
The Trichotomy of Regular Property Testing
Gabriel Bathie # Ñ

LaBRI, Université de Bordeaux
DIENS, Paris, France

Nathanaël Fijalkow # Ñ

LaBRI, CNRS, Université de Bordeaux, France

Corto Mascle #Ñ

LaBRI, Université de Bordeaux, France
MPI-SWS, Kaiserslautern, Germany

Abstract
Property testing is concerned with the design of algorithms making a sublinear number of queries to
distinguish whether the input satisfies a given property or is far from having this property. A seminal
paper of Alon, Krivelevich, Newman, and Szegedy in 2001 introduced property testing of formal
languages: the goal is to determine whether an input word belongs to a given language, or is far from
any word in that language. They constructed the first property testing algorithm for the class of all
regular languages. This opened a line of work with improved complexity results and applications to
streaming algorithms. In this work, we show a trichotomy result: the class of regular languages can
be divided into three classes, each associated with an optimal query complexity. Our analysis yields
effective characterizations for all three classes using so-called minimal blocking sequences, reasoning
directly and combinatorially on automata.

2012 ACM Subject Classification Theory of computation → Regular languages

Keywords and phrases property testing, regular languages

Funding Gabriel Bathie: Partially funded by the grant ANR-20-CE48-0001 from the French Na-
tional Research Agency.

1 Introduction

Property testing was introduced by Goldreich, Goldwasser and Ron [19] in 1998: it is the
study of randomized approximate decision procedures that must distinguishing objects that
have a given property from those that are far from having it. Because of this relaxation
on the specification, the field focuses on very efficient decision procedures, typically with
sublinear (or even constant) running time – in particular, the algorithm does not even have
the time to read the whole input.

In a seminal paper, Alon et al. [5] introduced property testing of formal languages: given
a language L of finite words, the goal is to determine whether an input word u belongs to
the language or is ε-far1 from it, where ε is the precision parameter. The model assumes
random access to the input word: a query specifies a position in the word and asks for the
letter at that position, and the query complexity of the algorithm is the worst-case number
of queries it makes to the input. Alon et al. [5] showed a surprising result: under the
Hamming distance, all regular languages are testable with O(log3(ε−1)/ε) queries, where
the O(·) notation hides constants that depend on the language, but, crucially, not on the
length of the input word. In that paper, they also identified the class of trivial regular
languages, those for which the answer is always yes or always no for sufficiently large n, e.g.

1 Informally, u is ε-far from L means that even by changing an ε-fraction of the letters of u, we cannot
obtain a word in L. See Section 2 for a formal definition.

ar
X

iv
:2

50
4.

19
15

2v
1

 [
cs

.D
S]

 2
7

A
pr

 2
02

5

2 The Trichotomy of Regular Property Testing

finite languages or the set of words starting with an a, and showed that testing membership
in a non-trivial regular language requires Ω(1/ε) queries.

The results of Alon et al. [5] leave a multiplicative gap of O(log3(1/ε)) between the best
upper and lower bounds. We set out to improve our understanding of property testing of
regular languages by closing this gap. Bathie and Starikovskaya obtained in 2021 [9] the
first improvement over the result of Alon et al. [5] in more than 20 years:

▶ Fact 1.1 (From [9, Theorem 5]). Under the edit distance, every regular language can be
tested with O(log(ε−1)/ε) queries.

Testers under the edit distance are weaker than testers under the Hamming distance, hence
this result does not exactly improve the result of Alon et al. [5]. We overcome this shortcom-
ing later in this article: Theorem 4.16 extends the above result to the case of the Hamming
distance.

Bathie and Starikovskaya [9] also showed that this upper bound is tight, in the sense
that there is a regular language L0 for which this complexity cannot be further improved,
thereby closing the query complexity gap.

▶ Fact 1.2 (From [9, Theorem 15]). There is a regular language L0 with query complexity
Ω(log(ε−1)/ε) under the edit distance2, for all small enough ε > 0.

Furthermore, it is easy to find specific non-trivial regular languages for which there is an
algorithm using only O(1/ε) queries, e.g. L = a∗ over the alphabet {a, b}, L = (ab)∗ or
L = (aa + bb)∗.

Hence, these results combined with those of Alon et al. [5] show that there exist trivial
languages (that require 0 queries for large enough n), easy languages (with query complexity
Θ(1/ε)) and hard languages (with query complexity Θ(log(ε−1)/ε)). This raises the question
of whether there exist languages with a different query complexity (e.g. Θ(log log(ε−1)/ε)),
or if every regular is either trivial, easy or hard. This further asks the question of giving a
characterization of the languages that belong to each class, inspired by the recent success
of exact characterizations of the complexity of sliding window [16] recognition and dynamic
membership [7] of regular languages.

In this article, we answer both questions: we show a trichotomy of the complexity of
testing regular languages under the Hamming distance3, showing that there are only the
three aforementioned complexity classes (trivial, easy and hard), we give a characterization
of all three classes using a combinatorial object called blocking sequences, and show that this
characterization can be decided in polynomial space (and that it is complete for PSPACE).
This trichotomy theorem closes a line of work on improving query complexity for property
testers and identifying easier subclasses of regular languages.

1.1 Related work
A very active branch of property testing focuses on graph properties, for instance one can
test whether a given graph appears as a subgraph [3] or as an induced subgraph [4], and
more generally every monotone graph property can be tested with one-sided error [6]. Other
families of objects heavily studied under this algorithmic paradigm include probabilistic

2 Note that, as opposed to testers, lower bounds for the edit distance are stronger than lower bounds of
the Hamming distance.

3 We consider one-sided error testers, also called testing with perfect completeness, see definitions below.

G. Bathie and N. Fijalkow and C. Mascle 3

distributions [25, 11] combined with privacy constraints [2], numerical functions [10, 28],
and programs [13, 12]. We refer to the book of Goldreich [18] for an overview of the field of
property testing.

Testing formal languages. Building upon the seminal work of Alon et al. [5], Magniez
et al. [23] gave a tester using O(log2(ε−1)/ε) queries for regular languages under the edit
distance with moves, and François et al. [15] gave a tester using O(1/ε2) queries for the case
of the weighted edit distance. Alon et al. [5] also show that context-free languages cannot be
tested with a constant number of queries, and subsequent work has considered testing specific
context-free languages such as the Dyck languages [26, 14] or regular tree languages [23].
Property testing of formal languages has been investigated in other settings: Ganardi et
al. [17] studied the question of testing regular languages in the so-called “sliding window
model”, while others considered property testing for subclasses of context-free languages
in the streaming model: Visibly Pushdown languages [15], Dyck languages [21, 22, 24] or
DLIN and LL(k) [8]. A recent application of property testing of regular languages was to
detect race conditions in execution traces of distributed systems [30].

1.2 Main result and overview of the paper
We start with a high-level presentation of the approach, main result, and key ideas. In this
section we assume familiarity with standard notions such as finite automata; we will detail
notations in Section 2.

Let us start with the notion of a property tester for a language L: the goal is to determine
whether an input word u belongs to the language L, or whether it is ε-far from it. We say
that u of length n is ε-far from L with respect to a metric d over words if all words v ∈ L

satisfy d(u, v) ≥ εn, written d(u, L) ≥ εn. Throughout this work and unless explicitly stated
otherwise, we will consider the case where d is the Hamming distance, defined for two words
u and v as the number of positions at which they differ if they have the same length, and
as +∞ otherwise. In that case, d(u, L) ≥ εn means that one cannot change a proportion ε

of the letters in u to obtain a word in L. We assume random access to the input word: a
query specifies a position in the word and asks for the letter in this position. A ε-property
tester (or for short, simply a tester) T for a language L is a randomized algorithm that,
given an input word u of length n, always answers “yes” if u ∈ L and answers “no” with
probability bounded away from 0 when u is ε-far from L. As in previous works on this topic,
we measure the complexity of a tester by its query complexity. It is the maximum number
of queries that T makes on an input of length n, as a function of n and ε, in the worst case
over all words of length n and all possible random choices.

We can now formally define the classes of trivial, easy and hard regular languages.

▶ Definition 1.3 (Hard, easy and trivial languages). Let L be a regular language. We say
that:

L is hard if the optimal query complexity for a property tester for L is Θ(log(ε−1)/ε).
L is easy if the optimal query complexity for a property tester for L is Θ(1/ε).
L is trivial if there exists ε0 > 0 such that for all positive ε < ε0, there is a property
tester and some n ∈ N such that the tester makes 0 queries on words of length ≥ n.

▶ Remark 1.4. If L is finite, then it is trivial: since there is a bound B on the lengths of its
words, a tester can reject words of length at least n0 = B + 1 without querying them. For
that reason, we only consider infinite languages in the rest of the article.

4 The Trichotomy of Regular Property Testing

Our characterization of those three classes uses the notion of blocking sequence of a
language L. Intuitively, they are sequences of words such that finding those words as factors
of a word w proves that w is not in L. We also define a partial order on them, which gives
us a notion of minimal blocking sequence.

▶ Theorem 1.5. Let L be an infinite regular language recognized by an NFA A and let
MBS(A) denote the set of minimal blocking sequences of A. The complexity of testing L is
characterized by MBS(A) as follows:
1. L is trivial if and only if MBS(A) is empty;
2. L is easy if and only if MBS(A) is finite and nonempty;
3. L is hard if and only if MBS(A) is infinite.

In the case where L is recognised by a strongly connected automaton, blocking sequences
can be replaced by blocking factors. A blocking factor is a single word that is not a factor
of any word in L.

Section 2 defines the necessary terms and notations. The rest of the paper is structured
as follows. In Sections 3 and 4, we delimit the set of hard languages, that is, the ones
that require Θ(log(ε−1)/ε) queries. More precisely, Section 3 focuses on the subcase of
languages defined by strongly connected automata. First, we combine the ideas of Alon
et al. [5] with those presented in [9] to obtain a property tester that uses O(log(ε−1)/ε)
queries for any language with a strongly connected automaton, under the Hamming distance.
Second, we show that if the language of a strongly connected automaton has infinitely many
blocking factors then it requires Ω(log(ε−1)/ε) queries. This result generalizes the result of
Bathie and Starikovskaya [9], which was for a single language, to all regular languages with
infinitely many minimal blocking factors. We use Yao’s minimax principle [31]: this involves
constructing a hard distribution over inputs, and showing that any deterministic property
testing algorithms cannot distinguish between positive and negative instances against this
distribution.

In Section 4, we extends those results to all automata. The interplay with the previous
section is different for the upper and the lower bound.For the upper bound of O(log(ε−1)/ε)
queries, we use a natural but technical extension of the proof in the strongly connected case.
Note that this result is an improvement over the result of Bathie and Starikovskaya [9], which
works under the edit distance, and testers for the Hamming distance are also testers for the
edit distance. For the lower bound of Ω(log(ε−1)/ε) queries for languages with infinitely
many minimal blocking sequences, we reduce to the strongly connected case. The main
difficulty is that it is not enough to consider strongly connected components in isolation:
there exists finite automata that contain a strongly connected component that induces a
hard language, yet the language of the whole automaton is easy. We solve this difficulty by
carefully defining the notion of minimality for a blocking sequence.

Section 5 completes the trichotomy, by characterising the easy and trivial languages. We
show that languages of automata with finitely many blocking sequences can be tested with
O(1/ε) queries. We also prove that if an automaton has at least one blocking sequence, then
it requires Ω(1/ε) queries to be tested, by showing that the languages that our notion of
trivial language coincides with the one given by Alon et al. [5]. By contrast, we show that
automata without blocking sequences recognize trivial languages.

Once we have the trichotomy, it is natural to ask whether it is effective: given an au-
tomaton A, can we determine if its language is trivial, easy or hard? The answer is yes,
and we show in Section 6 that all three decision problems are PSPACE-complete, even for
strongly connected automata.

G. Bathie and N. Fijalkow and C. Mascle 5

2 Preliminaries

Words and automata. We write Σ∗ (resp. Σ+) for the set of finite words (resp. non-
empty words) over the alphabet Σ. The length of a word u is denoted |u|, and its ith letter
is denoted u[i]. The empty word is denoted γ. Given u ∈ Σ∗ and 0 ≤ i, j ≤ |u| − 1, define
u[i. .j] as the word u[i]u[i + 1] . . . u[j] if i ≤ j and γ otherwise. Further, u[i. .j) denotes the
word u[i. .j − 1]. A word w is a factor (resp. prefix, suffix) of u is there exist indices i, j

such that w = u[i. .j] (resp. with i = 0, j = |u| − 1). We use w ≼ u to denote “w is a factor
of u”. Furthermore, if w is a factor of u and w ̸= u, we say that w is a proper factor of u.

A nondeterministic finite automaton (NFA) A is a transition system defined by a tuple
(Q, Σ, δ, q0, F), with Q a finite set of states, Σ a finite alphabet, δ : Q×Σ→ 2Q the transition
function, q0 ∈ Q the initial state and F ⊆ Q the set of final states. The semantics is as
usual [27]. When there is a path from a state p to a state q in A, we say that q is reachable
from p and that p is co-reachable from q. In this work, we assume w.l.o.g. that all NFA A
are trim, i.e., every state is reachable from the initial state and co-reachable from some final
state.

Property testing.

▶ Definition 2.1. Let L be a language, let u be a word of length n, let ε > 0 be a precision
parameter and let d : Σ∗ × Σ∗ → N ∪ {+∞} be a metric. We say that the word u is ε-far
from L w.r.t. d if d(u, L) ≥ εn, where

d(u, L) := inf
v∈L

d(u, v).

We assume random access to the input word: a query specifies a position in the word and
asks for the letter in this position.

Throughout this work and unless explicitly stated otherwise, we will consider the case
where d is the Hamming distance, defined for two words u and v as the number of positions
at which they differ if they have the same length, and as +∞ otherwise. In that case,
d(u, L) ≥ εn means that one cannot change an ε-fraction of the letters in u to obtain a word
in L.

A ε-property tester (or simply a tester) T for a language L is a randomized algorithm
that, given an input word u, always answers “yes” if u ∈ L and answers “no” with probability
bounded away from 0 when u is ε-far from L.

▶ Definition 2.2. A property tester for the language L with precision ε > 0 is a randomized
algorithm T that, for any input u of length n, given random access to u, satisfies the following
properties:

if u ∈ L, then T (u) = 1,

if u is ε-far from L, then P (T (u) = 0) ≥ 2/3.

The query complexity of T is a function of n and ε that counts the maximum number of
queries that T makes over all inputs of length n and over all possible random choices.

We measure the complexity of a tester by its query complexity. Let us emphasize that
throughout this article we focus on so-called “testers with perfect completeness”, or “one-
sided error”: if a word is in the language, the tester answers positively (with probability
1). In particular our characterization applies to this class. Because they are based on

6 The Trichotomy of Regular Property Testing

the notion of blocking factors that we will discuss below, all known testers for regular
languages [5, 23, 15, 9] have perfect completeness.

In this paper, we assume that the automaton A that describes the tested language L is
fixed, and not part of the input. Therefore, we consider its number of states m as a constant.

Graphs and periodicity. We now recall tools introduced by Alon et al. [5] to deal with
periodicity in finite automata.

Let G = (V, E) with E ⊆ V 2 be a directed graph. A strongly connected component (or
SCC) of G is a maximal set of vertices that are all reachable from each other. It is trivial if
it contains a single state with no self-loop on it. We say that G is strongly connected if its
entire set of vertices is an SCC.

The period λ = λ(G) of a non-trivial strongly connected graph G is the greatest common
divisor of the length of the cycles in G. Following the work of Alon et al. [5], we will use the
following property of directed graphs.

▶ Fact 2.3 (From [5, Lemma 2.3]). Let G = (V, E) be a non-empty, non-trivial, strongly
connected graph with finite period λ = λ(G). Then there exists a partition V = Q0⊔. . .⊔Qλ−1
and a reachability constant ρ = ρ(G) that does not exceed 3|V |2 such that:
1. For every 0 ≤ i, j ≤ λ − 1 and for every s ∈ Qi, t ∈ Qj, the length of any directed path

from s to t in G is equal to (j − i) mod λ.
2. For every 0 ≤ i, j ≤ λ − 1, for every s ∈ Qi, t ∈ Qj and for every integer r ≥ ρ, if

r = (j − i) (mod λ), then there exists a directed path from u to v in G of length r.
The sets (Qi : i = 0, . . . , λ − 1) are the periodicity classes of G. In what follows, we will
slightly abuse notation and use Qi even when i ≥ λ to mean Qi (mod λ) .

An automaton A = (Q, Σ, δ, q0, F) defines an underlying graph G = (Q, E) where E =
{(p, q) ∈ Q2 | ∃a ∈ Σ : q ∈ δ(p, a)}. In what follows, we naturally extend the notions defined
above to finite automata through this graph G. Note that the numbering of the periodicity
classes is defined up to a shift mod λ: we can thus always assume that Q0 is the class that
contains the initial state q0. The period of A is written λ(A).

Positional words and positional languages. Consider the language L3 = (ab)∗. The word
v = ab can appear as a factor of a word u ∈ L3 if v occurs at an even position (e.g. position 0,
2, etc.) in u. However, if v occurs at an odd position in u, then u cannot be in L3. Therefore,
v can be used to witness that u is not in L3, but only if we find it at an odd position. This
example leads us to introducing p-positional words, which additionally encode information
about the index of each letter modulo an integer p.

More generally, we will associate to each regular language a period λ, and working with λ-
positional words will allow us to define blocking factors in a position-dependent way without
explicitly considering the index at which the factor occurs.

▶ Definition 2.4 (Positional words). Let p be a positive integer. A p-positional word is a
word over the alphabet Z/pZ×Σ of the form (n (mod p), a0)((n+1) (mod p), a1) · · · ((n+ℓ)
(mod p), aℓ) for some non-negative integer n. If u = a0 · · · aℓ, we write (n : u) to denote this
word.

With this definition, if u = abcd and we consider the 2-positional word τ = (0 : u), the
factor bc appears at position 1 in u and is mapped to the factor µ = (1, a)(0, b). In this case,
even when taking factors of µ, we still retain the (congruence classes of the) indices in the
original word τ .

G. Bathie and N. Fijalkow and C. Mascle 7

Any strongly connected finite automaton A = (Q, Σ, δ, q0, F) can naturally be extended
into an automaton Â over λ(A)-positional words with λ(A)|Q| states. It suffices to keep
track in the states of the current state of A and the number of letters read modulo λ(A).

We call the language recognized by Â the positional language of A, and denote it T L(A).
This definition is motivated by the following property:

▶ Property 2.5. For any word u ∈ Σ∗, we have u ∈ L(A) if and only if (0 : u) ∈ T L(A).

Positional words make it easier to manipulate factors with positional information, hence
we phrase our property testing results in terms of positional languages. Notice that a
property tester for T L(A) immediately gives a property tester for L(A), as one can simulate
queries to (0 : u) with queries to u by simply pairing the index of the query modulo λ(A)
with its result.

3 Hard Languages for Strongly Connected NFAs

Before considering the case of arbitrary NFAs, we first study the case of strongly connected
NFAs, which are NFAs such that for any pair of states p, q ∈ Q, there exists a word w such
that p

w−→ q. We will later generalize the results of this section to all NFAs.
We show that the query complexity of the language of such an NFA A can be character-

ized by the cardinality of the set of minimal blocking factors of A, which are factor-minimal
λ(A)-positional words that witness the fact that a word does not belong to T L(A). In this
section, we consider a fixed NFA A and simply use “positional words” to refer to λ-positional
words, where λ = λ(A) is the period of A.

▶ Definition 3.1 (Blocking factors). Let A be a strongly connected NFA. A positional word
τ is a blocking factor of A if for any other positional word µ we have τ ≼ µ⇒ µ /∈ T L(A).

Further, we say that τ is a minimal blocking factor of A if no proper factor of τ is a
blocking factor of A. We use MBF(A) to denote the set of all minimal blocking factors of A.

Intuitively and in terms of automata, the positional word (i : u) is blocking for A if it does
not label any transition in A labeled by u starting from a state of Qi. (This property is
formally established later in Lemma 3.5.) The main result of this section is the following:

▶ Theorem 3.2. Let L be an infinite language recognised by a strongly connected NFA A.
If MBF(A) is infinite, then L is hard, i.e., it has query complexity Θ(log(ε−1)/ε)

This result gives both an upper bound of O(log(ε−1)/ε) and a lower bound of Ω(log(ε−1)/ε)
on the query complexity of a tester for L: we prove the upper bound in Section 3.2 and the
lower bound in Section 3.3.

3.1 Positional words, blocking factors and strongly connected NFAs
We first establish some properties of positional words that will help us ensure that we are
creating well-formed positional words, that is, positional words where the index i of a letter
(i : a) is equal to j +1 (mod λ), where j is the index of the previous letter. In Section 3.2, we
highlight the connection between property testing and blocking factors in strongly connected
NFAs.

We start with the following properties, which are consequences of Fact 2.3.

▶ Corollary 3.3. Let n be a nonnegative integer, let w be a word of length n. If for some
states p ∈ Qi, q ∈ Qj of A we have p

w−→ q, then the indices i, j satisfy the equation

j − i = |w| (mod λ)

8 The Trichotomy of Regular Property Testing

▶ Corollary 3.4. Let τ = (i : u) and µ = (j : v) be positional words. If τ ≼ µ, then there
exists positional words η, η′ with |η| = i− j (mod λ) such that µ = ητη′. In particular, this
implies that there exists words w, w′ with |w| = i− j (mod λ) such that v = wuw′.

These properties allows us to formalize the intuition we gave earlier about blocking
factors.

▶ Lemma 3.5. A positional word τ = (i : u) is a blocking factor for A iff for every states
p ∈ Qi, q ∈ Q, we have p ̸u−→ q.

Proof. We first show that if there exists states p ∈ Qi, q ∈ Q such that p
u−→ q, then τ is not

blocking, i.e. there exists µ ∈ T L(A) such that τ ≼ µ. As A is strongly connected, there
exist positional words η, η′ such that q0

η−→ p and q
η′

−→ qf for some qf ∈ F . By Fact 2.3, the
positional word µ = ητη′ is well formed. Furthermore, it labels a transition from q0 to qf ,
hence it is in T L(A), and τ is not blocking.

For the converse, assume that τ is non-blocking: we show that there exists two states
p ∈ Qi, q ∈ Q such that p

u−→ q. As τ is non-blocking, there exists a positional word
µ = (0 : w) such that τ ≼ µ and there exists a final state r such that q0

µ−→ r, and
equivalently, q0

w−→ r. By Corollary 3.4, since τ ≼ µ, there exists words v, v′ such that
w = vuv′ and the length of v is equal to i modulo λ. In particular, the path q0

w−→ r can be
decomposed into q0

v−→ p
u−→ q

w−→ r, and we have p
u−→ q. It only remains to show that p is

in Qi: this follows by Corollary 3.3 since |v| = i (mod λ). ◀

Next, we show that the Hamming distance between u and L(A) is the same as the
(Hamming) distance between (0 : u) and T L(A).

▷ Claim 3.6. For any word u ∈ Σ∗, we have d(u,L(A)) = d((0 : u), T L(A)).

Proof. The ≤ part is straightforward. For the reverse inequality, if suffices to see that in
any minimal substitution sequence from (0 : u) to a positional word in T L(A), no operation
changes only the index of an (index, letter) pair. ◁

The above claim allows us to interchangeably use the statements “u is ε-far from L(A)” and
“(0 : u) is ε-far from T L(A)”.

3.2 An efficient property tester for strongly connected NFAs.
In this section, we show that for any strongly connected NFA A, there exists an ε-property
tester for L(A) that uses O(log(ε−1)/ε) queries.

▶ Theorem 3.7. Let A be a strongly connected NFA. For any ε > 0, there exists an ε-
property tester for L(A) that uses O(log(ε−1)/ε) queries.

Our proof is similar to the one given in [9], with one notable technical improvement: we
use a new method for sampling factors in u, which greatly simplifies the correctness analysis.

3.2.1 An efficient sampling algorithm
We first introduce a sampling algorithm (Algorithm 1) that uses few queries and has a large
probability of finding at least one factor from a large set S of disjoint “special” factors. Using
this algorithm on a large set of disjoint blocking factors gives us an efficient property tester
for strongly connected NFAs. We will re-use this sampling procedure later in the case of
general NFAs (Theorem 4.16).

G. Bathie and N. Fijalkow and C. Mascle 9

The procedure is fairly simple: the algorithm samples factors of various lengths in u at
random. On the other hand, the correctness of the tester is far from trivial. The lengths and
the number of factors of each length are chosen so that the number of queries is minimized
and the probability of finding a “special” factor is maximized, regardless of their repartition
in u. (In what follows, the “special” factors are blocking factors.)

Algorithm 1 Efficient generic sampling algorithm

1: function OneSample(u, ℓ)
2: i← uniform(0, n− 1)
3: l← max(i− ℓ, 0), r ← min(i + ℓ, n− 1)
4: return u[l. .r]
5: function Sampler(u, N, L)
6: n← |u|
7: β ← n/N

8: T ← ⌈log(L)⌉
9: F ← ∅

10: for t = 0 to T do
11: ℓt ← 2t, rt ← ⌈2 ln(3)β/ℓt⌉
12: for i = 0 to rt do
13: F ← F ∪ {OneSample(u, ℓt)}
14: return F

▷ Claim 3.8. A call to Sampler(u, N, L) (Algorithm 1) makes O(n log(L)/N) queries to u.

Proof. A call to OneSample(u, ℓt) makes at most 2ℓt queries to u. Furthermore, the func-
tion Sampler(u, N, L) makes rt = 2 ln(3)·β/ℓt = 2 ln(3)·n/(Nℓt) calls to OneSample(u, ℓt)
for each t = 0, . . . , T , where T = ⌈log(L)⌉. This adds up to

T∑
t=0

rt · ℓt = ⌈log(L)⌉ · 2 ln(3) · n/N = O(n log(L)/N)

queries to u. ◁

▶ Lemma 3.9. Let u be a word of length n, and consider a set S containing at least N

disjoint factors of u, each of length at most L. A call to the function Sampler(u, N, L)
(Algorithm 1) returns a set F of factors of u such that there exists a word of S that is a
factor of some word of F , with probability at least 2/3.

Proof. We conceptually divide the blocking factors in S into different categories depending
on their length: let T = ⌈log(L)⌉, and for t = 0, . . . , T, let St denote the subset of S which
contains factors of length at most ℓt = 2t. We then carefully analyze the probability that
randomly sampled factors of length 2ℓt contains a factor from St, and show that over all t,
at least one sampled factor contains a factor of S, with probability at least 2/3.

▷ Claim 3.10. If in a call to OneSample, the value i is such that there exists indices l

and r such that l ≤ i ≤ r and u[l, r] contains a factor in S, then the set F returned by the
algorithm has the desired property.

As the factors given in S are disjoint, the probability pt that the factor returned by One-
Sample contains a factor from S is lower bounded by pt ≥ 1

n

∑
v∈St

|v|. The OneSample

10 The Trichotomy of Regular Property Testing

function is called rt = 2 ln(3)β/ℓt times independently for each t, hence the probability p

that the algorithm samples a factor containing a factor from S satisfies the following:

(1− p) =
T∏

t=0
(1− pt)rt ≤ exp

(
−

T∑
t=0

ptrt

)

≤ exp
(
−2 ln(3)β

n

T∑
t=0

1
ℓt

∑
v∈St

|v|

)

= exp

−2 ln(3)β
n

∑
v∈S
|v|

T∑
t=⌈log |v|⌉

2−t

 .

Now, inverting the order of summation, and lower bounding the sum of powers of 2 by its
first term, we obtain:

(1− p) ≤ exp
(
−2 ln(3)β

n

∑
v∈S
|v| · 2−⌈log |v|⌉

)

≤ exp
(
−2 ln(3)β

n

∑
v∈S
|v| 1

2|v|

)

= exp
(
−2 ln(3)β

n
· |S|2

)
≤ exp

(
− ln(3)βN

n

)
= exp (− ln(3)) = 1/3

It follows that p ≥ 2/3, which concludes the proof. ◀

3.2.2 The tester
The algorithm for Theorem 3.7 is given in Algorithm 2.

Algorithm 2 Generic ε-property tester that uses O(log(ε−1)/ε) queries

1: function Tester(u, ε)
2: n← |u|, m← |Q|
3: L← 12m2/ε

4: if L(A) ∩ Σn = ∅ then
5: Reject
6: else if n < L then
7: Query all of u and run A on it
8: Accept if and only if A accepts
9: else

10: F ← Sampler((0 : u), n/L, L)
11: Reject if and only if F contains a blocking factor for A.

We now show that Algorithm 2 is a property tester for L(A) that uses O(log(ε−1)/ε)
queries. In what follows, we use n to denote the length of the input word u and m to denote
the number of states of A.

▷ Claim 3.11. The tester given in Algorithm 2 makes O(log(ε−1)/ε) queries to u.

Proof. If n ≤ L, then the tester makes n ≤ L = O(1/ε) queries, and the claim holds.
Otherwise, the number of queries is given by the call to Sampler(u, n/L, L): by Claim 3.8,
this uses O(n log L

n/L) = O(L log L) = O(log(ε−1)/ε) queries. ◀

G. Bathie and N. Fijalkow and C. Mascle 11

Alon et al. [5, Lemma 2.6] first noticed that if a word u is ε-far from L(A), then it contains
Ω(εn) short factors that witness the fact that u is not in L(A). We start by translating
the lemma of Alon et al. on “short witnesses” to the framework of blocking factors. More
precisely, we show that if u is ε-far from L(A), then (0 : u) contains many disjoint (i.e.
non-overlapping) blocking factors.

▶ Lemma 3.12. Let ε > 0, let u be a word of length n ≥ 6m2/ε and assume that L(A)
contains at least one word of length n. If τ = (0 : u) is ε-far from T L(A), then τ contains
at least εn/(6m2) disjoint blocking factors.

Proof. We build a set P of disjoint blocking factors of τ as follows: we process u from left
to right, starting at index i1 = ρ, where ρ is the reachability constant of A (see Fact 2.3).
Next, at iteration t, set jt to be the smallest integer greater than or equal to it and smaller
than n − ρ such that τ [it. .jt] is a blocking factor. If there is no such integer, we stop the
process. Otherwise, we add τ [it. .jt + ρ− 1] to the set P, and iterate starting from the index
it+1 = jt + ρ.

Let k denote the size of P. We will show that we can substitute at most 3(k +1)m2 posi-
tions in τ to obtain a word in T L(A). (See Figure 1 for an illustration of this construction.)
Using the assumption that τ is ε-far from T L(A) (which follows from Claim 3.6) will give
us the desired bound on k.

a) τ [i1. .j1] τ [i2. .j2] . . . τ [ik. .jk]
p1 qf

b) τ [i1. .j1 − 1]
p1 q1

τ [i2. .j2 − 1]
p2 q2 p3 . . .

. . . τ [ik. .jk − 1]
pk qk qf

c) τ [i1. .j1 − 1]
p1 q1

τ [i2. .j2 − 1]
p2 q2 p3 . . .

. . . τ [ik. .jk − 1]
pk qkq0 qf

Figure 1 a) The decomposition process returns k factors τ [i1, jt], . . . , τ [ik, jk] (represented as
diagonally hatched in gray regions), separated together and with the start of the text by padding
regions of ρ − 1 letters (red crosshatched regions). b) If we exclude the last letter of each blocking
factor, we obtain factors that label transitions between some pair of states pt, qt for each t = 1, . . . , k.
c) We use the padding regions to bridge between consecutive factors as well as the start and end
of the word.

For every t, we chose jt to be minimal so that τ [it. .jt] is blocking, hence τ [it. .jt − 1] is
not blocking, and therefore τ [it. .jt − 1] labels a run from some state pt ∈ Qit

to some state
qt ∈ Qjt

. Therefore, using the strong connectivity of A and Fact 2.3, we can substitute the
letters in τ [jt. .jt + ρ − 1] to obtain a factor that labels a transition from qt to pt+1. After
this transformation, the word τ [it. .jt + ρ − 1] labels a transition from pt to pt+1. Using
the ρ letters at the start and the end of the word, we add transitions from an initial state
to p1 and from qk to a final state: the assumption that L(A) contains a word of length n

ensures that Qn contains a final state, hence this is always possible. The resulting word is
in T L(A) and was obtained from τ using (k + 1)ρ ≤ 3(k + 1)m2 substitutions. As τ is ε-far
from T L(A), we obtain the following bound on k:

3(k + 1)m2 ≥ εn =⇒ k ≥ εn

3m2 − 1

=⇒ k ≥ εn

6m2

12 The Trichotomy of Regular Property Testing

The last implication uses the assumption that n ≥ 6m2/ε. ◀

Next, we show that if u is ε-far from L(A), then (0 : u) contains Ω(εn) blocking factors,
each of length O(1/ε).

▶ Lemma 3.13. Let ε > 0, let u be a word of length n ≥ 6m2/ε and assume that L(A)
contains at least one word of length n. If u is ε-far from L(A), then the positional word
(0 : u) contains at least εn/(12m2) disjoint blocking factors of length at most 12m2/ε.

Proof. Let u,A be a word and an automaton satisfying the above hypotheses. By Lemma 3.12,
(0 : u) contains at least εn/(6m2) disjoint blocking factors. As these factors are disjoint, at
most half of them (that is, εn/(12m2) of them) can have length greater than 12m2/ε, as the
sum of their lengths cannot exceed n. ◀

Proof of Theorem 3.7. First, note that if u ∈ L(A), (0 : u) cannot contain a blocking
factor for A, hence Algorithm 2 always accepts u. Next, if L(A) ∩ Σn is empty or if
|u| ≤ L = 12m2/ε, the tester has the same output as A, hence it is correct.

In the remaining case, u is long enough and ε-far from L(A), hence Lemma 3.13 gives
us a large set of short blocking factors in (0 : u): this is exactly what the Sampler function
needs to find at least one factor containing a blocking factor with probability at least 2/3.
More precisely, by Lemma 3.13, (0 : u) contains at least εn/(12m2) = n/L blocking factors
of length at most L = 12m2/ε, hence the conditions of Lemma 3.9 are satisfied.

As a factor containing a blocking factor is also a blocking factor, the set F computed
on line 10 of Algorithm 2 contains at least one blocking factor with probability at least 2/3,
and Algorithm 2 satisfies Definition 2.2. ◀

3.3 Lower bound from infinitely many minimal blocking factors

We now show that languages with infinitely many minimal blocking factors are hard, i.e.
any tester for such a language requires Ω(log(ε−1)/ε) queries.

Let us first give an example that will motivate our construction. Consider the parity
language P consisting of words that contain an even number of b’s, over the alphabet {a, b}.
Distinguishing u ∈ P from u /∈ P requires Ω(n) queries, as changing the letter at single
position can change membership in P . However, P is trivial to test, as any word is at
distance at most 1 from P , for the same reason. Now, consider language L2 consisting of
words over {a, b, c, d} such that between a c and the next d, there is a word in P . Intuitively,
this language encodes multiple instances of P , hence we can construct words ε-far from L2,
and each instance is hard to recognize for property testers, hence the whole language is.
In [9, Theorem 15], Bathie and Starikovskaya proved a lower bound of Ω(log(ε−1)/ε) on
the query complexity of any property tester for L2, matching the upper bound in the same
paper.

The minimal blocking factors of L2 include all words for the form cvd where v /∈ P : there
are infinitely many such words. This is no coincidence: we show that this lower bound can
be lifted to any language with infinitely many minimal blocking factors, under the Hamming
distance.

▶ Theorem 3.14. Let A be a strongly connected NFA. If MBF(A) is infinite, then there
exists a constant ε0 such that for any ε < ε0, any ε-property tester for L = L(A) uses
Ω(log(ε−1)/ε) queries.

G. Bathie and N. Fijalkow and C. Mascle 13

The proof of this result is full generalization of the lower bound against the “repeated Parity”
example given above.

Our proof is based on (a consequence of) Yao’s Minimax Principle [31]: if there is a
distribution D over inputs such that any deterministic algorithm that makes at most q

queries errs on u ∼ D with probability at least p, then any randomized algorithm with q

queries errs with probability at least p on some input u.
To prove Theorem 3.14, we first exhibit such a distribution D for q = Θ(log(ε−1)/ε). We

take the following steps:
1. we show that with high probability, an input u sampled w.r.t. D is either in or ε-far

from L (Lemma 3.21),
2. we show that with high probability, any deterministic tester that makes fewer than

c·log(ε−1)/ε queries (for a suitable constant c) cannot distinguish whether the instance u

is positive or ε-far, hence it errs with large probability.
3. combine the above two results to prove Theorem 3.14 via Yao’s Minimax principle.

3.3.1 The structure of MBF(A)
Before diving into the proof of Theorem 3.14, we show that if MBF(A) is infinite, then we
can find minimal blocking factors with a “regular” structure, a crucial ingredient for our
proof. First, we prove that the set of minimal blocking factors of an automaton is a regular
language, recognized by an automaton that is possibly exponentially larger than A. We first
prove the result for blocking factors of the form (i : u) for a fixed i ∈ Z/λZ.

▶ Lemma 3.15. Let A = (Q, Σ, δ, I, F) be a strongly connected NFA with m states and let
λ = λ(A). For every i ∈ Z/λZ, the set of minimal blocking factors of A of the form (i : u)
is a regular language recognized by a NFA of size 2O(m).

Proof. We call blocking factors of A of the form (i : u) its i-blocking factors.
We first show that the set of i-blocking factors of A, but not necessarily minimal ones,

is a regular language recognized by an NFA Ai with m + 1 states. The result follows by
using standard constructions for complement and intersection of automata [27, Chapter 1,
Section 3]: these constructions give an automaton of size 2O(m) that recognizes words in L

that have no proper factor in L.
Consider the NFA Ai obtained by adding a new sink state ⊥ to A, making it the

only accepting state, with set of initial states Qi. Formally, Ai is defined as Ai = (Q ∪
{⊥}, Σ, δ′, Qi, {⊥}), where δ′ is defined as follows:

∀p ∈ Q,∀a ∈ Σ : δ′(p, a) =
{
{⊥} if δ(p, a) = ∅,
δ(p, a) otherwise.

This automaton4 recognizes the set of i-blocking factors of A and has size O(m). Applying
the aforementioned construction to L = L(Ai) yields the desired automaton, of size 2O(m).

◀

It follows that the set of minimal blocking factors of A is also a regular language.

▶ Corollary 3.16. Let A be an NFA with m states. The set of minimal blocking factors of A
is a regular language recognized by an NFA of size 2O(m).

4 Our definition of NFAs does not allow for multiple initial states. As there is no constraint of strong
connectivity for Ai, this can be solved using a simple construction that adds a new initial state.

14 The Trichotomy of Regular Property Testing

Therefore, if MBF(A) is infinite, we can use the Pumping Lemma [27, Chapter 1, Propo-
sition 2.2] to find an infinite family of minimal blocking factors with a shared structure
{ϕνrχ, r ∈ N}, for some non-empty positional words ϕ, ν and χ. We will use this property
later, when proving a lower bound against the language of automata with infinitely many
blocking factors.

▶ Lemma 3.17. If MBF(A) is infinite, then there exist positional words ϕ, ν+, ν−, χ such
that:
1. the words ν+ and ν− have the same length,
2. there exists a constant S = 2poly(m) such that |ϕ|, |ν+|, |ν−|, |χ| ≤ S,
3. there exists an index i∗ ∈ Z/λZ and a state q∗ ∈ Qi∗ such that for every integer r ≥ 1,

the positional word τ−,r = ϕ(ν−)rχ is blocking for A, and for every s < r, we have

q∗
τ+,r,s−−−−→ q∗ where τ+,r,s = ϕ(ν−)jν+(ν−)r−1−sχ.

In particular, τ+,r,s is not blocking for A.
Note that here, the state q∗ is the same for every integers r, s.

Proof. As MBF(A) is infinite, there must exist an integer i∗ such that A has infinitely many
minimal i∗-blocking factors; we fix such i∗ in what follows.

Let us recall the Pumping Lemma [27, Chapter 1, Proposition 2.2], with a formulation
adapted to our purpose.

▶ Fact 3.18 (Pumping Lemma). Let L be a regular language recognized by an automaton of
size T . There exists an integer S = O(T) such that any word u of L of length at least S can
be factorized as u = xyz such that |xy| ≤ S, |y| ≥ 1 and, for all k ≥ 0, xykz ∈ L.
As the set of minimal i∗-blocking factors is an infinite regular language recognized by an
NFA of size T = 2O(m). Let S = 2O(m) be the constant given by the Pumping Lemma: since
the language is infinite, it contains at least one positional word of length greater than S.
Hence, there exist positional words τ, µ and η, with |µ| ≥ 1, such that for any non-negative
integer k, τµkη is a minimal i∗-blocking factor. By removing factors that label loops in the
automaton, we can assume that each of them has length at most S. Furthermore, we can
assume w.l.o.g. that neither τ nor η is empty, otherwise we set their value to µ: after this
modification, τµkη is still a minimal i∗-blocking factor for every k ≥ 0.

Notice that the word τµm is not a blocking factor, as a proper factor of the minimal
blocking factor τµmη. Therefore, by the pigeonhole principle, there exist integers k0, k1 ≥ 1
with k0 + k1 = m and states p, p1 such that we have

p
τµk0
−−−→ p1

µk1
−−→ p1.

Note that, by Fact 2.3, p1
µk1
−−→ p1 implies that k1 · |µ| = 0 (mod λ).

Similarly, the word µmη is not a blocking factor, since it is a proper factor of the minimal
i∗-blocking factor τµmη. Again, there exist integers k2 ≥ 1, k3 summing to m and states p2
and q such that

p2
µk2
−−→ p2

µk3 η−−−→ q.

Now, define ϕ = τµk0 , χ = µk3η and ν− = µK , where K = ρ · k1 · k2. As there are
transitions starting from p1 and p2 labeled by µ, p1 and p2 belong to the same periodicity
class. Therefore, by Fact 2.3, as K ≥ ρ and K · |µ| = 0 (mod λ), there exists a word ν+ of
length K · |µ| such that p1

ν+−−→ p2. This choice of ϕ, ν+, ν− and χ satisfies all the conditions
of the lemma. ◀

G. Bathie and N. Fijalkow and C. Mascle 15

3.3.2 Constructing a Hard Distribution D
Let ε > 0 be sufficiently small and let n be a large enough integer. In what follows, m

denotes the number of states of A. To construct the hard distribution D, we will use an
infinite family of blocking factors that share a common structure, given by Lemma 3.17.

The crucial property here is that τ−,r and τ+,r,s are very similar: they have the same
length, differ in at most S letters, yet one of them is blocking and the other is not.

We now use the words τ−,r and τ+,r,s and the constant S to describe how to sample an
input µ = (0 : u) of length n w.r.t. D.

Let π be a uniformly random bit. If π = 1, we will construct a positive instance µ ∈
T L(A), and otherwise the instance will be ε-far from T L(A) with high probability. We
divide the interval [0. .n − 1] into k = εn intervals of length ℓ = 1/ε, plus small initial and
final segments µi and µf of length O(ρ) to be specified later. For the sake of simplicity, we
assume that k and ℓ are integers and that λ divides ℓ. For j = 1, . . . , k, let aj , bj denote
the endpoints of the j-th interval. For each interval, we sample independently at random a
variable κj with the following distribution:

κj =
{

t, with prob. pt = 3 · 2tSε/ log((Sε)−1) for t = 1, 2, . . . , log((Sε)−1),
0, with prob. p0 = 1−

∑log((Sε)−1)
t=1 pt.

(1)

The event κj > 0 means that the j-th interval is filled with N ≈ 2−κj /ε “special” factors.
When π = 0, these “special” factors will be minimal blocking factors τ−,r for r = 2κj ,
whereas when π = 1, they will instead be similar non-blocking factors τ+,r,s for a uniformly
random s: they will be hard to distinguish with few queries. On the other hand, the event
κj = 0 means that the j-th interval contains no specific information. More precisely, we
choose a positional word η∗ of length ℓ such that q∗

η∗−→ q∗: by Fact 2.3, this is possible as
ℓ = 0 (mod λ). Then, if κj = 0, we set µ[aj . .bj] = η∗, regardless of the value of π.

Formally, if κj > 0, let r = 2κj , N = 2−κj /(Sε) and let η be a word of length ℓ−N · |τ−,r|
such that q∗

η−→ q∗: such a word exists as λ divides ℓ and |τ−,r|. We construct the j-th interval
as follows:

if π = 0, we set µ[aj . .bj] = (τ−,r)N η,
if π = 1, we select s ∈ [0. .r − 1] uniformly at random, and set µ[aj . .bj] = (τ+,r,s)N η.

Finally, the initial and final fragments µi and µf of µ are chosen to be the shortest words
that label a transition from q0 to q∗ and q∗ to a final state, respectively.

3.3.3 Properties of the distribution D
Next, we establish that the distribution D has the desired properties.

▶ Observation 3.19. If ε is small enough, D is well-defined, i.e. for every t between 0 and
log((Sε)−1), we have 0 ≤ pt ≤ 1.

▶ Observation 3.20. If π = 1, then µ ∈ T L(A).

▶ Lemma 3.21. Conditioned on π = 0, the probability of the event F = {µ is ε-far from
T L(A)} goes to 1 as n goes to infinity.

Proof. When π = 0, the procedure for sampling µ puts blocking factors of the form (i∗ : x)
at positions equal to i∗ mod λ. Any word containing such a factor at such a position is
not in T L(A), therefore any sequence of substitutions that transforms µ into a word of
T L(A) must make at least one substitution in every such factor. Consequently, the distance

16 The Trichotomy of Regular Property Testing

between µ and T L(A) is at least the number of blocking factors in µ. To prove the lemma,
we show that this number is at least εn with high probability, by showing that it is larger
than εn by a constant factor in expectation and using a concentration argument.

Let Bj denote the number of blocking factors in the j-th interval: it is equal to 2−κj /(Sε)
when κj > 0 and to 0 otherwise.

▷ Claim 3.22. Let B =
∑k

j=1 Bj , and let E = E [B]. We have E ≥ 2εn.

Claim proof. By direct calculation:

E =
k∑

j=1
E [Bj] =

k∑
j=1

log(S/ε)∑
t=1

2−t/(Sε) · pt

=
k∑

j=1

log(S/ε)∑
t=1

2−t/(Sε) · 3 · 2tεS/ log(S/ε) =
k∑

j=1

log(S/ε)∑
t=1

3/ log(S/ε)

= 3k ≥ 2εn ◀

We will now show that P(B < εn) goes to 0 as n goes to infinity. We use Hoeffding’s
inequality, which we recall here:

▶ Fact 3.23 ([20, Theorem 2]). Let X1, . . . , Xk be independent random variables such that
for every i = 1, . . . , k, we have ai ≤ Xi ≤ bi, and let S =

∑k
i=1 Xi. Then, for any t > 0, we

have

P (E[S]− S ≥ t) ≤ exp
(
− 2t2∑k

i=1(bi − ai)2

)
.

By Claim 3.22, we have B < εn⇒ E −B ≥ εn, and therefore P(B < εn) ≤ P(E −B ≥ εn).
The random variable B is the sum of k independent random variables, each taking values
between 0 and 1/(Sε). Therefore, by Hoeffding’s inequality (Fact 3.23), we have

P(E −B < εn) ≤ exp
(
− 2ε2n2

k/(Sε)2

)
≤ exp

(
−2S2ε4n2

εn

)
as k ≤ εn

≤ exp
(
−2S2ε3n

)
This probability goes to 0 as n goes to infinity, which concludes the proof. ◀

▶ Corollary 3.24. For large enough n, we have P (F) ≥ 5/12.

Intuitively, our distribution is hard to test because positive and negative instances are
very similar. Therefore, a tester with few queries will likely not be able to tell them apart:
the perfect completeness constraint forces the tester to accept in that case. Below, we
establish this result formally.

▶ Lemma 3.25. Let T be a deterministic tester with perfect completeness (i.e. it always
accepts τ ∈ T L(A)) and let qj denote the number of queries that it makes in the j-th
interval. Conditioned on the event M = {∀j s.t. κj > 0, qj < 2κj}, the probability that T

accepts µ ∼ D is 1.

G. Bathie and N. Fijalkow and C. Mascle 17

Proof. We proceed by contradiction, and show that if there exists a word τ with non-
zero probability w.r.t. D under M that T rejects, then there exists a word τ ′ ∈ T L(A)
that T rejects that also has non-zero probability, contradicting the fact that T has perfect
completeness.

Let τ be the word rejected by T : as T has perfect completeness, τ is not in T L(A), and
there must be at least one interval with κj > 0. Consider every interval j such that κj > 0:
it is of the form (τ−,r)N η where r = 2κj and τ−,r = ϕ(ν−)rχ. Therefore, if qj < 2κj , then
there is a copy of ν− that has not been queried by T across all copies of τ−,r. Consider
the word τ ′ obtained by replacing this copy of ν− with ν+ in all N copies of τ−,r in the
block. The result block is of the form (τ+,r,s)N η for some s < r, and by construction it is
not blocking. Applying this operation to all blocks results in a word τ ′ that is in T L(A).
Furthermore, τ ′ has non-zero probability under D conditioned onM: it can be obtained by
flipping the random bit π and choosing the right index s in every block. ◀

Next, we show that if a tester makes few queries, then the eventM has large probability.

▶ Lemma 3.26. Let T be a deterministic tester, let qj denote the number of queries that
it makes in the j-th interval, and assume that T makes at most 1

72 · log(S/ε)/ε queries, i.e.∑
j qj ≤ 1

72 · log(S/ε)/ε. The probability of the event M = {∀j s.t. κj > 0, qj < 2κj} is at
least 11/12.

Proof. We show that the probability of M, the complement of M, is at most 1/12. We
have:

P
(
M
)

= P (∃j : κj > 0 ∧ qj ≥ 2κj)

≤
∑

j

P (κj > 0 ∧ qj ≥ 2κj) by union bound

≤
∑

j

⌊log qj⌋∑
t=1

pt =
∑

j

⌊log qj⌋∑
t=1

3 · 2tε

log(S/ε) by def. of pt

≤ 3ε

log(S/ε)
∑

j

⌊log qj⌋∑
t=1

2t

By upper bounding the sum of power of 2 up to k = ⌊log qj⌋ by 2k+1, we obtain:

P
(
M
)
≤ 3ε

log(S/ε)
∑

j

2qj

= 3ε

log(S/ε) ·
2
72 ·

log(S/ε)
ε

≤ 1/12 ◀

We are now ready to prove Theorem 3.14.

Proof of Theorem 3.14. We want to show that any tester with perfect completeness for
L(A) requires at least 1

72 · log(S/ε)/ε queries, by showing that any tester with fewer queries
errs with probability at least 1/3. We show that any deterministic algorithm T with
perfect completeness that makes less than 1

72 · log(S/ε)/ε queries errs on u when (0 : u) ∼ D
with probability at least 1/3, and conclude using Yao’s Minimax principle.

Consider such an algorithm T . The probability that T makes an error on u is lower-
bounded by the probability that u is ε-far from L(A) and T accepts, which in turn is larger

18 The Trichotomy of Regular Property Testing

than the probability ofM∩F . By Corollary 3.24, we have P (F) ≥ 5/12, and by Lemma 3.26,
P (M) is at least 11/12. Therefore, we have

P (T errs) ≥ P (M∩F) ≥ 1− 7/12− 1/12 = 4/12 = 1/3.

This concludes the proof of Theorem 3.14, and consequently of Theorem 3.2. ◀

4 Characterisation of Hard Languages for All NFAs

In this section we extend the results of the previous section to all finite automata. This
extension is based on a generalization of blocking factors: we introduce blocking sequences,
which are sequences of factors that witness the fact that we cannot take any path through
the strongly connected components of the automaton. For the lower bound, we define a
suitable partial order on blocking sequences, which extends the factor relation on words to
those sequences, and allows us to define minimal blocking sequences.

4.1 Blocking sequences
4.1.1 Examples motivating blocking sequences
Before presenting the technical part of the proof, let us go through two examples, which
motivate the notions that we introduce and illustrate some of the main difficulties.

▶ Example 4.1. Consider the automaton A1 depicted in Figure 2: it recognizes the language
L1 of words in which all c’s appear before the first b, over the alphabet {a, b, c}.

q0 q1 q2
b c

a, c a, b a, b, c

Figure 2 An automaton A1 that recognizes the language L1 = (a + c)∗(a + b)∗.

The set of minimal blocking factors of A1 is infinite: it is the language ba∗c. Yet, L1 is
easy to test: we sample O(1/ε) letters at random, answer “no” if the sample contains a c

occurring after a b, and “yes” otherwise. To prove that this yields a property tester, we rely
on the following property:

▶ Property 4.2. If u is ε-far from L1, then it can be decomposed into u = u1u2 where u1
contains Ω(εn) letters b and u2 contains Ω(εn) letters c.

The pair of factors (b, c) is an example of blocking sequence: a word that contains an
occurrence of the first followed by an occurrence of the second cannot be in L1. We can
also show that a word ε-far from L1 must contains many disjoint blocking sequences – this
property (Lemma 4.18) underpins the algorithm for general regular languages.

What this example shows is that blocking factors are not enough: we need to consider
sequences of factors, yielding the notion of blocking sequences. Intuitively, a blocking se-
quence for L is a sequence σ = (v1, . . . , vk) of (positional) words such that if each word of
the sequence appears in u, with the occurrences of the vi’s ordered as in σ, then u is not in

G. Bathie and N. Fijalkow and C. Mascle 19

L.5 While L1 has infinitely many minimal blocking factors, it has a single minimal blocking
sequence σ = (b, c).

Notice that the (unique) blocking sequence (b, c) can be visualized on Figure 2: it is
composed of the red letters that label transitions between the different SCCs. This is no
coincidence: in many simple cases, blocking sequences are exactly sequences that contain
one blocking factors for each SCC. This fact could lead one to believe that the set of minimal
blocking sequences is exactly the set of sequences of minimal blocking factors, one for each
SCC. In particular, this would imply that as soon as one SCC has infinitely many minimal
blocking factors, the language of the whole automaton is hard to test. We show in the next
example that this is not always the case, because SCCs might share minimal blocking factors.

▶ Example 4.3. Consider the automaton in Figure 3: it has two SCCs and a sink state.
The minimal blocking factors of the first SCC are given by B1 = be∗c + a, and B2 = {a} for
the second SCC. This automaton is easy to test: intuitively, a word that is ε-far from this
language has to contain many a’s, as otherwise we can make it accepted by deleting all a’s,
thanks to the second SCC. However, a is also a blocking factor of the first SCC, therefore,
as soon as we find two a’s in the word, we know that it is not in L2.

q1

q0

q2 q3
a, c a

a

b, e

c, d, e

b, c, d, e a, b, c, d, e
db

Figure 3 An automaton A2 that recognizes the language L2 = [((c + d + e)∗b(b + e)∗d)∗a](b +
c + d + e)∗.

The crucial facts here are that the set B2 of minimal blocking factors of the second SCC
is finite and it is a subset of B1: the infinite nature of B1 is made irrelevant because any
word far from the language contains many a’s. Therefore, A2 has a single minimal blocking
sequence, σ = (a).

4.1.2 Portals and SCC-paths
Intuitively, blocking sequences are sequences of blocking factors of successive strongly con-
nected components. To formalize this intuition, we use portals, which describe how a run in
the automaton interacts with a strongly connected component, and SCC-paths, that describe
a succession of portals.

5 This is not quite the definition, but it conveys the right intuition.

20 The Trichotomy of Regular Property Testing

In what follows, we fix an NFA A = (Q, Σ, δ, q0, {qf}). We assume w.l.o.g. that A has a
unique final state qf . Let S be the set of SCCs of A. We define the partial order relation
≤A on S by S ≤A T if and only if T is reachable from S. We write <A for its strict part
≤A \ ≥A. These relations can be naturally extended to states through their SCC: if s ∈ S

and t ∈ T , then s ≤A t if and only if S ≤A T .
We define p as the least common multiple of the lengths of all simple cycles of A. Given

a number k ∈ Z/pZ, we say that a state t is k-reachable from a state s if there is a path
from s to t of length k modulo p. In what follows, we use “positional words” for p-positional
words with this value of p.
▶ Remark 4.4. In the rest of this section we will not try to optimize the constants in the
formulas. They will, in fact, become quite large in some of the proofs. We make this choice
to make the proofs more readable, although some of them are already technical.

For instance, the choice of p as the lcm of the lengths of simple cycles is not optimal: we
could use, for instance, the lcm of the periods of the SCCs.

▶ Definition 4.5 (Portal). A portal is a 4-tuple P = s, x⇝ t, y ∈ (Q× Z/pZ)2, such that s

and t are in the same SCC. It describes the first and last states visited by a path in an SCC,
and the positions x, y (modulo p) at which it first and lasts visits that SCC.

The positional language of a portal is the set

L(s, x⇝ t, y) = {(x : w) | s w−→ t ∧ x + |w| = y (mod p)}.

Portals were already defined by Alon et al. [5], in a slightly different way. Our definition
will allow us to express blocking sequences more naturally.

▶ Definition 4.6. A positional word (n : u) is blocking for a portal P if it is not a factor of
any word of L(P). In other words, there is no path that starts in s and ends in t, of length
y − x modulo p, which reads u after n− x steps modulo p.

The above definition matches the definition of blocking factors for strongly connected
automata. This is no coincidence: we show in the next lemma that the language of a portal
has a strongly connected automaton.

▶ Lemma 4.7. Let A be an automaton and P a portal of A. There is a strongly connected
NFA with at most p|A| states that recognizes L′ = L(P).

Proof. Let S denote the SCC of s and t in A, and let λ denote its period. By definition of
p, λ divides p: let k be the integer such that p = λk. The automaton A′ for L′ simulates the
behavior of A restricted to S starting from the state s, while keeping track of the number
of letters read modulo p, starting from x. More precisely, let Q0, . . . Qλ−1 be the partition
of the states of S given by Fact 2.3. The set of states of A′ is given by

Q′ = {(s′, i + jλ) | s′ ∈ Qi ∧ i = 0 . . . , λ− 1 ∧ j = 0, . . . , k − 1}.

It is a subset of Q× Z/pZ, hence it has cardinality at most p|A|. The transitions in A′ are
of the form (s1, i + jλ) (i,a)−−−→ (s2, i + jλ + 1 (mod p)) for any s1, s2 such that s1

a−→ s2 in A.
Furthermore, A′ is strongly connected. Let i1, i2 be indices of periodicity classes of S,

and let s1 ∈ Qi1 , s2 ∈ Qi2 be states of S. We show that for any j1, j2 < k, there is a path
from σ1 = (s1, i1 + j1λ) to σ2 = (s2, i2 + j2λ) in A′. Let ℓ be a sufficiently large integer
equal to (i2 − i1) + (j2 − j1)λ (mod p). As λ divides p, ℓ is equal to (i2 − i1) (mod λ). By
taking ℓ larger than the reachability constant of S, Fact 2.3 gives us that there is a path of

G. Bathie and N. Fijalkow and C. Mascle 21

length ℓ from s1 to s2 in S, labeled by some word u. The positional word (x : u) labels a
transition from σ1 to σ2 in A′, hence it is strongly connected.

Note that the period of A′ is p, hence we can apply the results we obtained on strongly
connected NFAs in Section 3 to portals, with p|A| as the number of states and p as the
period. ◀

Portals describe the behavior of a run inside a single strongly connected component of
the automaton. Next, we introduce SCC-paths, which describe the interaction of a run with
multiple SCCs and between two successive SCCs.

▶ Definition 4.8 (SCC-path). An SCC-path π of A is a sequence of portals linked by single-
letter transitions π = s0, x0 ⇝ t0, y0

a1−→ s1, x1 ⇝ t1, y1 · · ·
ak−→ sk, xk ⇝ tk, yk, such that for

all i ∈ {1, . . . , k}, xi = yi−1 + 1 (mod p), ti−1
ai−→ si, and ti−1 <A si.

Intuitively, an SCC-path is a description of the states and positions at which a path through
the automaton enters and leaves each SCC.

▶ Definition 4.9. The language L(π) of an SCC-path π = P0
a1−→ P1

a2−→ · · ·Pk is the set

L(π) = L(P0)a1L(P2)a2 · · · L(Pk).

We say that π is accepting if P0 = s0, x0 ⇝ t0, y0, Pk = sk, xk ⇝ tk, yk with x0 = 0,
s0 = q0, tk = qf and L(π) is non-empty.

▶ Lemma 4.10. We have T L(A) =
⋃

π accepting L(π).

Proof. We show that for any word µ in T L(A), there is an accepting SCC-path π whose
language contains µ. Let µ = a1 · · · an be a word of length n in T L(A): there exists an
accepting run ρ = q0

a1−→ q1 · · ·
an−−→ qn = qf in A.

We define the sequence of indices i0 < i1 < . . . < ik < ik+1 as follows:
i0 = 0, ik+1 = n + 1,
for every j = 1, . . . , k, ij is the smallest index such that qij−1 <A qij

, i.e. qij−1 and qij

belong to distinct SCCs.
In other words, those are the indices at which ρ enters a new SCC. We then define the
SCC-path π(ρ) as follows:

π(ρ) = q0, 0⇝ qi1−1, y0
ai1−−→ qi1 , x1 ⇝ qi2−1, y1 · · ·

aik−−→ qik
, xk ⇝ qn, yk

where xj = ij (mod p) and yj = xj+1 − 1 (mod p) for all j = 0, . . . , k + 1.
By construction, µ ∈ L(π(ρ)) and π(ρ) is an accepting SCC-path.
The converse inclusion follows by definition of (accepting) SCC-paths. ◀

As a consequence the distance between a word µ and the (positional) language of A is
equal to the minimum of the distances between µ and the languages of the SCC-paths of A.

▶ Corollary 4.11. For any positional word µ, we have

d(µ, T L(A)) = min
π accepting

d(µ,L(π)).

Decomposing A as a union of SCC-paths allows us to use them as an intermediate step to
define blocking sequences. We earlier defined blocking factors for portals: we now generalize
this definition to blocking sequences for SCC-paths, to finally define blocking sequence of
automata.

22 The Trichotomy of Regular Property Testing

▶ Definition 4.12 ((Strongly) Blocking Sequences for SCC-paths). We say that a sequence
σ = (µ1, . . . , µℓ) of positional factors is blocking for an SCC-path π = P0

a1−→ · · ·Pk if there
is a sequence of indices i0 ≤ i1 ≤ · · · ≤ ik such that for every j, µij

is blocking for Pj.
Furthermore, if there is a sequence of indices i0 < i1 < · · · < ik with the same property,

then σ is said to be strongly blocking for π.

Note that, crucially, in the definition of blocking sequences, consecutive indices ij and
ij+1 can be equal, i.e. a single factor of the sequence may be blocking for multiple consecutive
SCCs in the SCC-path. This choice is motivated by Example 4.3, where the language is
easy because consecutive SCCs share blocking factors.

We say that two occurrences of blocking sequences in a word µ are disjoint if the occur-
rences of their factors appear on disjoint sets of positions in µ.

In the strongly connected case, we had the property that if µ contains an occurrence of
a factor blocking for A, then µ is not in the language of A. The following lemma gives an
extension of this result to strongly blocking sequences and the language of an SCC-path.

▶ Lemma 4.13. Let π be an SCC-path. If µ contains a strongly blocking sequence for π,
then µ /∈ L(π).

Proof. We proceed by induction on the length k of the SCC-path π = P0
a1−→ P1 · · ·

ak−→ Pk.
Let σ = (ν0, . . . , νk) be a strongly blocking sequence for π that occurs in µ. If k = 0, then σ

consists only of a blocking factor for P0, hence µ is not in L(P0), which is equal to L(π).
For k > 0, assume for the sake of contradiction that µ ∈ L(π). By definition of L(π), µ

can then be written as µ0a1µ′, with µ0 ∈ L(P0) and µ′ ∈ L(π′), where π′ = P1
a2−→ · · · ak−→ Pk.

As ν0 is blocking for P0, the prefix µ0 of µ must end before the occurrence of ν0 in µ, and
the sequence σ′ = (ν1, . . . , νk) occurs in µ′. Furthermore, because σ is strongly blocking
for π, σ′ is strongly blocking for π′. Using the induction hypothesis on µ′ and the path π′

of length k − 1, this implies that µ′ /∈ L(π′), a contradiction. ◀

We can now define sequences that are blocking for an automaton: they are sequences
that are blocking for every accepting SCC-path of the automaton.

▶ Definition 4.14 (Blocking sequence for A). Let σ = (µ1, . . . , µℓ) be a sequence of positional
words. We say that σ is blocking for A if it is blocking for all accepting SCC-paths of A.

As an example, observe that the sequences ((0 : ab), (1 : ab)) and ((0 : aa), (0 : b)) are both
blocking for the automaton displayed in Figure 4 (see Example 4.15).

▶ Example 4.15. Consider the automaton displayed in Figure 4. The lcm of the lengths of
its simple cycles is p = 2. This automaton has six accepting SCC-paths, including

π1 = q0, 0⇝ q0, 0 a−→ q1, 1⇝ q1, 1 a−→ q3, 0⇝ q3, 0 b−→ q4, 1⇝ q4, 1

π2 = q0, 0⇝ q0, 0 a−→ q2, 1⇝ q1, 0 a−→ q3, 1⇝ q3, 0 b−→ q4, 1⇝ q4, 1

The language of the portal π1 is a(ba)∗a(a2)∗b. A blocking sequence for this SCC-path
is ((0 : aa), (0 : b)), which is in fact blocking for all of the SCC-paths.

On the other hand, ((0 : ab)) is not blocking for π1, as (0 : ab) is not a blocking factor
for the portal q1, 1 ⇝ q1, 1. It is, however, a blocking sequence for π2. This is because if
we enter the SCC {q1, q2} through q1, a factor ab can only appear after an even number of
steps, while if we enter through q2, it can only appear after an odd number of steps.

G. Bathie and N. Fijalkow and C. Mascle 23

q0 q1

q2

q3

q4

a

a

a

b

b

a

ba

Figure 4 Automaton used for Example 4.15.

4.2 An efficient property tester
In this section, we show that for any regular language L and any small enough ε > 0, there
is an ε-property tester for L that uses O(log(ε−1)/ε) queries.

▶ Theorem 4.16. For any NFA A and any small enough ε > 0, there exists an ε-property
tester for L(A) that uses O(log(ε−1)/ε) queries.

As mentioned in the overview, this result supersedes the one given by Bathie and
Starikovskaya [9]: while both testers use the same number of queries, the tester in [9] works
under the edit distance, while that of Theorem 4.16 is designed for the Hamming distance.
As the edit distance never exceeds the Hamming distance, the set of words that are ε-far
with respect to the former is contained in the set of words ε-far for the latter. Therefore, an
ε-tester for the Hamming distance is also an ε-tester for the edit distance, and this result is
stronger.

The property tester behind Theorem 4.16 uses the property tester for strongly connected
NFAs as a subroutine, and its correctness is based on an extension of Lemma 3.13 to blocking
sequences. We show that we can reduce property testing of L(A) to a search for blocking
sequences in the word, in the following sense:

If µ contains a strongly blocking sequence for each of the SCC-paths of A, then it is not
in the language and we can answer no (Corollary 4.17).
If µ is ε-far from the language, then for each accepting SCC-path π of A, µ is far
from for the language of π and contains many disjoint strongly blocking sequences for
π (Lemma 4.18), hence random sampling is likely to find at least one of them, and we
reject µ with constant probability.

▶ Corollary 4.17. If µ contains a strongly blocking sequence for each SCC-path of A, then
µ /∈ T L(A).

Proof. This follows from Lemma 4.10. ◀

The next lemma expresses a partial converse to Corollary 4.17 and generalizes Lemma 3.12
from the strongly connected case: if a word is far from the language, then it contains many
strongly blocking sequences for any SCC-path.

▶ Lemma 4.18. Let π = P0
a1−→ · · ·Pk be an SCC-path, let L = L(π), and let µ be a

positional word of length n such that d(µ, L) is finite. There is a constant C such that if
n ≥ C/ε and µ is ε-far from L, then µ can be partitioned into µ = µ0µ1 · · ·µk such that for
every i = 0, . . . , k, µi contains at least εn

C disjoint blocking factors for Pi, each of length at
most O(1/ε).

24 The Trichotomy of Regular Property Testing

Proof. We proceed similarly to the proof of Lemma 3.12, and only sketch this proof. Starting
from the left end of µ, we accumulate letters until we find a factor blocking for P0, and iterate
again starting from p positions later, where p is the lcm of the length of all cycles in A;
notably, it is a multiple of the reachability constant of a strongly connected automaton
recognizing L(P0). When we have found at least K = εn

C blocking factors (C is to be
determined later) for L(Pi), this position marks the end of µi, and we iterate with the next
portal in π.

Let us assume that the process ends (i.e. we reach the right end of µ) before finding
enough blocking factors for all portals. We show that in this case, the distance between µ

and L is at most εn. Assume that we stop before finding enough blocking factors for the
i-th portal, Pi. As in the proof of Lemma 3.12, we replace the last letter of each blocking
factor and use the padding between them to make the run accepted by the SCC-path: this
uses at most ((i + 1) · (K + 1) + 2)p substitutions. If we set C = 4(k + 3)p, this is less than
εn when n ≥ C/ε. Therefore, if µ is ε-far from L(π), then the decomposition process finds
at least K blocking factors for Pi in µi for each i.

Then, since all of these factors are disjoint, we can use the same technique as in Lemma 3.13
to show that at least half of these factors have length O(1/ε), and the result holds, up to
doubling C. ◀

▶ Corollary 4.19. Let L = T L(A) and let µ be a positional word of length n. If L contains
a word of length n and µ is ε-far from L, then µ contains Ω(εn) disjoint blocking sequences
for A.

Proof. We use a proof identical to that of Lemma 4.18, except that we consider a linear
ordering of all the portals of A given by topological ordering, instead of the linear given by
an SCC-path. The graph used for the topological ordering is the graph of all portals of A,
with an edge from P to P ′ when P and P ′ appear consecutively in some SCC-path of A.
Since any two portals in an SCC-path are from different SCCs of A, this graph is acyclic,
and its vertices can be topologically ordered. ◀

We are now ready to prove Theorem 4.16.

Proof of Theorem 4.16. Our algorithm iterates over all K accepting SCC-paths π = P0
a1−→

. . .
ak−→ Pk of A, and for each π, searches for blocking sequences for π in µ = (0 : u). If we

find a strongly blocking sequence for π in µ, then by Lemma 4.13, µ is not in T L(A) and
we can reject. Note that if µ ∈ T L(A), then the algorithm will not reject, hence the perfect
completeness property is satisfied.

Next, we show that if µ is ε-far from T L(A), then we can find a strongly blocking sequence
for π with probability at least 1 − 1/(3K) using O(log(ε−1)/ε) queries. Our algorithm is
based on the following observation:

▶ Observation 4.20. Let π = P0
a1−→ · · ·Pk be an SCC-path. Let ν0, . . . , νk be positional

words such that νi is blocking for Pi. Then, σ = (ν0, . . . , νk) is a strongly blocking sequence
of π.

We can assume w.l.o.g. that µ has length at least 2C/ε, where C is the constant defined
in Lemma 4.18, otherwise we can read all of µ using O(1/ε) queries. Therefore, we can
apply Lemma 4.18, and µ can be partitioned into k + 1 words µ0, . . . , µk such that each µi

contains at least εn/C disjoint blocking factors for C, each of length L = O(1/ε).
For each i, we can use the algorithm of Lemma 3.9 to sample from µ a set F that

contains a factor that contains a νi with probability at least 2/3. By repeating the procedure

G. Bathie and N. Fijalkow and C. Mascle 25

O(ln(3K · (k + 1))) times and taking the union of all returned sets F , we can increase this
probability to 1 − 1

3K·(k+1) . Then, by the union bound, we find a blocking factor νi for
each Pi in the corresponding µi with probability at least 1 − 1/(3K). As observed above,
the sequence σ = (ν0, . . . , νk) is strongly blocking for π.

By union bound again, this algorithm finds a strongly blocking sequence for each of the
K SCC-paths in A, and therefore rejects µ, with probability at least 2/3.

For a single µi of a given SCC-path, the sampling procedure uses O(log(ε−1)/ε) queries
(by Claim 3.8). As the lengths and number of SCC-paths in A does not depend on the input
length, this algorithm uses O(log(ε−1)/ε) queries in total. ◀

4.3 Lower bound
In order to characterize hard languages for all automata, we define a partial order ⊴ on
sequences of positional factors. It is an extension of the factor partial order on blocking
factors. It will let us define minimal blocking sequences, which we use to characterize the
complexity of testing a language.

▶Definition 4.21 (Minimal blocking sequence). Let σ = (µ1, µ2, . . . , µk) and σ′ = (µ′
1, . . . , µ′

t)
be sequences of positional words. We have σ ⊴ σ′ if there exists a sequence of indices
i1 ≤ i2 ≤ . . . ≤ ik such that µj is a factor of µ′

ij
for all j = 1, . . . , k.

A blocking sequence σ of A (resp. π) is minimal if it is a minimal element of ⊴ among
blocking sequences of A (resp. π). The set of minimal blocking sequences of A (resp. π) is
written MBS(A) (resp. MBS(π)).

▶ Remark 4.22. If σ ⊴ σ′ and σ is a blocking sequence for an SCC-path π then σ′ is also a
blocking sequence for π.

We make the remark that minimal blocking sequences have a bounded number of terms.
This is because if we build the sequence from left to right by adding terms one by one, the
minimality implies that at each step we should block a previously unblocked portal.

▶ Lemma 4.23. A minimal blocking sequence for A contains at most p2|Q|2 terms.

Proof. First, remark that there at most p2|Q|2 portals in A. Let σ = (µ1, . . . , µℓ) be a
minimal blocking sequence for A. For all i = 1, . . . , ℓ, we define σi = (µ1, . . . , µi), and σ0 is
the empty sequence.

Then, for each i, we consider the set Si of portals P such that for all accepting SCC-path
π of A containing P , the prefix of π ending at P is blocked by σi. We have S0 = ∅, and Sℓ

is the set of all portals of A.
We claim that for every i < ℓ, Si is a proper subset of Si+1. Otherwise, if Si = Si+1, then

removing µi+1 from σ gives a blocking sequence σ′ of A, such that σ′ ⊴ σ, contradicting the
minimality of σ. Therefore, it follows that ℓ ≤ p2|Q|2. ◀

4.3.1 Reducing to the strongly connected case
To prove a lower bound on the number of queries necessary to test a language when MBS(A)
is infinite, we present a reduction to the strongly connected case. Under the assumption
that A has infinitely many minimal blocking sequences, we exhibit a portal P of A with
infinitely many minimal blocking factors and “isolate it” by constructing two sequences of
positional factors σl and σr such that for all µ, σl, (µ), σr is blocking for A if and only if µ

is a blocking factor of P . Then we reduce the problem of testing the language of this portal
to the problem of testing the language of P .

26 The Trichotomy of Regular Property Testing

To define “isolating P” formally, we define the left (and right) effect of a sequence on
an SCC-path. Informally, the left effect of a sequence σ on an SCC-path π is related to the
index of the first portal in π where a run can be after reading σ, because all previous portals
have been blocked. The right effect represents the same in reverse, starting from the end of
the run.

More formally, the left effect of a sequence σ on an SCC-path π = P0
a1−→ · · ·Pk is the

largest index i such that the sequence is blocking for P0
a1−→ · · ·Pi (−1 if there is no such i).

We denote it by (σ ≫ π). Similarly, the right effect of a sequence on π is the smallest index i

such that the sequence is blocking for Pi
ai+1−−−→ · · ·Pk (k + 1 if there is no such i); we denote

it by (π ≪ σ).

▶ Remark 4.24. A sequence σ is blocking for an SCC-path π = P0
a1−→ · · ·Pk if and only if

(σ ≫ π) = k, if and only if (π ≪ σ) = 0.
Also, given two sequences σl, σr, the sequence σlσr is blocking for π if and only if (σl ≫

π) ≥ (π ≪ σr).

For the next lemma we define a partial order on portals: P ⪯ P ′ if all blocking factors of
P ′ are also blocking factors of P . We write ⪰ for the reverse relation, ≃ for the equivalence
relation ⪯ ∩ ⪰ and ̸≃ for the complement relation of ≃.

Additionally, given an SCC-path π = P0
x1−→ . . . Pk and two sequences of positional words

σl, σr, we say that the portal Pi survives (σl, σr) in π if (σl ≫ π) < i < (π ≪ σr).

▶ Definition 4.25. Let P be a portal and σl and σr sequences of positional words.
We define three properties that those objects may have:

P1) σlσr is not blocking for A
P2) P has infinitely many minimal blocking factors
P3) for any accepting SCC-path π in A, every portal in π which survives (σl, σr) is ≃-

equivalent to P .

▶ Lemma 4.26. If A has infinitely many minimal blocking sequences, then there exist a
portal P and sequences σl and σr satisfying properties P1, P2 and P3.

Proof. By Lemma 4.23, a minimal blocking sequence has a bounded number of elements.
Therefore, if A as an infinite number of minimal blocking sequences, there exists an integer i∗
and an infinite family (σj)j∈N of minimal blocking sequences of A such that the length of i∗-
th term of σj is at least j, for every j. For each j, let σj,l denote the sequence containing
the elements of σj , up to index i∗ − 1, and let σj,r denote the sequence with the elements
starting from index i∗ + 1. As there is a finite number of SCC-paths in A, we can extract
from the sequence (σj)j an infinite subsequence (σ′

j)j∈N such that for all SCC-paths π of A,
all of the σj,l have the same left effect as σl = σ0,l on π, and symmetrically for the right
effect of the (σj,r)j and σr = σ0,r.

Then, we can replace σj,l with σl and σj,r with σr in each σ′
j , to obtain an infinite

sequence of minimal blocking sequences of the form (σl, νj , σr), where each νj is a positional
word of length at least j. As these blocking sequences are minimal, the pair (σl, σr) is not
blocking for A, there is an accepting SCC-path π∗ and a portal P∗ that survives (σl, σr) in
that π∗. If there are multiple possible choices for π∗ and P∗, we choose them so that P∗ is
⪯-minimal among the possible choices. The following claim shows that we can choose such
a P∗ with infinitely many minimal blocking factors.

▷ Claim 4.27. There exists such a P∗ with infinitely many minimal blocking factors.

G. Bathie and N. Fijalkow and C. Mascle 27

Proof. The word νj is blocking for all portals that survive (σl, σr), and there are arbitrarily
long νj such that (σl, νj , σr) is a minimal blocking sequence. Therefore, all letters in each
νj must belong to a minimal blocking factor of some ⪯-minimal portal, hence one of them
has infinitely many minimal blocking factors. ◁

So far, properties P1 and P2 are satisfied. Next, we extend the sequences σl and σr until
the property P3 is satisfied, while preserving properties P1 and P2.

▷ Claim 4.28. There exist σl, σr such that σlσr is not a blocking sequence for A, and for
any accepting SCC-path π in A, every surviving portal in π is ≃-equivalent to P∗.

Proof. Note that for each P ̸≃ P∗, we can pick a positional word τP that is blocking for P

but not for P∗, since P∗ is ⪯-minimal.
We extend σl and σr as follows. While there is a surviving portal P that is not ≃-

equivalent to P∗:
We pick an SCC-path π = P0

a1−→ . . . Pk such that P survives in π.
Let iℓ = (σl ≫ π) and ir = (π ≪ σr)
If for all i ∈ {iℓ + 1, . . . , ir − 1}, Pi ̸≃ P∗ then we append at the end of σl the sequence
τPiℓ+1 , . . . , τPir−1 . The sequence σlσr is now blocking for π. On the other hand, since
we did not add any blocking factor for P∗, there must still be a surviving portal that is
≃-equivalent to it.
If there is an i ∈ {iℓ + 1, . . . , ir − 1} such that Pi ≃ P∗ then let c be the maximal index
in {iℓ +1, . . . , i} such that Pc is not equivalent to P∗ for ≃, or iℓ if there is no such index.
Symmetrically, let d the minimal index in {i, . . . , ir−1} such that Pd ̸≃ P∗, or ir if there
is no such index. We append at the end of σl the sequence τPiℓ+1 , . . . , τPc . We append
at the beginning of σr the sequence τPd

, . . . , τPir−1 . Now all surviving portals in π are
≃-equivalent to P∗, and Pi still survives.

We iterate this step until all surviving portals are ≃-equivalent to P∗. We made sure that
at least one portal was still surviving after each step, hence in the end the sequence σlσr is
not blocking for A. ◁

◀

▶ Lemma 4.29. Let π = P0
a1−→ · · ·Pℓ be an accepting SCC-path, denote Pj = sj , xj ⇝ tj , yj

for each j = 0, . . . , ℓ, let i ∈ {0, . . . , ℓ}, and let σl = (ν1,l, . . . , νk,l) be a sequence such that
(σl ≫ π) < i.

Then, for any integer N ∈ N, there is a positional word w∗
l of length at most (3|A|3 +

|A|)(k + 1) + N(2p2 + p)k|A|+ pN
∑k

t=1 |νt,l| such that |w∗
l | = xi − x0 (mod p), there is a

run reading w∗
l from s0 to si in A, and (x0 : w∗

l) contains N occurrences of ν1,l, followed by
N occurrences of ν2,l, etc. up to νk,l, all disjoint.

Proof. We define w∗
l by induction on k, the length of σl. As π is accepting, by definition its

language L(π) is nonempty, and thus for all j ∈ {0, . . . , ℓ}, there exists a word uj of length
yj−xj (mod p) that labels a path from sj to tj . By Fact 2.3, there is such a word uj of length
at most 3|A|2. As a result, for all z ∈ {0, . . . , ℓ} we can form a word wz = u0a1u1 · · · az, of
length at most 3|A|3 + |A|, that labels a path of length xz − x0 (mod p) from q0 to sz in A.
If k = 0, we can simply set w∗

l = wi.
Let k > 0, and assume that the lemma holds for k − 1. Let j = (ν1,l ≫ π). As

(ν1,l ≫ π) ≤ (σl ≫ π) < i, we have j < i, hence ν1,l is not blocking for Pj+1. As a
consequence, there is a word vj that labels a path from sj to tj such that τj = (xj : vj) has

28 The Trichotomy of Regular Property Testing

ν1,l as a factor. We can remove cycles of length 0 (mod p) in that path, before and after
reading τj , so we can assume that |vj | ≤ |ν1,l| + 2p|A|. As sj and tj are in the same SCC,
we can extend vj into a word v′

j of length at most |vj |+ |A| ≤ |ν1,l|+ (2p + 1)|A| that labels
a cycle from sj to itself.

Let σ′ = (ν2,l, . . . , νk,l) and π′ = Pj+1
aj+2−−−→ · · ·Pℓ. As σl is the concatenation of ν1,l and

σ′, and j = (ν1,l ≫ π), we have (σ′ ≫ π′) < i − j − 1. By induction hypothesis, there is a
word w′ of length at most (3|A|3 + |A|)k + N(2p2 + p)(k − 1)|A|+ pN

∑k
t=2 |νt,l| such that

|w′| = xi − xj+1 (mod p), there is a run reading w′ from sj+1 to si in A, and (xj+1 : w′)
contains N occurrences of νt,l, all disjoint, for each t = 2, . . . , k.

We set w∗
l = wj+1(v′

j)pN w′. This word has length xi − x0 (mod p), and satisfies:

|w∗
l | ≤ |wj+1|+ pN |v′

j |+ |w′|
≤ 3|A|3 + |A|+ pN(|ν1,l|+ (2p + 1)|A|) + |w′|

≤ (3|A|3 + |A|)(k + 1) + N(2p2 + p)k|A|+ pN

k∑
t=1
|νt,l|.

By construction, the word (x0 : w∗
l) labels a path from s0 to si, and contains N occurrences

of ν1,l, followed by N occurrence of ν2,l, etc. up to νk,l, all disjoint, which concludes the
proof. ◀

▶ Lemma 4.30. Let π = P0
a1−→ · · ·Pℓ be an accepting SCC-path, denote Pj = sj , xj ⇝ tj , yj

for each j = 0, . . . , ℓ, let i ∈ {0, . . . , ℓ}, and let σr = (ν1,r, . . . , νk,r) be a sequence such that
(σl ≫ π) < i.

Then, for any integer N ∈ N, there is a word w∗
r of length at most (3|A|3 + |A|)(k + 1) +

N(2p2 +p)k|A|+pN
∑k

i=1 |νi,r| such that |w∗
r | = xi−x0 (mod p), there is a run reading w∗

r

from s0 to si in A, and (x0 : w∗
r) contains N occurrences of ν1,r, followed by N occurrence

of ν2,r, etc. up to νk,r, all disjoint.

Proof. By a proof symmetric to the one of the previous lemma. ◀

Given a sequence σ, define ||σ|| as the sum of the lengths of the terms of σ.

▶ Lemma 4.31. If there exist a portal P and σl, σr satisfying properties P1, P2 and P3
then L(A) is hard.

Proof of Lemma 4.31. A direct consequence of properties P1 and P3 is that for all ν′, then
σlν

′σr is blocking for A if and only if ν′ is blocking for P .
The proof goes as follows: we show that we can turn an algorithm testing L(A) with f(ε)

samples into an algorithm testing L(P) with f(ε/X) samples with X a constant. We then
apply Theorem 3.14 from the strongly connected case to obtain the lower bound.

Consider an algorithm testing L(A) with f(ε) samples for some function f . We describe
an algorithm for testing L(P). Say we are given a threshold ε and a word v of length n.
First of all we can apply Lemmas 4.29 and 4.30 to compute two words w∗

l and w∗
r of length

at most E + εnF for some constants E and F such that we can read w∗
l from q0 to s and w∗

r

from t to qf and w∗
l contains occurrences of each element of σl at least εn times, all disjoint,

with all occurrences of the i-th of σl appearing before element j for i < j, and similarly for
w∗

r and σr. Let w = w∗
l vw∗

r , and assume that |v| ≥ 6p2|A|2

ε and that d(v,L(P)) < +∞.

If v ∈ L(P) then clearly w ∈ L(A).

G. Bathie and N. Fijalkow and C. Mascle 29

If d(v,L(P)) ≥ εn then by Lemma 3.12 (in light of Lemma 4.7), (x : v) contains at least
εn

6p2|A|2 blocking factors for P . Then we have that w contains at least εn
6p2|A|2 disjoint

blocking sequences for A. As a result, d(w,L(A)) ≥ εn
6p2|A|2 . We divide this by the length

of w, which is at most 2E + 2Fεn + n. We obtain that d(w,L(A)) ≥ ε
X |w| for some

constant X.

Let us now describe the algorithm for testing L(P).
If L(P) ∩ Σn = ∅ then we reject.
If |v| < 6p2|A|2

ε then we read v entirely and check that it is in L(P).
If v ∈ L(P) then we apply our algorithm for testing L(A) on w = w∗

l vw∗
r with parameter

ε′ = ε
X .

The number of queries used on v is at most the number of queries needed on w, hence
at most f(ε/X) queries. We obtain a procedure to test L(P) using f(ε/X) queries. By
Theorem 3.14, f(ε/X) = Ω(log(ε−1)/ε), hence f(ε) = Ω(log(ε−1)/ε). This concludes our
proof. ◀

▶ Proposition 4.32. If A has infinitely many minimal blocking sequences, then L(A) is
hard.

Proof. We combine Lemmas 4.26 and 4.31. ◀

5 Trivial and Easy languages

5.1 Upper bound for easy languages
We first establish that an automaton with finitely many minimal blocking sequences is easy
(or trivial) to test.

▶ Lemma 5.1. Let A be an NFA with a finite number of minimal blocking sequences, let π =
P0

a1−→ · · ·Pk be an SCC-path of A, let L = L(π), and let µ be a positional word of length n

such that d(µ, L) is finite. There are constants B, D such that if n ≥ 2D/ε and µ is ε-far
from L, then µ can be partitioned into µ = τ0τ1 · · · τk such that for every i = 0, . . . , k, τi

contains at least εn
D disjoint blocking factors for Pi, each of length at most B.

Proof. By Corollary 4.19, the positional word µ contains N ≥ εn/C disjoint blocking se-
quences (σj)j=1,...,N for A, for some constant C. We can extract from each σj a minimal
blocking sequence σ′

j = (ν0,j , . . . , νsj ,j). By definition of blocking sequences, σ′
j is also

blocking for π.
As A has a finite number of minimal blocking sequences, hence there is a constant B

such that any νi,j has length at most B.
We build the decomposition µ = τ0τ1 · · · τk with the following iterative process. For

the index i = 0, we set τ0 to the shortest prefix of µ that contains the leftmost N/(k + 1)
components of the σ′

j that are blocking for P0. Since the (σj)j are disjoint in µ, so are the
(νi,j)i,j , and this leaves us with at least N(1−1/(k+1)) of the σ′

j that have their component
blocking for P0, and therefore also for P1 in the part of µ outside of τ0. We then iterate
again for i = 1, . . . , k + 1, with the invariant that at step i, we have N(1− i/(k + 1)) of the
σ′

j that have their component blocking for Pi outside for τ0 . . . τi−1. We then take for τi the
shortest prefix of the rest of µ that contains the leftmost N/(k + 1) components of these σ′

j

that are blocking for Pi.
At each step, the factor τi contains N/(k + 1) blocking factors for Pi, hence the decom-

position µ = τ0τ1 · · · τk has the desired property for D = C · (k + 1). ◀

30 The Trichotomy of Regular Property Testing

▶ Proposition 5.2. If A has finitely many minimal blocking sequences, then there is a tester
for L(A) that uses O(1/ε) queries.

Proof. We use the same algorithm that for Theorem 4.16, except that we use the factors
given by Lemma 5.1, therefore, in the call to the Sampler function (Algorithm 1), the
upper bound on the length of the factors is B instead of O(1/ε). In that case, the query
complexity becomes O(log(B)/ε) = O(1/ε). ◀

This already gives us a clear dichotomy: all languages either require Θ(log(ε−1)/ε)
queries to be tested, or can be tested with O(1/ε) queries.

5.2 Separation between trivial and easy languages
It remains to show that languages that can be tested with O(1/ε) queries have query com-
plexity either Θ(1/ε), or 0 for large enough n. Our proof uses the class of trivial regular
languages identified by Alon et al. [5], which we revisit next.

An example of a trivial language is L2 consisting of words containing at least one a over
the alphabet {a, b}. For any word u, replacing any letter by a yields a word in L2, hence
d(u, L2) ≤ 1. Therefore, for n > 1/ε, no word of length n is ε-far from L2, and the trivial
property tester that answers “yes” without sampling any letter is correct.

Alon et al. [5] define non-trivial languages as follows.

▶ Definition 5.3 ([5, Definition 3.1]). A language L is non-trivial if there exists a constant
ε0 > 0, so that for infinitely many values of n the set L∩Σn is non-empty, and there exists
a word w ∈ Σn so that d(w, L) ≥ ε0n.

It is easy to see that if a language is trivial in the above sense (i.e. not non-trivial), then
for large enough input length n, the answer to testing membership in L only depends n, and
the algorithm does not need to query the input. Alon et al. [5, Property 2] show that if a
language is non-trivial, then testing it requires Ω(1/ε) queries for small enough ε > 0.

To obtain our characterization of trivial languages, we show that MBS(A) is non-empty
if and only if L(A) is non-trivial (in the above sense). It follows that if MBS(A) is empty,
then testing L(A) requires 0 queries for large enough n. Furthermore, by the result of Alon
et al. [5], if MBS(A) is non-empty, then testing L(A) requires Ω(1/ε) queries.

Recall that we focus on infinite languages, since we know that all finite ones are trivial
(Remark 1.4).

▶ Lemma 5.4. MBS(A) is empty if and only if L = L(A) is trivial.

We prove the two directions separately.

▶ Lemma 5.5. If MBS(A) is empty, then L = L(A) is trivial in the sense of Definition 5.3.

Proof. We showed in Corollary 4.19 that if µ is long enough and ε-far from L, then µ

contains Ω(εn) disjoint blocking sequences for A. As A has no minimal blocking sequences,
it does not have blocking sequences either, and long enough words cannot be ε-far from L,
hence it is trivial in the sense of Definition 5.3. ◀

To prove the converse property, we need the following extension of Kleene’s Lemma for
languages of SCC-paths: for large enough ℓ, whether L(π) contains a word of length ℓ only
depends on the value of ℓ modulo p (p is the lcm of all the lengths of the simple cycles in
A).

G. Bathie and N. Fijalkow and C. Mascle 31

▶ Lemma 5.6. Let π = P0
a1−→ · · ·Pk be an SCC-path. There exists a constant B such that,

for all ℓ ≥ B, if there is a word µ of length ℓ in L(π), then there exists a word µ′ of length
ℓ− p and a word µ′′ of length ℓ + p in L(π).

Proof. Recall the definition of L(π) (Definition 4.9):

L(π) = L0a1L1a2 · · ·Lk, where Li = L(Pi) for i = 0, . . . , k.

It follows that a word µ ∈ L(π) can be written as µ = µ1a1µ2 . . . µk with µi ∈ Li. Each
Li is recognized by a strongly connected automaton Ai with at most p|A| states. Let
B = 5(p|A|)2. If the length ℓ of µ exceeds B, then the run of µ in each of the Ai’s contains
simple loops with sum of lengths greater than p +3(p|A|)2. Let ℓ0 +p denote the sum of the
length of these simple cycles: by construction ℓ0 is greater than 3(p|A|)2. We remove these
simple cycles from the run: the resulting run is still in L(π). Next, select any non-trivial
SCC Si in π and let s be a state of Si used by the run. As ℓ0 ≥ 3(p|A|)2, by Fact 2.3, there
is a path of length ℓ0 from s to itself in Ai. Adding this path to the run yields an accepting
run of length ℓ− (ℓ0 + p) + ℓ0 = ℓ− p: the word labeling this run is the desired word µ′.

To obtain µ′′, consider any simple cycle in the run of µ in A, and let m denote the length
of this cycle. By definition of p, m divides p. Iterating this cycle p/m times yields a word
µ′′ of length ℓ + p that is in L(π). ◀

▶ Corollary 5.7. Let π be an SCC path. For large enough ℓ, whether there is an word of
length ℓ in L(π) only depends on the value of ℓ (mod p).

To finish our characterization of trivial languages, we show that if MBS(A) is not empty,
then L = L(A) is non-trivial in the sense of Alon et al. [5].

▶ Lemma 5.8. Let A be a trim NFA such that L = L(A) is infinite. If A admits a blocking
sequence, then there exists ε0 > 0, such that for infinitely many n there exist words in
L(A) ∩ Σn and there exists w ∈ Σn such that d(w,L(A)) ≥ ε0n

Proof. Let σ = (µ1, . . . , µk) be a blocking sequence for A. We can assume w.l.o.g. that
σ is strongly blocking for every accepting π of A, as we can make it strongly blocking by
concatenating σ to itself K times, where K is the maximum length of an accepting SCC-path
in A. Let C be the maximum length of a µi’s. As L is infinite, there exists an accepting
SCC-path π in A and w ∈ L(π) with |w| ≥ t for arbitrary t. By Corollary 5.7, for all
sufficiently large ℓ such that ℓ = |w| (mod p), there exists w′ ∈ L(π) with |w′| = ℓ.

For all i = 1, . . . , k, let νi be a shortest word of the form (0 : vi), for some vi, and of
length ℓi equal to 0 modulo p, such that µi is a factor of νi. By minimality, ℓi is at most
C + 2p. Then, for any integer N ∈ N, let wN = νN

1 · · · νN
k (0 : a|w|), where a is an arbitrary

letter.
As wN is of length |w| (mod p), there is a word of the same length in L(A), i.e. L(A)∩Σn

is nonempty. On the other hand, it contains N disjoint occurrences of σ, which is a strongly
blocking sequence for every accepting SCC-path of A, therefore, the distance between wN

and L(A) is at least N . Furthermore, the length of wN is less than |w| + N(C + 2p).
Therefore, if we let ε0 = 1

C+2p+|w| , then we have ε0|wN | ≤ N ≤ d(wN ,L(A)), i.e. wN is
ε-far from L for any ε ≤ ε0 and any N . ◀

It is easy to see that if a language is trivial in the above sense, then for large enough
input length n, membership in L only depends n, and the algorithm does not need to query
the input. Alon et al. [5] show that if a language is non-trivial, then testing it requires
Ω(1/ε) queries for small enough ε > 0. As a corollary of that lower bound, we obtain that
if MBS(A) is non-empty, then testing L(A) requires Ω(1/ε) queries.

32 The Trichotomy of Regular Property Testing

6 Hardness of classifying

In the previous sections, we have shown that testing some regular languages (easy ones)
that requires fewer queries than testing others (hard ones). Therefore, given the task of
testing a word for membership in L(A), it is natural to first try to determine if the language
of A is easy, and if this is the case, run the appropriate ε-tester, that uses fewer queries.
In this section, we investigate the computational complexity of checking which class of the
trichotomy the language of a given automaton belongs to. We formalize this question as the
following decision problems:

▶ Problem 6.1 (Triviality problem). Given an finite automaton A, is L(A) trivial?

▶ Problem 6.2 (Easiness problem). Given an finite automaton A, is L(A) easy?

▶ Problem 6.3 (Hardness problem). Given an finite automaton A, is L(A) hard?

In these problems, the automaton A is the input and is no longer fixed. We show that,
our combinatorial characterization based on minimal blocking sequences is effective, in the
sense that all three problems are decidable. However, it does not lead to efficient algorithms,
as both problems are PSPACE-complete.

▶ Theorem 6.4. The triviality and easiness problems are both PSPACE-complete, even for
strongly connected NFAs.

In Section 6.1 we show the PSPACE upper bounds on the hardness and triviality problems
(Propositions 6.11 and 6.13). The upper bound on the easiness problem follows immediately,
as the three properties form a trichotomy.

In Section 6.2, we show that all three problems are PSPACE-hard (Lemma 6.15 and
Corollary 6.17).

6.1 A PSPACE upper-bound
6.1.1 Testing hardness
A naive algorithm to check hardness of a language L(A) would be to construct an automaton
recognising blocking sequences of L(A) (exponential in A), and use it to get an automaton
recognising the minimal ones (which requires complementation and could yield another
exponential blow-up). This would a priori not give a PSPACE algorithm, since we obtain
a doubly-exponential state space. We solve this by providing another characterisation of
automata with hard languages, resulting in a recursive PSPACE algorithm to test it.

▶ Lemma 6.5. Let π = P0
a1−→ · · ·Pℓ be an SCC-path, i an index, Π a set of SCC-paths and

(σπ′)π′∈Π a family of sequences of positional words such that (σπ′ ≫ π) < i for all π′.
There exists a sequence of positional words σ such that:
(σ ≫ π) < i

(σπ′ ≫ π′) ≤ (σ ≫ π′) for all π′ ∈ Π.

Proof. We prove this by induction on the sum of the lengths of the elements of Π. If Π is
empty or contains only empty sequences, then we can set σ as the empty sequence.

If not, let π∗ be such that the first term ν1 of σπ∗ = (ν1, . . . , νk) has the least left effect
on π among all SCC-paths in Π; let π∗ = P ′

0
a′

1−→ · · ·P ′
ℓ′ . We consider the effect of ν1 (as a

single-element sequence) on π∗ and π: let j = (ν1 ≫ π∗) and r = (ν1 ≫ π).

G. Bathie and N. Fijalkow and C. Mascle 33

Next, we build a set Π′ of SCC-paths as follows. Let π denote the part of π∗ that

survives ν1, if any, i.e. π = P ′
j+1

a′
j+1−−−→ · · ·P ′

ℓ′ . We define Π′ = Π \ {π∗} ∪ {π} if j < ℓ′ and
Π′ = Π\{π∗} otherwise. In the first case the sequence associated with π is σπ = (ν2, . . . , νk).

We now wish to apply the induction hypothesis to the set Π′ and the part of π that
survives ν1, i.e. on π̃ = Pr+1

ar+1−−−→ . . . → Pℓ, with a target left effect of i − r − 1. By
construction, the sum of the lengths of the elements in Π′ is smaller than that of Π. The
following claim shows that, for any π′ in Π′, the left effect of σπ′ on π̃ is at most i− r − 1.

▷ Claim 6.6. For all π′ ∈ Π′, we have (σπ′ ≫ π̃) < i− r − 1.

Proof. Let π′ ∈ Π \ {π∗}, and let σπ′ = (ν′
1, . . . , ν′

m). Since the first term of σπ∗ was the one
with the least left effect on π, the first term of every other sequence has a left effect at least
r on it. Formally, let z = (ν′

1 ≫ π): we have z ≥ r.
In other words, ν′

1 is blocking for all portals in π̃ up to Pz. Therefore, the sequence
(ν′

2, . . . , ν′
m) will be applied to the same portals in π and in π̃. Since portal Pi survives in π,

it must also survive in π̃, and we have (σπ′ ≫ π̃) < i− r − 1. ◁

By induction hypothesis, we obtain a sequence σ̃ such that
(σ̃ ≫ π̃) < i− r − 1
(σπ′ ≫ π′) ≤ (σ̃ ≫ π′) for all π′ ∈ Π′.

Then, the sequence obtained by prepending ν1 to σ̃ satisfies both conditions of the lemma,
as π̃ is the part of π that survives ν1, and prepending ν1 cannot decrease the left effect of a
sequence. ◀

▶ Lemma 6.7. An automaton A is hard if and only if there exists an accepting SCC-path
π containing a portal P such that:

P has infinitely many minimal blocking factors.
For any accepting SCC-path π′ there exist sequences σl,π′ , σr,π′ such that:

P survives (σl,π′ , σr,π′) in π

All portals surviving (σl,π′ , σr,π′) in π′ are ≃-equivalent to P

Proof. The left-to-right direction follows from Proposition 5.2, by taking σl,π′ = σl and
σr,π′ = σr for every π′.

Let us now prove the other direction. Suppose we have π and P satisfying the conditions
of the lemma. We only need to construct two sequences σl, σr such that properties P1 and
P3 are satisfied. The result follows by Lemma 4.31.

Let Π be the set of accepting SCC-paths in A. Consider families of sequences (σl,π′)π′∈Π
and (σr,π′)π′∈Π such that for all π′ ∈ Π:

P survives (σl,π′ , σr,π′) in π

All portals surviving (σl,π′ , σr,π′) in π′ are ≃-equivalent to P

Let i be the index of P in π. By Lemma 6.5 we can build a sequence σl such that
(σl ≫ π) < i, and
(σl,π′ ≫ π′) ≤ (σl ≫ π′) for all π′ ∈ Π.

Using a symmetric argument, we build a sequence σr such that
i < (π ≪ σr), and
(π′ ≪ σr,π′) ≥ (π′ ≪ σr) for all π′ ∈ Π.

34 The Trichotomy of Regular Property Testing

As a consequence, for all accepting SCC-path π′ ∈ Π, all portals surviving (σl, σr) in π′

are ≃-equivalent to P . Furthermore, P survives (σl, σr) in π.
We have shown that P and (σl, σr) satisfy properties P1 and P3. P2 is immediate by

assumption. We simply apply Lemma 4.31 to obtain the result. ◀

Next, we establish that the items listed in the previous lemma can all be checked in
polynomial space in |A|.

▶ Lemma 6.8. Given a portal P , we can check whether it has infinitely many minimal
blocking factors in space polynomial in |A|.

Proof. Recall that, by Lemma 4.7, L = L(P) is recognized by a strongly connected au-
tomaton A′ with at most p|A| states. While this number may be exponential in |A|, the
transition function of A′ can be computed in polynomial space from the polynomial-sized
representation of a state. Furthermore, in this case, we can show that the same property
holds for the construction used in Lemma 3.15, as in the determinization step, all states
share the index modulo p.

We then simply need to check if the resulting automaton has an infinite language, which
is the case if and only if it has a cycle reachable from the initial state and from which a final
state is reachable. This can be checked by exploring the state space of the automaton, in
non-deterministic polynomial space (in |A|), and applying Savitch’s theorem [29, Theorem
1]. ◀

▶ Lemma 6.9. Given two SCC-paths π and π′, one can check in PSPACE whether there is
a sequence σ that is blocking for π and not π′.

Proof. The algorithm relies on the following property.

▷ Claim 6.10. There is a sequence σ that is blocking for π = P0
a1−→ · · ·Pk and not

π′ = P ′
0

a′
1−→ · · ·P ′

ℓ if and only if either:
there is a positional word µ that is a blocking factor for P0 and not P ′

0 and there is a
sequence σ′ that is blocking for P1

a2−→ · · ·Pk and not π′,
or there is a positional word µ that is a blocking factor for P0 and P ′

0 and there is a
sequence σ′ that is blocking for P1

a2−→ · · ·Pk and not P ′
1

a′
2−→ · · ·P ′

ℓ .

Proof. The right-to-left direction is clear (just take σ = µσ′ in both cases).
For the left-to-right direction, consider a sequence σ that is blocking for π and not π′, of

minimal length. Let σ+ and µ be such that σ = µσ+.
If µ is not blocking for P0 then σ+ is blocking for π and not π′, contradicting the
minimality of σ.
If µ is blocking for P0 and not P ′

0 then we set σ′ = σ. We know that σ is not blocking
for π′. On the other hand, as σ is blocking for π, it is also blocking for P1

a2−→ · · ·Pk.
If µ is blocking for both P0 and P ′

0 then we set σ′ = σ. As σ is blocking for π, it is also
blocking for P1

a2−→ · · ·Pk. On the other hand, if σ was blocking for P ′
1

a′
2−→ · · ·P ′

ℓ , then it

would also be blocking for π′, a contradiction. Hence σ is not blocking for P ′
1

a′
2−→ · · ·P ′

ℓ

◁

The claim above lets us define a recursive algorithm.

First check if there is a positional word µ that is blocking for P0 and not P ′
0. If it is

the case, make a recursive call to check if there is a sequence σ′ that is blocking for
P1

a2−→ · · ·Pk and not π′. If it is the case, answer yes.

G. Bathie and N. Fijalkow and C. Mascle 35

Then check if there is a positional word µ that is a blocking factor for P0 and P ′
0. If so,

make a recursive call to check if there is a sequence σ′ that is blocking for P1
a2−→ · · ·Pk

and not P ′
1

a′
2−→ · · ·P ′

ℓ . If it is the case, answer yes.

If both items fail, answer no.
The existence of those positional words can be checked in polynomial space using the

automaton B constructed in the proof of Lemma 6.8. The depth of the recursive calls is at
most the sum of the lengths of π and π′, which is bounded by 2|A|. In consequence, this
algorithm runs in polynomial space.

◀

▶ Proposition 6.11. The hardness problem is in PSPACE.

Proof. Our algorithm is based on Lemma 6.7. We use the following algorithm to check
whether the characterization holds.
1. First, we nondeterministically guess an SCC-path π = P0

a1−→ · · ·Pk and an index i.
2. Using Lemma 6.8, we check that Pi has infinitely many minimal blocking factors.

3. For each accepting SCC-path π′ = P ′
0

a′
1−→ · · ·P ′

ℓ of A, we guess indices jl and jr, and
check that every portal P ′

j with jl < j < jr is ≃-equivalent to Pi.

4. Then, we use Lemma 6.9 to check that there is a sequence σl that is blocking for P ′
0

a′
1−→

· · ·P ′
jl

and not P0
a1−→ · · ·Pi. Symmetrically, we check that there is a sequence σr that

is blocking for P ′
jr

a′
1−→ · · ·P ′

ℓ and not Pi
ai+1−−−→ · · ·Pk.

If all those tests succeed, we answer “yes”, otherwise we answer “no”. This algorithm is
correct and complete by Lemma 6.7. ◀

6.1.2 Testing triviality
We show the PSPACE upper bound on the complexity of checking if a language is trivial.
It is based on the characterisation of trivial languages given by Lemma 5.8, and uses the
following result.

▶ Lemma 6.12. Given a portal P , we can check whether it has a blocking factor in space
polynomial in |A|.

Proof. We proceed as in the proof of Lemma 6.8, except that we only need to check whether
some final state is reachable from the final state. ◀

▶ Proposition 6.13. The triviality problem is in PSPACE.

Proof. Recall that L(A) is trivial if and only if A has no blocking sequences.

▷ Claim 6.14. There is an accepting SCC-path π of A that contains a portal P with no
blocking factors if and only if A has no blocking sequence.

Proof. Any blocking sequence of A is blocking for π, therefore it contains a blocking factor
for P . ◁

Therefore, it suffices to enumerate all accepting SCC-paths π in the automaton, and then
check that all portals in π have at least one blocking factor, using Lemma 6.12. ◀

36 The Trichotomy of Regular Property Testing

6.2 Hardness of classifying automata
We prove hardness of the triviality problem and easiness problems, concluding on their
PSPACE-completeness. We reduce from the universality problem for NFAs, which is well-
known to be PSPACE-complete (see e.g. [1, Theorem 10.14]).

▶ Lemma 6.15. The triviality and hardness problems are PSPACE-hard.

Proof. Consider an NFA A = (Q, Σ, δ, q0, F) on an alphabet Σ. Without loss of generality,
we assume that A is trim (up to removing unreachable or non-co-reachable states) and that
it accepts all words of length less than 2: this can be checked in polynomial time and does
not affect the PSPACE-hardness of universality. Let # and ! be two letters that are not in
Σ. We apply the following transformations to A:

add a transition labeled by ! from every final state to the initial state q0
add a self-loop labeled by # to each state.

We call the resulting automaton B = (Q, Σ ∪ {!, #}, δ′, q0, F). Note that B is strongly
connected: consider any two states q, q′ ∈ Q, we show that q′ is reachable from q. As A
is trim, there exists qf ∈ F that is reachable from q, and q′ is reachable from the initial
state q0. Furthermore, we have put a ! transition from qf to q0, hence q′ is reachable from q.

Recall that the language of a strongly connected automaton is trivial if and only if it has
no minimal blocking factor, and hard if and only if it has infinitely many minimal blocking
factors.

Hence, to complete the proof, we show that MBF(B) is empty when A is universal and
infinite otherwise.

First, let us describe the language recognized by B. It is given by

L(B) = {u1!u2! · · ·!un | ∀i, ui ∈ (Σ ∪ {#})∗ ∧ πΣ(ui) ∈ L(A)},

where πΣ(u) is the word in Σ∗ obtained by removing all letters not in Σ from u.

▷ Claim 6.16. If A is universal, then B is also universal.

Proof. Indeed, any word in u in can be uniquely decomposed into u = u1!u2! · · ·!un where
each ui does not contain the letter “!”. As # is idempotent on B, δ′(q0, ui) is equal to
δ(q0, πΣ(ui)) for every i. Since A is universal, each of the δ′(q0, ui) contains a final state,
hence δ′(q0, ui!) = {q0}. Therefore, the set δ′(q0, u) is equal to δ′(q0, un), which contains a
final state, and u is in L(B), which shows that B is universal. ◁

This shows that if A is universal, then MBF(B) is empty.
Now we show that a word w ∈ Σ∗ not in L(A) induces infinitely many minimal blocking

factors for B. Consider such a w of minimal size. As we assumed that A accepts all words
of size less than 2, |w| ≥ 2. Let u, v be words of length at least 1 such that w = uv. For all
n ∈ N, at least one of u#nv, !u#nv, u#nv!, !u#nv! is a minimal blocking factor (depending
respectively on whether w is not a factor of any word of L(A) or is a prefix/suffix of a word
of L(A) or not). As a consequence, B has infinitely many blocking factors, and is thus hard
to test by Theorem 3.2.

In summary, A is universal if and only if B is trivial to test, and A is not universal if and
only if B is hard to test. This shows the PSPACE-hardness of the triviality problem. ◀

The above proof can be extended to show the PSPACE-hardness of the easiness problem.

G. Bathie and N. Fijalkow and C. Mascle 37

▶ Corollary 6.17. The easiness problem is PSPACE-hard.

Proof. We proceed as in the proof of Lemma 6.15: given an automaton A over an alphabet
Σ, we build an automaton B over the alphabet Σ∪{!, #} such that if A is universal, MBF(B)
is empty, and if A is not universal, then MBF(B) is infinite.

To show the hardness of the easiness problem, let ♭ denote a new letter not in Σ∪{#, !}
and consider the automaton B′ equal to B but taken over the alphabet Σ ∪ {#, !, ♭}. As
there are no transitions labeled by ♭ in B′, the word ♭ is always a minimum blocking factor
of B′. As a result, we have MBF(B′) = MBF(B) ∪ {♭}, hence A is universal if and only if
MBF(B′) is finite but non-empty: by Theorem 3.2, this is equivalent to L(B′) is easy to test.
Therefore, the easiness problem is also PSPACE-hard. ◀

This concludes the proof of Theorem 6.4

7 Conclusion

We presented an effective classification of regular languages in three classes, each associated
with an optimal query complexity for property testing. We thus close a line of research
aiming to determine the optimal complexity of regular languages. All our results are with
respect to the Hamming distance. We conjecture that they can be adapted to the edit
distance. We use non-deterministic automata to represent regular languages. A natural open
question is the complexity of classifying languages represented by deterministic automata.

References
1 Alfred V. Aho and John E. Hopcroft. The Design and Analysis of Computer Algorithms.

Addison-Wesley Longman Publishing Co., Inc., 1974.
2 Maryam Aliakbarpour, Ilias Diakonikolas, and Ronitt Rubinfeld. Differ-

entially private identity and equivalence testing of discrete distributions.
In International Conference on Machine Learning, ICML, 2018. URL:
https://proceedings.mlr.press/v80/aliakbarpour18a.html.

3 Noga Alon, Richard A. Duke, Hanno Lefmann, Vojtech Rödl, and Raphael Yuster. The
algorithmic aspects of the regularity lemma. Journal of Algorithms, 16(1):80–109, 1994.
doi:10.1006/JAGM.1994.1005.

4 Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy. Efficient testing of large
graphs. Combinatorica, 20(4):451–476, 2000. doi:10.1007/s004930070001.

5 Noga Alon, Michael Krivelevich, Ilan Newman, and Mario Szegedy. Regular languages are
testable with a constant number of queries. SIAM Journal on Computing, 30(6):1842–1862,
2001. doi:10.1109/SFFCS.1999.814641.

6 Noga Alon and Asaf Shapira. Every monotone graph property is testable. SIAM Journal of
Computing, 38(2):505–522, 2008. doi:10.1137/050633445.

7 Antoine Amarilli, Louis Jachiet, and Charles Paperman. Dynamic membership
for regular languages. In Nikhil Bansal, Emanuela Merelli, and James Wor-
rell, editors, 48th International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Confer-
ence), volume 198 of LIPIcs, pages 116:1–116:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ICALP.2021.116,
doi:10.4230/LIPICS.ICALP.2021.116.

8 Ajesh Babu, Nutan Limaye, Jaikumar Radhakrishnan, and Girish Varma. Streaming algo-
rithms for language recognition problems. Theoretical Computer Science, 494:13–23, 2013.

38 The Trichotomy of Regular Property Testing

9 Gabriel Bathie and Tatiana Starikovskaya. Property testing of regular languages
with applications to streaming property testing of visibly pushdown languages. In
International Colloquium on Automata, Languages, and Programming, ICALP, 2021.
doi:10.4230/LIPIcs.ICALP.2021.119.

10 Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applica-
tions to numerical problems. Journal of Computer and System Sciences, 47(3):549–595, 1993.
doi:https://doi.org/10.1016/0022-0000(93)90044-W.

11 Ilias Diakonikolas and Daniel M Kane. A new approach for testing properties of discrete
distributions. In IEEE Symposium on Foundations of Computer Science, FOCS, pages 685–
694. IEEE, 2016. doi:10.1109/FOCS.2016.78.

12 Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and Alex
Samorodnitsky. Improved testing algorithms for monotonicity. In International Workshop
on Randomization and Approximation Techniques in Computer Science, RANDOM, pages
97–108. Springer, 1999. doi:10.1007/978-3-540-48413-4_10.

13 Funda Ergün, Sampath Kannan, S.Ravi Kumar, Ronitt Rubinfeld, and Mahesh
Viswanathan. Spot-checkers. Journal of Computer and System Sciences, 60(3):717–751, 2000.
doi:https://doi.org/10.1006/jcss.1999.1692.

14 Eldar Fischer, Frédéric Magniez, and Tatiana Starikovskaya. Improved bounds for testing
Dyck languages. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1529–1544. SIAM, 2018.

15 Nathanaël François, Frédéric Magniez, Michel de Rougemont, and Olivier Serre. Stream-
ing property testing of visibly pushdown languages. In Proceedings of the 24th An-
nual European Symposium on Algorithms, volume 57 of LIPIcs, pages 43:1–43:17, 2016.
doi:10.4230/LIPIcs.ESA.2016.43.

16 Moses Ganardi, Danny Hucke, and Markus Lohrey. Randomized sliding window algo-
rithms for regular languages. In Proceedings of the 45th International Colloquium on Au-
tomata, Languages, and Programming, volume 107 of LIPIcs, pages 127:1–127:13, 2018.
doi:10.4230/LIPIcs.ICALP.2018.127.

17 Moses Ganardi, Danny Hucke, Markus Lohrey, and Tatiana Starikovskaya. Sliding
Window Property Testing for Regular Languages. In Pinyan Lu and Guochuan Zhang,
editors, 30th International Symposium on Algorithms and Computation (ISAAC 2019),
volume 149 of Leibniz International Proceedings in Informatics (LIPIcs), pages 6:1–
6:13, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2019.6,
doi:10.4230/LIPIcs.ISAAC.2019.6.

18 Oded Goldreich. Introduction to property testing. Cambridge University Press, 2017.
doi:10.1017/9781108135252.

19 Oded Goldreich, Shari Goldwasser, and Dana Ron. Property testing and its connec-
tion to learning and approximation. Journal of the ACM, 45(4):653–750, jul 1998.
doi:10.1145/285055.285060.

20 Wassily Hoeffding. Probability inequalities for sums of bounded random variables. The
collected works of Wassily Hoeffding, pages 409–426, 1994.

21 Rahul Jain and Ashwin Nayak. The space complexity of recognizing well-parenthesized ex-
pressions in the streaming model: The index function revisited. IEEE Transactions on Infor-
mation Theory, 60(10):6646–6668, Oct 2014. doi:10.1109/TIT.2014.2339859.

22 Andreas Krebs, Nutan Limaye, and Srikanth Srinivasan. Streaming algorithms for recognizing
nearly well-parenthesized expressions. In Proc. of MFCS 2011, volume 6907 of LNCS, pages
412–423. Springer, 2011. doi:10.1007/978-3-642-22993-0_38.

23 Frédéric Magniez and Michel de Rougemont. Property testing of regular tree languages.
Algorithmica, 49(2):127–146, 2007. doi:10.1007/s00453-007-9028-3.

G. Bathie and N. Fijalkow and C. Mascle 39

24 Frédéric Magniez, Claire Mathieu, and Ashwin Nayak. Recognizing well-parenthesized
expressions in the streaming model. SIAM J. Comput., 43(6):1880–1905, 2014.
doi:10.1137/130926122.

25 Liam Paninski. A coincidence-based test for uniformity given very sparsely sam-
pled discrete data. IEEE Transactions on Information Theory, 54(10):4750–4755, 2008.
doi:10.1109/TIT.2008.928987.

26 Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Testing membership in parenthesis lan-
guages. Random Struct. Algorithms, 22(1):98–138, 2003. doi:10.1002/rsa.10067.

27 Jean-Éric Pin, editor. Handbook of Automata Theory. European Mathematical Society
Publishing House, Zürich, Switzerland, 2021. URL: https://doi.org/10.4171/Automata,
doi:10.4171/AUTOMATA.

28 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.
doi:10.1137/S0097539793255151.

29 Walter J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences, 4(2):177–192, 1970.
doi:https://doi.org/10.1016/S0022-0000(70)80006-X.

30 Mosaad Al Thokair, Minjian Zhang, Umang Mathur, and Mahesh Viswanathan. Dynamic
race detection with O(1) samples. Proc. ACM Program. Lang., 7(POPL):1308–1337, 2023.
doi:10.1145/3571238.

31 Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complex-
ity. In Symposium on Foundations of Computer Science, SFCS, pages 222–227. IEEE, 1977.
doi:10.1109/SFCS.1977.24.

