUSCHOLL, AND I. WALUKIEWICZ

The two claims above prove that there is a winning strategy in one system if and only if
there is one in the other. This concludes the reduction.

We obtain Theorem 2.5 from Theorem 5.1 and Lemma 5.4.

6. Conclusions

Motivated by a recent undecidability result for distributed control synthesis of Zielonka
automata [Gim22] we have considered a simpler model, for which the problem has not
been investigated yet. With hindsight it is strange that the well-studied model using lock
synchronization has not been considered in the context of distributed synthesis. One reason
may be the non-monotone nature of the synthesis problem: for a less expressive class of
systems the problem is not necessarily easier because the controllers get less powerful, too.

The two decidable classes of lock-sharing systems presented here are rather promising.
Especially because the low complexity results cover already non-trivial problems. All our
algorithms are based on analyzing lock patterns. While in this article we consider only finite
state processes, the same method applies to more complex systems, as long as solving the
centralized control problem in the style of Lemma 3.4 is decidable. This is for example the
case for pushdown systems.

There are numerous directions that need to be investigated further. We have focused on
deadlock avoidance because this is a central property, and deadlocks are difficult to discover
by means of testing or verification. Another option is partial deadlock, where some, but
not all, processes are blocked. The concept of Z-deadlock scheme should help here, but the
complexity results may be different. Reachability, and repeated reachability properties need
to be investigated, too.

We do not know if the upper bound from Theorem 2.8 is tight. The algorithm for
verifying if there is a deadlock in a given lock graph, Algorithm 5, is already quite complicated,
and it is not clear how to proceed when a strategy is not given.

Another research direction is to consider probabilistic controllers. It is well known
that there are no symmetric solutions to the dining philosophers problem but there is a
randomized one [LR81,Lyn96]. Symmetric solutions are quite important for resilience issues
as it is preferable that every process runs the same code. The Lehmann-Rabin algorithm
is essentially the system presented in Figure 2 where the choice between left and right is
made randomly. This is one of the examples where randomized strategies are essential.
Distributed synthesis has a potential here because it is even more difficult to construct
distributed randomized systems and prove them correct.

Acknowledgements. We thank the LMCS reviewers for the thorough reading and their
numerous and helpful comments.

References

[AW07] André Arnold and Igor Walukiewicz. Nondeterministic controllers of nondeterministic processes.
In Jörg Flum, Erich Grädel, and Thomas Wilke, editors, Logic and Automata, volume 2 of Texts
in Logic and Games, pages 29–52. Amsterdam University Press, 2007.

[BBB+20] Béatrice Bérard, Benedikt Bollig, Patricia Bouyer, Matthias Függer, and Nathalie Sznajder.
Synthesis in presence of dynamic links. In Jean-François Raskin and Davide Bresolin, editors,
Proceedings 11th International Symposium on Games, Automata, Logics, and Formal Verification,

DISTRIBUTED CONTROLLER SYNTHESIS FOR DEADLOCK AVOIDANCE 41

GandALF 2020, Brussels, Belgium, September 21-22, 2020, volume 326 of EPTCS, pages 33–49,
2020. To appear in Information and Computation. doi:10.4204/EPTCS.326.3.

[BCMV13] Rémi Bonnet, Rohit Chadha, P. Madhusudan, and Mahesh Viswanathan. Reachability under
contextual locking. Log. Methods Comput. Sci., 9(3), 2013. doi:10.2168/LMCS-9(3:21)2013.

[BFHH19] Raven Beutner, Bernd Finkbeiner, and Jesko Hecking-Harbusch. Translating asynchronous games
for distributed synthesis. In International Conference on Concurrency Theory (CONCUR’19),
volume 140 of LIPIcs, pages 26:1–26:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Workshop on Logics of Programs, volume 131 of Lecture
Notes in Computer Science, pages 52–71. Springer Verlag, 1981.

[Chu57] Alonzo Church. Applications of recursive arithmetic to the problem of circuit synthesis. In
Summaries of the Summer Institute of Symbolic Logic, volume I, pages 3–50. Cornell Univ.,
Ithaca, N.Y., 1957.

[CM84] K. Mani Chandy and Jayadev Misra. The drinking philosophers problem. ACM Trans. Program.
Lang. Syst., 6(4):632–646, 1984. doi:10.1145/1780.1804.

[ELM+16] Michael D. Ernst, Alberto Lovato, Damiano Macedonio, Fausto Spoto, and Javier Thaine.
Locking discipline inference and checking. In ICSE 2016, Proceedings of the 38th International
Conference on Software Engineering, pages 1133–1144, Austin, TX, USA, May 2016.

[FGHO22] Bernd Finkbeiner, Manuel Gieseking, Jesko Hecking-Harbusch, and Ernst-Rüdiger Olderog.
Global winning conditions in synthesis of distributed systems with causal memory. In Florin
Manea and Alex Simpson, editors, 30th EACSL Annual Conference on Computer Science
Logic, CSL 2022, February 14-19, 2022, Göttingen, Germany (Virtual Conference), volume
216 of LIPIcs, pages 20:1–20:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.CSL.2022.20.

[Fin15] Bernd Finkbeiner. Bounded synthesis for Petri games. In Roland Meyer, André Platzer, and
Heike Wehrheim, editors, Correct System Design - Symposium in Honor of Ernst-Rüdiger
Olderog on the Occasion of His 60th Birthday, Oldenburg, Germany, September 8-9, 2015.
Proceedings, volume 9360 of Lecture Notes in Computer Science, pages 223–237. Springer, 2015.
doi:10.1007/978-3-319-23506-6_15.

[FO17] Bernd Finkbeiner and Ernst-Ruediger Olderog. Petri games: Synthesis of distributed systems
with causal memory. Inf. Comput., 253:181–203, 2017.

[FS05] Bernd Finkbeiner and Sven Schewe. Uniform distributed synthesis. In LICS’05, pages 321–330.
IEEE Computer Society, 2005.

[GGMW13] Blaise Genest, Hugo Gimbert, Anca Muscholl, and Igor Walukiewicz. Asynchronous games
over tree architectures. In International Colloquium on Automata, Languages and Programming
(ICALP’13), volume 7966 of LNCS, pages 275–286. Springer, 2013.

[GHY21] Manuel Gieseking, Jesko Hecking-Harbusch, and Ann Yanich. A web interface for Petri nets
with transits and Petri games. In Jan Friso Groote and Kim Guldstrand Larsen, editors, Tools
and Algorithms for the Construction and Analysis of Systems - 27th International Conference,
TACAS 2021, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings,
Part II, volume 12652 of Lecture Notes in Computer Science, pages 381–388. Springer, 2021.
doi:10.1007/978-3-030-72013-1_22.

[Gim17] Hugo Gimbert. On the control of asynchronous automata. In FSTTCS’17, volume 30 of LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[Gim22] Hugo Gimbert. Distributed asynchronous games with causal memory are undecidable. Log.
Methods Comput. Sci., 18(3), 2022. doi:10.46298/lmcs-18(3:30)2022.

[GLZ04] Paul Gastin, Benjamin Lerman, and Marc Zeitoun. Distributed games with causal memory
are decidable for series-parallel systems. In FSTTCS’04, volume 3328 of LNCS, pages 275–286.
Springer, 2004.

[GMMW22] Hugo Gimbert, Corto Mascle, Anca Muscholl, and Igor Walukiewicz. Distributed controller
synthesis for deadlock avoidance. In Mikolaj Bojanczyk, Emanuela Merelli, and David P.
Woodruff, editors, 49th International Colloquium on Automata, Languages, and Programming,
ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 125:1–125:20. Schloss

https://doi.org/10.4204/EPTCS.326.3
https://doi.org/10.2168/LMCS-9(3:21)2013
https://doi.org/10.1145/1780.1804
https://doi.org/10.4230/LIPIcs.CSL.2022.20
https://doi.org/10.1007/978-3-319-23506-6_15
https://doi.org/10.1007/978-3-030-72013-1_22
https://doi.org/10.46298/lmcs-18(3:30)2022

42 H. GIMBERT, C. MASCLE, A. MUSCHOLL, AND I. WALUKIEWICZ

Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.
ICALP.2022.125, doi:10.4230/LIPICS.ICALP.2022.125.

[GMMW23] Hugo Gimbert, Corto Mascle, Anca Muscholl, and Igor Walukiewicz. Distributed controller
synthesis for deadlock avoidance. CoRR, abs/2204.12409, 2023. URL: https://doi.org/10.
48550/arXiv.2204.12409, arXiv:2204.12409, doi:10.48550/ARXIV.2204.12409.

[GSZ09] Paul Gastin, Nathalie Sznajder, and Marc Zeitoun. Distributed synthesis for well-connected
architectures. Formal Methods in System Design, 34(3):215–237, June 2009.

[HM19] Jesko Hecking-Harbusch and Niklas O. Metzger. Efficient trace encodings of bounded synthesis
for asynchronous distributed systems. In Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza,
editors, Automated Technology for Verification and Analysis - 17th International Symposium,
ATVA 2019, Taipei, Taiwan, October 28-31, 2019, Proceedings, volume 11781 of Lecture Notes
in Computer Science, pages 369–386. Springer, 2019. doi:10.1007/978-3-030-31784-3_22.

[Kah09] Vineet Kahlon. Boundedness vs. unboundedness of lock chains: Characterizing decidability of
pairwise CFL-reachability for threads communicating via locks. In 2009 24th Annual IEEE
Symposium on Logic In Computer Science, pages 27–36, 2009. doi:10.1109/LICS.2009.45.

[KG06] Vineet Kahlon and Aarti Gupta. An automata-theoretic approach for model checking threads
for LTL properties. In 21st Annual IEEE Symposium on Logic in Computer Science (LICS’06),
pages 101–110, 2006. doi:10.1109/LICS.2006.11.

[KIG05] Vineet Kahlon, Franjo Ivancić, and Aarti Gupta. Reasoning about threads communicating via
locks. In Proceedings of the 17th International Conference on Computer Aided Verification,
CAV’05, page 505–518, Berlin, Heidelberg, 2005. Springer-Verlag. doi:10.1007/11513988_49.

[KV01] Orna Kupferman and Moshe Y. Vardi. Synthesizing distributed systems. In LICS’01, pages
389–398. IEEE, 2001.

[LMSW13] Peter Lammich, Markus Müller-Olm, Helmut Seidl, and Alexander Wenner. Contextual locking
for dynamic pushdown networks. In Francesco Logozzo and Manuel Fähndrich, editors, Static
Analysis - 20th International Symposium, SAS 2013, Seattle, WA, USA, June 20-22, 2013.
Proceedings, volume 7935 of Lecture Notes in Computer Science, pages 477–498. Springer, 2013.
doi:10.1007/978-3-642-38856-9_25.

[LR81] Daniel Lehmann and Michael O. Rabin. On the advantages of free choice: A symmetric and
fully distributed solution to the dining philosophers problem. In John White, Richard J. Lipton,
and Patricia C. Goldberg, editors, Conference Record of the Eighth Annual ACM Symposium
on Principles of Programming Languages, Williamsburg, Virginia, USA, January 1981, pages
133–138. ACM Press, 1981. doi:10.1145/567532.567547.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
[MT01] P. Madhusudan and P.S. Thiagarajan. Distributed control and synthesis for local specifications.

In ICALP’01, volume 2076 of LNCS, pages 396–407. Springer, 2001.
[MTY05] P. Madhusudan, P. S. Thiagarajan, and Shaofa Yang. The MSO theory of connectedly commu-

nicating processes. In FSTTCS’05, volume 3821 of LNCS, pages 201–212. Springer, 2005.
[MW14] Anca Muscholl and Igor Walukiewicz. Distributed synthesis for acyclic architectures. In

FSTTCS’14, volume 29 of LIPIcs, pages 639–651. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2014.

[PR89] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Proc. ACM POPL,
pages 179–190, 1989.

[PR90] Amir Pnueli and Roni Rosner. Distributed reactive systems are hard to synthesize. In FOCS’90,
pages 746–757. IEEE Computer Society, 1990.

[RW89] Peter J.G. Ramadge and Walter M. Wonham. The control of discrete event systems. Proceedings
of the IEEE, 77(2):81–98, 1989.

[RW92] Karen Rudie and W. Murray Wonham. Think globally, act locally: Decentralized supervisory
control. IEEE Trans. on Automat. Control, 37(11):1692–1708, 1992.

[Thi05] John G. Thistle. Undecidability in decentralized supervision. Systems & Control Letters,
54(5):503–509, 2005.

[Tri04] Stavros Tripakis. Undecidable problems in decentralized observation and control for regular
languages. Information Processing Letters, 90(1):21–28, 2004.

https://doi.org/10.4230/LIPIcs.ICALP.2022.125
https://doi.org/10.4230/LIPIcs.ICALP.2022.125
https://doi.org/10.4230/LIPICS.ICALP.2022.125
https://doi.org/10.48550/arXiv.2204.12409
https://doi.org/10.48550/arXiv.2204.12409
https://arxiv.org/abs/2204.12409
https://doi.org/10.48550/ARXIV.2204.12409
https://doi.org/10.1007/978-3-030-31784-3_22
https://doi.org/10.1109/LICS.2009.45
https://doi.org/10.1109/LICS.2006.11
https://doi.org/10.1007/11513988_49
https://doi.org/10.1007/978-3-642-38856-9_25
https://doi.org/10.1145/567532.567547

DISTRIBUTED CONTROLLER SYNTHESIS FOR DEADLOCK AVOIDANCE 43

[Wal21] Igor Walukiewicz. Synthesis with finite automata. In J. E. Pin, editor, Handbook of Automata
Theory, volume 2, pages 1215–1258. 2021. https://www.labri.fr/perso/igw/Papers/igw-synt-
chapter.pdf.

[WLK+09] Yin Wang, Stéphane Lafortune, Terence Kelly, Manjunath Kudlur, and Scott A. Mahlke. The
theory of deadlock avoidance via discrete control. In Zhong Shao and Benjamin C. Pierce, editors,
Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009, pages 252–263. ACM, 2009.
doi:10.1145/1480881.1480913.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1145/1480881.1480913

	1. Introduction
	2. Preliminaries
	3. Two locks per process
	3.1. The general case of *2LSS
	3.2. Locally live strategies
	3.3. Exclusive *2LSS

	4. Nested locks
	5. Undecidability in the general case
	5.1. Deadlock avoidance with initialization

	6. Conclusions
	References

