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Abstract9

Property testing is concerned with the design of algorithms making sublinear number of queries10

to distinguish whether the input satisfies a given property or is far from having this property. A11

seminal paper of Alon, Krivelevich, Newman, and Szegedy in 2001 introduced property testing of12

formal languages: the goal is to determine whether an input word belongs to a given language, or13

is far from any word in that language. They constructed the first property testing algorithm for14

the class of all regular languages. This opened a line of work with improved complexity results and15

applications to streaming algorithms. In this work, we show a trichotomy result: the class of regular16

languages can be divided into three classes, each associated with a query complexity. Our analysis17

yields effective characterizations for all three classes using so-called minimal blocking sequences,18

reasoning directly and combinatorially on automata.19

2012 ACM Subject Classification Theory of computation → Regular languages20

Keywords and phrases property testing, regular languages21

1 Introduction22

Property testing was defined by Goldreich, Goldwasser, and Ron [14] in 1998: it is the study23

of very fast randomized approximate decision procedures on huge objects, where very fast24

typically means sublinear; the algorithm does not even scan the whole input. A very active25

branch of property testing focuses on graph properties, for instance one can test whether a26

given graph appears as a subgraph [3] or as an induced subgraph [4], and more generally every27

monotone graph property can be tested with one-sided error [6]. Other families of objects28

heavily studied under this algorithmic paradigm include probabilistic distributions [19, 9]29

combined with privacy constraints [2], numerical functions [8, 20], and programs [11, 10].30

We refer to the book of Goldreich [13] for an overview of the field of property testing.31

In this paper we continue the line of work initiated by Alon, Krivelevich, Newman, and32

Szegedy [5] which studies property testing of formal languages: given a language L (a set of33

finite words), the goal is to determine whether an input word u belongs to the language or is34

ε-far from it, where ε is the precision parameter. We assume random access to the input35

word: a query specifies a position in the word and asks for the letter in this position. To36

measure the distance of a word to a language we assume a metric over words; two natural37

choices include the Hamming distance (the number of positions at which two words differ) or38

the edit distance (the number of edits to transform one word into the other one). The seminal39

paper [5] showed a surprising result: all regular languages (meaning, languages recognised40

by deterministic finite automata) are testable with O(log3(ε−1)/ε) queries, where the O(·)41

notation hides constants that depend on the language, but, crucially, not on the length of42

the input word.43

A series of papers built upon this work, improving the query complexity (i.e. the number44

of queries). The original paper [5] identified the class of trivial regular languages, those45
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2 The Trichotomy of Regular Property Testing

for which the answer is always yes or always no for large enough n, and showed that46

testing membership in a non-trivial regular language requires Ω(1/ε) queries. Building upon47

their work, Magniez and de Rougemont [18] extended their result by giving a tester using48

O(log2(ε−1)/ε) queries for the edit distance with moves, and François et al. [12] gave a tester49

using O(1/ε2) queries for the case of the weighted edit distance. More recently, Bathie and50

Starikovskaya [7] gave a tester for the edit distance using O(log(ε−1)/ε) queries, and showed51

that there exists a hard regular language that cannot be tested with asymptotically fewer52

queries. However, there exist easy regular languages that can be tested with O(1/ε) queries.53

These results raise the following questions:54

1. are there regular languages with a query complexity different from asymptotically 0,55

Θ(1/ε) and Θ(log(ε−1)/ε)?56

2. is there a combinatorial and effective characterization of the languages in each class?57

In this work, we answer both questions almost completely: we show a trichotomy the-58

orem that classifies all regular languages in one of the three classes: trivial (asymptotically59

0 queries1), easy (Θ(1/ε) queries), and hard (Ω(log(ε−1)/ε) queries). In the case of lan-60

guages recognised by strongly connected NFAs, we even provide a matching upper bound61

of O(log(ε−1)/ε) for all languages. Our characterization of the three classes relies on the62

combinatorial notion of minimal blocking factors (and sequences).63

We can therefore ask the meta-question: can we determine whether a given regular64

language is trivial, easy, or hard? Answering this question has practical motivations:65

determining to which class the language belongs enables choosing the appropriate most66

efficient property testing algorithm. We show that the meta-question is complete for the67

complexity class PSPACE (Turing machines working in polynomial space).68

2 Overview of the paper69

In this overview we assume familiarity with classical notions; all definitions can be found in70

Section 3. Let us start with the notion of a property tester for a language L: the goal is to71

determine whether an input word u belongs to the language L, or whether it is ε-far from it.72

We say that u of length n is ε-far from L with respect to a metric d over words if all words73

v ∈ L satisfy d(u, v) ≥ εn, written d(u, L) ≥ εn. Throughout this work and unless explicitly74

stated otherwise, we will consider the case where d is the Hamming distance, defined for two75

words u and v as the number of positions at which they differ if they have the same length,76

and as +∞ otherwise. In that case, d(u, L) ≥ εn means that one cannot change a proportion77

ε of the letters in u to obtain a word in L. We assume random access to the input word: a78

query specifies a position in the word and asks for the letter in this position.79

▶ Definition 2.1. A property tester for the language L and precision ε is a randomized80

algorithm T that, for any input u of length n, given random access to u, satisfies the following81

properties:82

if u ∈ L, then T (u) = 1, (1)83

if u is ε-far from L, then P (T (u) = 0) ≥ 2/3. (2)84

1 By asymptotically 0 queries, we mean that for every small enough ε > 0, for large enough n, the answer
is either yes for all words of length n or no for all, and only depends on n, thus the algorithm does not
need to query the input word.
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The query complexity of T is a function of n and ε that counts the maximum number of letters85

of the input that T reads over all inputs of length n and over all possible random choices. In86

this paper we are interested in property testers whose query complexity is independent of n,87

and only depends on ε.88

More precisely, the definition of property testers given above is called “property testers89

with perfect completeness”: they always accept positive instances. Because they are based90

on the notion of blocking factors that we will discuss below, all known testers for regular91

languages [5, 18, 12, 7] have perfect completeness.92

We say that a tester is non-adaptive if the index of a query does not depend on the result93

of previous queries. Alternatively, a non-adaptive tester can be understood as an algorithm94

that first sends the index of all of its queries, receives the result of all the queries, and then95

returns its output.96

Infinite languages97

Let us make a trivial observation: if L is finite, meaning that it contains finitely many words,98

then it is trivial. Let N denote the maximum length of a word in L: as L is finite, N is also99

finite. We can test L as follows: if the input has length less than N , query all of it and check100

whether it is one of the finitely many words of L and answer accordingly. Otherwise, if the101

length of the input is greater than N , answer no. This tester makes no queries for n > N ,102

hence L is trivial. For this reason, we only consider infinite languages L; this will make some103

technical statements nicer.104

Easy languages105

Let us consider the language L1 = a∗ consisting of words containing only a’s, over the106

alphabet {a, b}. For a word u ∈ {a, b}∗, the distance d(u, L) is the number of b’s in u. Here is107

a very simple property tester for L1: given a word of length n, sample 1/ε letters at random108

and answer no if we find a b, and yes otherwise. If u ∈ L1, it contains no b to the algorithm109

returns yes, and if u is ε-far from L1, then each sample has probability at least ε to be a b,110

and thus we will find a b with constant probability. One can easily show that 1/ε is a lower111

bound on the number of samples to get a property tester for L1; we say that L1 is easy:112

▶ Definition 2.2. We say that L is easy if for small enough ε > 0, the optimal query113

complexity for a property tester for L is Θ(1/ε).114

Blocking factors115

Extrapolating from the example L1, let us introduce the notion of blocking factors (also116

known as killing words [17]): a word v is a blocking factor for L if it cannot appear as a117

factor of a word in L. For instance, b is a blocking factor for L1. Note that bb and bbb are118

also blocking factors, but b is a minimal blocking factor (there are no strict factors of b119

that are blocking factors). Blocking factors were introduced in the original work giving a120

property tester for all regular languages [5]. A key insight of our work is to focus on minimal121

blocking factors. One important although simple property we will use is that if L is a regular122

language, then the set of minimal blocking factors of L is also a regular language.123

It turns out that all property testers will be based on extensions of this very simple idea:124

we sample a number of positions in the word looking for blocking factors and answer no if125

we find a blocking factor, and yes otherwise. To be more precise, the analysis above for L1126

rests on the following property:127
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If u is ε-far from L1, then it contains at least εn disjoint minimal blocking factors.128

We will show later that this property can be extended to all regular languages.129

Trivial languages130

At this point we can revisit the class of trivial languages identified in [5]:131

▶ Definition 2.3. We say that L is trivial if for all small enough ε > 0, there exists a132

property tester for L that makes 0 queries for all large enough n.133

An example of a trivial language is L2 consisting of words containing at least one a over the134

alphabet {a, b}. For any word u, replacing any letter by a yields a word in L2, so d(u, L2) ≤ 1.135

A trivial property tester for L2 simply answers yes all the time. One of our contributions in136

this work is a characterization of the trivial languages identified by Alon et al. [5].137

▶ Lemma 2.4. A regular language L is trivial if and only if it has no (minimal) blocking138

factors.139

Period and positional words140

Let us now consider the language L3 = (ab)∗ consisting of words of the form ab · ab · ab · · · ab141

over the alphabet {a, b}. Generalizing the ideas used for the analysis of L1, a very simple142

property tester for L3 goes as follows: given a word of length n, sample 1/ε pairs of letters143

from a random even position and answer no if we find anything else than ab, and yes otherwise.144

There are two new difficulties: we need to consider factors of length 2, and we want them145

to start at even positions. The arguments above are naturally extended to prove that this146

property tester has query complexity O(1/ε), and that this is asymptotically tight.147

What this example shows is that instead of consider words we will need to consider148

positional words, which additionally encode information about the position. In the case149

of L3, we need to distinguish between even and odd positions, so the word abab is better150

represented as (0, a)(1, b)(0, a)(1, b), where the first index denotes the parity of the position.151

More generally, we can associate to each regular language a period, and work with positional152

words encoding the position modulo this period. The notion of blocking factors is naturally153

extended to positional words, for instance (0, a)(1, a) is a blocking factor, but (1, b)(0, a) is154

not.155

Almost characterizing easy languages156

Generalizing the ideas presented above, one can prove the following lemma:157

▶ Lemma 2.5. Let L be a regular language. If there are finitely many minimal blocking158

factors for L, then L is easy.159

Indeed, in that case there is an upper bound ℓ on the length of minimal blocking factors,160

which depends only on L. We construct a property tester as follows: we sample 1/ε factors161

of length ℓ and answer no if we find a blocking factor, and yes otherwise. One can prove that162

this yields a property tester with query complexity O(1/ε). Unfortunately, this is not quite163

a characterization: the converse implication does not hold, let us explain why using another164

example.165
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Blocking sequences166

Let us now consider the language L4 consisting of words such that there are no c after a167

b over the alphabet {a, b, c}. The minimal blocking factors are of the form banc for n ≥ 0,168

so there are infinitely many, the above argument above does not apply to this language.169

However, L4 is easy: let us construct a property tester. We sample 1/ε letters at random170

and answer no if the sample contains a c after a b, and yes otherwise. To prove that this171

yields a property tester, we rely on the following property:172

If u is ε-far from L4, then it can be decomposed u = u1u2 where u1 contains at least173

εn letters b and u2 contains at least εn letters c.174

What this example shows is that blocking factors are not enough: we need to consider175

sequences of factors, yielding the notion of blocking sequences. Intuitively, a blocking176

sequence for L is a sequence of (positional) words such that if the sequence appears as factors177

of some word u then u /∈ L. For L4, the minimal blocking sequence is (b, c).178

Getting back to the almost characterization of easy languages sketched above, we will179

prove that L is easy if and only if there are finitely many minimal blocking sequences for L.180

The structure of the proof follows the original paper [5], considering first the case where L is181

recognised by a strongly connected automaton, and then extending it to the general case.182

Along the way, we will show that if L is recognised by a strongly connected automaton,183

then the characterization above holds: L is easy if and only there are finitely many minimal184

blocking factors for L. Introducing blocking sequences is necessary to deal with automata185

with more than one strongly connected component.186

Hard languages187

The remaining case is languages L which have infinitely many minimal blocking sequences.188

Let us illustrate this case on an example. We start from the parity language P consisting of189

words such that there is an even number of b’s, over the alphabet {a, b}. If the goal would190

be to distinguish between u ∈ P and u /∈ P , any property tester would require scanning191

the whole input word. However, relaxing with the Hamming distance makes the question192

different: every word is at distance at most 1 from P by swapping at most one letter, so the193

language is trivial. Now, consider L5 consisting of words such that inbetween each letter194

♯, there is an even number of b’s, over the alphabet {a, b, ♯}. Intuitively, L5 encodes an195

arbitrary number of parity instances. Bathie and Starikovskaya [7] proved a lower bound of196

Ω(log(ε−1)/ε) on the query complexity of (non-adaptive) property testers for L5, matching197

the property testing algorithm they constructed for all regular languages.198

▶ Definition 2.6. We say that L is hard if for all small enough ε > 0, the optimal query199

complexity of a tester for L is Ω(log(ε−1)/ε).200

Inspecting the minimal blocking sequences for L5, we find infinitely many: this is no201

coincidence, we will extend Bathie and Starikovskaya’s proof to show that any regular202

language with infinitely many minimal blocking sequences is hard.203

The trichotomy theorem204

Our main technical result is stated below. Recall that the case of finite languages is easy, so205

we focus on infinite languages.206
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▶ Theorem 2.7. Let L be an infinite regular language, let us write MBS(L) for the set of207

minimal blocking sequences of L.208

L is trivial if and only if MBS(L) is empty;209

L is easy if and only if MBS(L) is finite and nonempty;210

L is hard if and only if MBS(L) is infinite.211

This trichotomy theorem closes a line of work on improving query complexity for property212

testers and identifying easier subclasses of regular languages. As mentioned above, the proof213

considers first the case where L is recognised by a strongly connected automaton, and then214

extends the results to the general case (following [5]):215

For the strongly connected case, we extend the ideas from [5] using the framework216

of minimal blocking factors, therereby simplifying the exposition, and obtain optimal217

property testers for trivial and easy languages, together with matching lower bounds.218

Our novel contributions here concern hard languages. First, we construct a property219

tester with query complexity Θ(log(ε−1)/ε) for all regular languages recognised by a220

strongly connected automaton. This is an improvement over the similar result of Bathie221

and Starikovskaya [7], which works under the edit distance, while ours is designed for the222

Hamming distance. As the edit distance never exceeds the Hamming distance, the set223

of words that are ε-far with respect to the former is contained in the set of words ε-far224

for the latter. Therefore, an ε-tester for the Hamming distance is also an ε-tester for225

the edit distance, and our result supersedes and generalizes theirs in the case of strongly226

connected automata. Second, we prove a matching lower bound, again inspired by but227

strongly generalizing a result from Bathie and Starikovskaya [7], which was for a single228

language (L5 discussed above), to all regular languages with infinitely many minimal229

blocking factors. We use Yao’s minmax principle [21]: this involves constructing a hard230

distribution over inputs, and showing that any deterministic property testing algorithms231

cannot distinguish between positive and negative instances against this distribution.232

The general case follows a similar outline and builds upon the results in the strongly233

connected case. The notion of (minimal) blocking sequences enables smooth yet technical234

generalization of most of the results based on blocking factors for strongly connected235

automata. The main difficulty is the case of hard languages, and more precisely the lower236

bound. The complication here is that it is not enough to consider strongly connected237

components in isolation: there exists finite automata which contain a strongly connected238

component that induces a hard language, yet the language of the whole automaton is239

easy. The case where both are hard also occurs. Our proof defines a notion of “portals”240

which allows us to extract “crucial” connected components and show that hardness of241

these components imply hardness of the whole language.242

The meta-question243

Once the trichomoty theorem is established, the natural pending question is whether it244

can be made effective: the meta-question is then, given a regular language L, to determine245

whether it is trivial, easy, or hard. One could use this procedure to run the appropriate246

algorithm. On the positive front, our characterizations are indeed effective, in particular247

since for a regular language L, the set of minimal blocking sequences of L is another regular248

language, which can be effectively computed. However, we prove that the complexity of249

checking whether this set is empty, finite, or infinite (corresponding to the trichotomy), is250

PSPACE-complete.251
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Outline252

The missing definitions are given in Section 3. We treat strongly connected automata253

in Section 4, and the general case in Section 5. The complexity of the meta-question is254

established in Section 6.255

3 Preliminaries256

Words and languages.257

In this work, we consider a finite set Σ, the alphabet, whose elements are called letters. Words258

over Σ are finite sequences of letters, and Σ∗ (resp. Σ+) denotes the set of all words (resp.259

nonempty words) over Σ. A subset of Σ∗ is called a language over Σ. The length of a word260

u ∈ Σ∗, denoted |u|, is the number of letters that it contains, and for i ∈ [0, |u| − 1], we261

use u[i] to denote the i-th letter of u. Given two words u, v ∈ Σ∗, the concatenation u · v262

(more concisely denoted uv) of u and v is the word composed of the letters of u followed by263

the letters of v. This operation is associative, hence (Σ∗, ·) is a monoid. Its unique neutral264

element, the empty word, is denoted γ.265

Given a word u ∈ Σ∗ and two integers 0 ≤ i, j ≤ |u| − 1, define u[i..j] as the word266

u[i]u[i + 1] . . . u[j] if i ≤ j and γ otherwise. Further, we let u[i..j) denote the word u[i..j − 1].267

A word w is a factor (resp. prefix, suffix) of u is there exist indices i, j such that w = u[i..j]268

(resp. with i = 0, j = |u| − 1). We use w ≼ u to denote “w is a factor of u”. Furthermore, if269

w is a factor of u and w ̸= u, we say that w is a proper factor of u.270

Finite automata.271

▶ Definition 3.1 (Nondeterministic Finite automaton). A nondeterministic finite automaton272

(NFA) A is a transition system defined by a tuple (Q, Σ, δ, q0, F ), with Q a finite set of states,273

Σ a finite alphabet, δ : Q× Σ→ 2Q the transition function, q0 is the initial state and F is274

the set of final states.275

We say that A is deterministic (resp. complete) if |δ(q, a)| ≤ 1 (resp. ≥ 1) for all q ∈ Q, a ∈ Σ.276

We say that there is a transition from p ∈ Q to q ∈ Q labeled by w ∈ Σ∗, denoted277

p
w−→ q, if there exists states p0 = p, p1, . . . , p|w| = q such that for every i = 0, . . . , |w| − 1,278

pi+1 ∈ δ(pi, w[i]). In this case, we say that q is reachable from p and that p is co-reachable279

from q. The language recognized by A, denoted L(A), is the set of words that label a transition280

from the initial state to a final state, i.e.281

L(A) = {w ∈ Σ∗ | ∃qf ∈ F : q0
w−→ qf}.282

We say that an NFA is trim if every state is reachable from the initial state and co-reachable283

from some final state. An NFA A can always be converted into a trim NFA that recognizes284

the same language by removing the states of A that are either not reachable from q0 or not285

co-reachable from any final state.286

Property testing.287

▶ Definition 3.2. Let L be a language, let u be a word of length n, let ε > 0 be a precision288

parameter and let d : Σ∗ × Σ∗ → N ∪ {+∞} be a metric. We say that the word u is ε-far289

from L w.r.t. d if d(u, L) ≥ εn, where290

d(u, L) := inf
v∈L

d(u, v).291
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Throughout this work and unless explicitly stated otherwise, we will consider the case where292

d is the Hamming distance, defined for two words u and v as the number of positions at293

which they differ if they have the same length, and as +∞ otherwise.294

Graphs and periodicity.295

We now recall tools introduced by Alon et al [5] to deal with periodicity in finite automata.296

The period λ = λ(G) of a graph G is the greatest common divisor of the length of the297

cycles in G. If G is acyclic, we set λ(G) =∞. Following the work of Alon et al [5], we will298

use the following property of directed graphs.299

▶ Fact 3.3 (From [5, Lemma 2.3]). Let G = (V, E) be a nonempty, strongly connected directed300

graph with finite period λ = λ(G). Then there exists a partition V = Q0 ⊔ . . . ⊔Qλ−1 and a301

reachability constant ρ = ρ(G) that does not exceed 3|V |2 such that:302

1. For every 0 ≤ i, j ≤ λ− 1 and for every u ∈ Qi, v ∈ Qj, the length of any directed path303

from u to v in G is equal to (j − i) mod λ.304

2. For every 0 ≤ i, j ≤ λ − 1, for every u ∈ Qi, v ∈ Qj and for every integer r ≥ ρ, if305

r = (j − i) (mod λ), then there exists a directed path from u to v in G of length r.306

The sets (Qi : i = 0, . . . , λ − 1) are the periodicity classes of G. In what follows, we will307

slightly abuse notation and use Qi for arbitrary non-negative integers i to mean Qi (mod λ)308

when i ≥ λ.309

Given a finite automaton A = (Q, Σ, δ, q0, F ), we can naturally obtain the underlying310

directed graph by removing the labels from the transitions: it is the graph G = (Q, E) where311

E = {(p, q) ∈ Q2 | ∃a ∈ Σ : q ∈ δ(p, a)}. In what follows, we naturally extend the notions of312

period2, reachability constant and periodicity classes to finite automata through this graph G.313

The numbering of the periodicity classes is defined up to a shift mod λ: we say that Q0314

is the class that contains the initial state q0. Similarly, we say that a finite automaton is315

strongly connected if the underlying graph is strongly connected.316

A strongly connected component S of an automaton A is a maximal subset of states such317

that every state of S is reachable from every other one. Its periodicity is the periodicity of318

the subgraph induced by A over S.319

Positional words and positional languages.320

To motivate the following definitions, let us recall the example discussed in the overview.321

Consider a simple deterministic automaton with two states for the language (ab)∗: there is a322

transition labeled by a starting from one state but not from the other. The parity of the323

position of the factor ab in a word carries an important piece of information: if the position324

is odd, then we know that the word containing the factor is not in (ab)∗. Furthermore, while325

b appears at position 1 in ab, if this ab appears at an odd position in u then b appears at an326

even position in u. This leads to the definition of positional words.327

▶ Definition 3.4 (Positional words). Let p be a positive integer. A p-positional word is a328

word over the alphabet Z/pZ×Σ of the form (n (mod p), a0)((n + 1) (mod p), a1) · · · ((n + ℓ)329

(mod p), aℓ). If u = a0 · · · aℓ, we write (n : u) to denote this word.330

2 Note that in this context, an aperiodic automaton means an automaton with an aperiodic underlying
graph, which is not the same thing as a counter-free automaton, which are sometimes called aperiodic
automata.
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q0 q1

a

b

a

Figure 1 An automaton recognising the language (ab)∗. A witness that a word is not in this
language is an a on an odd position or a b on an even position.

With this definition, starting with the 2-positional word (0 : u), the factor ab at an odd331

position in u is (1, a)(0, b), and the positional factor corresponding to the b is (0, b). In this332

case, even when taking factors of factors of u, we still retain the (congruence classes of the)333

indices in the original word.334

Any strongly connected finite automaton A = (Q, Σ, δ, q0, F ) can naturally be extended335

into an automaton over λ(A)-positional words as follows. Let Q0, . . . , Qλ−1 be the partition336

of the states of A given by Fact 3.3, where λ = λ(A) is the periodicity of A. The positional337

extension of A is the finite automaton Â defined by:338

Â = (Q,Z/λZ× Σ, δ′, q0, F ) where δ′(q, (i, a)) =
{

δ(q, a) if q ∈ Qi,

∅ otherwise.
339

By fact Fact 3.3, any transition from a state of Qi goes to a state in Qi+1, hence Â recognized340

well-formed λ-positional words. We call the language recognized by Â the positional language341

of A, and denote it T L(A). This definition is motivated by the following property:342

▶ Property 3.5. For any word u ∈ Σ∗, we have u ∈ L(A) if and only if (0 : u) ∈ T L(A).343

For the reasons that we exposed earlier, positional words make it easier to manipulate344

factors with positional information, hence we phrase our property testing results in terms of345

positional languages. Notice that a property tester for T L(A) immediately gives a property346

tester for L(A), as one can simulate queries to (0 : u) with queries to u by simply pairing347

the index of the query modulo λ(A) with its result.348

4 Strongly Connected NFAs349

We first study the case of strongly connected NFAs, which are NFAs such that for any pair of350

states p, q ∈ Q, there exists a word w such that p
w−→ q. We show that the query complexity351

of the language of such an NFA A can be characterized by the cardinality of the set of352

minimal blocking factors of A, which are factor-minimal λ(A)-positional words that witness353

the fact that a word does not belong to T L(A). In this section, we consider a fixed NFA354

A and simply use “positional words” to refer to λ-positional words, where λ = λ(A) is the355

period of A.356

▶ Definition 4.1 (Blocking factors). Let A be a strongly connected NFA. A positional word τ357

is a blocking factor of A if for any other positional word µ we have τ ≼ µ⇒ µ /∈ T L(A).358

Further, we say that τ is a minimal blocking factor of A if no proper factor of τ is blocking359

a blocking factor of A. We use MBF(A) to denote the set of all minimal blocking words of A.360

Intuitively and in terms of automata, (i : u) is blocking for A if it does not label any transition361

in A labeled by u starting from a state of Qi. This property is formally established later in362

Lemma 4.6.363
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The main result of this section is the following:364

▶ Theorem 4.2. Let L be an infinite language recognised by a strongly connected NFA A.365

1. L is hard if and only if MBF(A) is infinite.366

2. L is easy if and only if MBF(A) is finite and nonempty.367

3. L is trivial if and only if MBF(A) is empty.368

Our approach369

The definition of blocking factors gives a simple but powerful framework to design property370

testers for L(A): using random sampling, attempt to find a blocking factor in (0 : u); if one371

is found, reject u, otherwise accept u. If u ∈ L(A), then (0 : u) does not contain a blocking372

factor, and we always accept u. The other case is where insight is required: one needs to find373

a sampling strategy that had a good probability of finding a blocking factor in (0 : u) for374

any u ε-far from L(A). A central tool for building such a sampling strategy is Lemma 4.8,375

which shows that any word ε-far from L(A) contains many blocking factors. This approach,376

introduced by Alon et al. [5], is used by all existing property testing algorithms for regular377

languages.378

This section is organized as follows. First, in Section 4.1, we give a few tools that help379

us deal with positional words and blocking factors in strongly connected NFA. Next, in380

Section 4.3 we tackle the case of trivial and easy languages (i.e. items Item 2 and Item 3381

of Theorem 4.2). In Section 4.4, we prove that there exists an ε tester using O(log(ε−1)/ε)382

queries for any language L(A). Finally, in Section 4.5, we show that any language not in the383

“easy” class requires Ω(log(ε−1)/ε) queries, thereby proving that there is no intermediate384

query complexity class between easy and hard, and completing the trichotomy.385

4.1 Positional words, blocking factors and strongly connected NFAs386

Before diving into the proof of Theorem 4.2, we establish a few properties of positional387

words that will help us ensuring that we are creating well-formed positional words. In388

Section 4.2, we highlight the connection between property testing and blocking factors in389

strongly connected NFAs.390

We start with the following facts, which are consequences of Fact 3.3.391

▶ Fact 4.3. Let n be a nonnegative integer, let w be a word of length n. If for some states392

p ∈ Qi, q ∈ Qj of A we have p
w−→ q, then the indices i, j satisfy the equation393

j − i = |w| (mod λ)394

▶ Fact 4.4. Let τ = (i : u) and µ = (j : v) be positional words. If τ ≼ µ, then there exists395

positional words η, η′ with |η| = i− j (mod λ) such that µ = ητη′. In particular, this implies396

that there exists words w, w′ with |w| = i− j (mod λ) such that v = wuw′.397

The next property shows that chaining positional words in the automaton Â results398

in well-formed positional words, in the sense that its letters are numbered by consecutive399

numbers modulo λ.400

▶ Property 4.5. Let p, q, r be states of Â and let τ, µ be two positional words such that p
τ−→ q401

and q
µ−→ r. Then τµ is a well-formed positional word, i.e. there exists a word w and an402

integer i ∈ Z/λZ such that τµ = (i : w).403
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Proof. Let i, j be the respective indices of the periodicity classes of p and q, i.e. we have404

p ∈ Qi and q ∈ Qj . Then there exist words u, v such that τ = (i : u) and µ = (j : v).405

Furthermore, by Fact 3.3, the length of any path from p to q is equal to j− i (mod λ), hence406

the last letter of τ is (j − 1, a) for some a ∈ Σ and the words can be chained correctly, i.e.407

τµ = (i : uv). ◀408

These properties allows us to formalize the intuition we gave earlier about blocking factors.409

▶ Lemma 4.6. A positional word τ = (i : u) is a blocking factor for A iff for every states410

p ∈ Qi, q ∈ Q, we have p ̸u−→ q.411

Proof. We first show that if there exists states p ∈ Qi, q ∈ Q such that p
u−→ q, then τ is not412

blocking, i.e. there exists µ ∈ T L(A) such that τ ≼ µ. As A is strongly connected, there413

exist positional words η, η′ such that q0
η−→ p and q

η′

−→ qf for some qf ∈ F . By Property 4.5,414

the positional word µ = ητη′ is well formed. Furthermore, it labels a transition from q0 to415

qf , hence it is in T L(A), and τ is not blocking.416

For the converse, assume that τ is non-blocking: we show that there exists two states417

p ∈ Qi, q ∈ Q such that p
u−→ q. As τ is non-blocking, there exists a positional word µ = (0 : w)418

such that τ ≼ µ and there exists a final state r such that q0
µ−→ r, and equivalently, q0

w−→ r. By419

Fact 4.4, since τ ≼ µ, there exists words v, v′ such that w = vuv′ and the length of v is equal420

to i modulo λ. In particular, the path q0
w−→ r can be decomposed into q0

v−→ p
u−→ q

w−→ r: in421

particular, we have p
u−→ q. It only remains to show that p is in Qi: this follows by Fact 4.3422

since |v| = i (mod λ). ◀423

Finally, the Hamming distance between u and L(A) is the same as the distance between424

(0 : u) and T L(A).425

▷ Claim 4.7. For any word u ∈ Σ∗, we have d(u,L(A)) = d((0 : u), T L(A)).426

Proof. The ≤ part is straightforward. For the reverse inequality, if suffices to see that in427

any minimal substitution sequence from (0 : u) to a positional word in T L(A), no operation428

changes only an index in an (index, letter) pair. ◁429

This allows us to interchangeably use the statements “u is ε-far from L(A)” and “(0 : u) is430

ε-far from T L(A)”.431

4.2 Strongly connected NFAs and blocking factors432

Alon et al. [5, Lemma 2.6] first noticed that if a word u is ε-far from L(A), then it contains433

Ω(εn) short factors that witness the fact that u is not in L(A). We start by translating434

the lemma of Alon et al. on “short witnesses” to the framework of blocking factors. More435

precisely, we show that if u is ε-far from L(A), then (0 : u) contains many disjoint blocking436

factors (Lemma 4.8).437

▶ Lemma 4.8. Let ε > 0, let u be a word of length n ≥ 6m2/ε and assume that L(A)438

contains at least one word of length n. If τ = (0 : u) is ε-far from T L(A), then τ contains at439

least εn/(6m2) disjoint blocking factors.440

Proof. We build a set P of disjoint blocking factors of τ as follows: we process u from left to441

right, starting at index i1 = ρ. Next, at iteration t, set jt to be the smallest integer greater442

than or equal to it and smaller than n− ρ such that τ [it..jt] is a blocking factor. If there is443

no such integer, we stop the process. Otherwise, we add τ [it..jt + ρ− 1]) to the set P, and444

iterate starting from the index it+1 = jt + ρ.445
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Let k denote the size of P. We will show that we can substitute at most 3(k + 1)m2
446

positions in τ to obtain a word in T L(A). (See Figure 2 for an illustration of this construction.)447

Using the assumption that τ is ε-far from T L(A) (which follows from Claim 4.7) will give us448

the desired bound on k.449

a) τ [i1..j1] τ [i2..j2] . . . τ [ik..jk]
p1 qf

b) τ [i1..j1 − 1]
p1 q1

τ [i2..j2 − 1]
p2 q2 p3 . . .

. . . τ [ik..jk − 1]
pk qk qf

c) τ [i1..j1 − 1]
p1 q1

τ [i2..j2 − 1]
p2 q2 p3 . . .

. . . τ [ik..jk − 1]
pk qkq0 qf

Figure 2 a) The decomposition process returns k factors τ [i1, jt], . . . , τ [ik, jk] (represented as
diagonally hatched in gray regions), separated together and with the start of the text by padding
regions of ρ − 1 letters (red crosshatched regions). b) After removing the last letter, each previously
blocking factor now labels a transition between some pair of states pt, qt. c) We use the padding
regions to bridge between consecutive factors as well as the start and end of the word.

For every t, we chose jt to be minimal so that τ [it..jt] is blocking, hence τ [it..jt− 1] is not450

blocking, and therefore τ [it..jt − 1] labels a run from some pt ∈ Qit
to a qt ∈ Qjt

. Therefore,451

using the strong connectivity of A and Fact 3.3, we can edit the last ρ letters of the block452

τ [it..jt + ρ− 1] to obtain a non-blocking factor that labels a transition from pt to pt+1. Using453

the ρ letters at the start and the end of the word, we add transitions from an initial state454

to p1 and from qk to a final state: the assumption that L(A) contains a word of length n455

ensures that Qn contains a final state, hence this is always possible. The resulting word is in456

T L(A) and was obtained from τ using (k + 1)ρ ≤ 3(k + 1)m2 substitutions. As τ is ε-far457

from T L(A), we obtain the following bound on k:458

3(k + 1)m2 ≥ εn⇒ k + 1 ≥ εn

3m2459

⇒ k ≥ εn

3m2 − 1460

⇒ k ≥ εn

6m2461

The last implication uses the assumption that n ≥ 6m2/ε. ◀462

Lemma 4.8 allows us to handle three cases of Theorem 4.2, namely we use it to construct463

a tester with O(log(ε−1)/ε) queries for any regular language, to construct a tester with464

O(1/ε) queries for regular languages with a finite number of blocking factors and to show465

the triviality of languages with no blocking factors.466

4.3 The finite case467

Using the framework described in the previous subsection, we show that when MBF(A) is468

finite then L(A) can the be tested with O(1/ε) queries, and furthermore if MBF(A) is empty,469

then L(A) is trivial.470
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Automata with no blocking factors.471

First, observe that if MBF(A) is empty, there are no blocking factors, and no word can contain472

a blocking factor. Hence, the decomposition procedure used in the proof of Lemma 4.8473

terminates with k = 0, which shows that, if L(A)∩Σn is nonempty, then any word of length474

n is at distance at most 3m2 of L(A). Therefore, for any ε > 0 and for n ≥ 3m2/ε, no word475

of length n is ε-far from L(A), and the tester that always accepts without queries is correct.476

A tester for the finite-but-nonempty case.477

To design a property tester with O(1/ε) queries, recall that, from Lemma 4.8, if u is ε-far478

from L(A), then (0 : u) contains many disjoint blocking factors. We then extract from each479

of these blocking factor a minimum blocking factor: because MBF(A) is finite, the length of480

each of these minimal factors is bounded by a constant C independent of u, hence a constant481

number of queries is enough to read one such factor. Finally, we show in Lemma 4.9 that482

sampling O(1/ε) factors is enough; the result follows.483

▶ Lemma 4.9. Let A be a trim strongly connected NFA. If MBF(A) is finite, then the484

language L = L(A) can be tested with O(1/ε) queries.485

Proof. If MBF(A) if finite, then there exists a constant C such that every minimal blocking486

factor of A has length at most C.487

Let m denote the number of states of A. Given a word u of length n, we first check the488

following:489

If n < 6m2/ε, read all of u, run the automaton A on u and accept if and only if A accepts.490

If L(A) does not contain words of length n, reject. This can be checked efficiently using491

a simple dynamic programming algorithm.492

The above procedure uses at most O(1/ε) queries, and if both checks fail, then u satisfies493

the hypotheses of Lemma 4.8. We then use the following procedure:494

sample independently K = 6m2 ln(3)/ε random factors of length C in (0 : u). To sample495

a factor, choose an index i uniformly at random in {1, . . . , n}, and return (i : u[i..i + C)).496

rejects if at least one of these factors is blocking for A.497

We show that this algorithm is an ε-tester for L.498

First, if u ∈ L, then no factor of (0 : u) is blocking, and the algorithm accepts with499

probability 1.500

Now, assume that u is ε-far from L. By Lemma 4.8, (0 : u) contains at least N = εn/(6m2)501

disjoint blocking factors. Each of these blocking factors induces at least one minimal blocking502

factor, i.e. (0 : u) contains at least N disjoint minimal blocking factors. Each of these503

factors has length at most C, therefore the probability that the sampling procedure returns504

a factor that contains one of them is at least N/n = ε/(6m2). By repeating independently505

K = 6m2 ln(3)/ε times, the probability of not finding any of the blocking factors is at most506

(1−N/n)K ≤ e−KN/n = e− ln 3 = 1/3, therefore the algorithm rejects u with probability at507

least 2/3 and satisfies Definition 2.1.508

This tester uses 6Cm2/ε = O(1/ε) queries. ◀509

Lower bound in the nonempty case.510

It remains to show that if MBF(A) is nonempty, then testing L(A) requires Ω(1/ε) queries.511

Alon et al. [5] showed that “non-trivial” regular languages require Ω(1/ε) queries, using a512

notion of triviality defined differently from ours. They define non-trivial languages as follows:513

514
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▶ Definition 4.10 ([5, Definition 3.1]). A language L is non-trivial if there exists a constant515

ε0 > 0, so that for infinitely many values of n the set L∩Σn is nonempty, and there exists a516

word w ∈ Σn so that d(w, L) ≥ ε0n.517

Their lower bound is the following:518

▶ Fact 4.11 ([5, Proposition 2]). Let L be a non-trivial (in the sense of Alon et. al) regular519

language. Then for all sufficiently small ε > 0, any ε-tester for L requires Ω(1/ε) queries.520

To prove the lower bound in item 2) of Theorem 4.2, we show that if a language is521

non-trivial in our sense, i.e. MBF(A) is nonempty, then it is non-trivial in the sense of Alon522

et al.: we then get our lower bound by applying theirs.523

▶ Lemma 4.12. Let A be a strongly connected NFA such that MBF(A) is nonempty and524

denote L = L(A). Then there exists a constant ε0 > 0 such that for infinitely many values525

of n the set L ∩ Σn is nonempty and there exists a word w ∈ Σn so that d(w, L) ≥ ε0n.526

Proof. As A is strongly connected, L is infinite, hence there are infinitely many integers n527

such that L ∩ Σn is nonempty. We show that there exists a constant ε0 such that for large528

enough n such that L ∩ Σn is nonempty, there is a word of length n that is ε0-far from L.529

Since MBF(L) is nonempty, it contains at least one blocking factor, which is of the form530

(i : u) for some i ∈ Z/λZ. Let C denote the smallest multiple of λ greater than the length of531

u, let x denote an arbitrary word of length C with u as a prefix, and let ε0 = 1/(2C). We532

proceed to show that for any sufficiently large n ≥ 2(C + λ) such that L ∩ Σn is nonempty,533

there exists a word w ∈ Σn such that d(w, L) ≥ ε0n. We construct the word w by replacing534

a portion of v with disjoint copies of x, where x is an arbitrary word of length C that has535

u as a prefix. More precisely, we define w as w = v[..i]xkv[i + k · C + 1..] where k = ⌈ε0n⌉536

disjoint copies of x. This word has length n as i + k · C ≤ λ + C⌈ε0n⌉ ≤ n.537

We now claim that d(w, L) ≥ k ≥ ε0n. First, notice that as C is a multiple of λ, all538

k copies of x (and therefore of u) in w start at position equal to i modulo λ. Therefore,539

any such occurrence of u induces an occurrence of (i : u) in (0 : w). Next, consider a word540

w′ obtained by performing less than k substitutions on w. Some copy of u in w′ will be541

untouched, hence (i : u) ≼ (0 : w′), and therefore w′ /∈ L. Overall, we have542

d(w, L) = d((0 : w), T L(A)) ≥ k ≥ ε0n.543

We have shown that there exists ε0 such that for infinitely many n, L ∩ Σn is nonempty544

and there exists a word w ∈ Σn so that d(w, L) ≥ ε0n, hence L is non-trivial in the sense of545

Alon et al, and their lower bound applies. ◀546

4.4 An efficient generic property tester for regular languages.547

In this section, we show that for any strongly connected NFA A, there exists ε-property548

tester for L(A) that uses O(log(ε−1)/ε) queries.549

▶ Theorem 4.13. Let A be a strongly connected NFA. For any ε > 0, there exists an550

ε-property tester for L(A) that uses O(log(ε−1)/ε) queries.551

Note that this result is an improvement over the similar result of Bathie and Starikovskaya [7]:552

while both testers use the same number of queries, theirs works under the edit distance,553

while ours is designed for the Hamming distance. As the edit distance never exceeds the554

Hamming distance, the set of words that are ε-far with respect to the former is contained in555
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the set of words ε-far for the latter. Therefore, an ε-tester for the Hamming distance is also556

an ε-tester for the edit distance, and our result supersedes and generalizes theirs.557

The algorithm for Theorem 4.13 is given in Algorithm 1. The procedure is fairly simple:558

the algorithm samples at random factors of various lengths in u, and rejects if and only if559

at least one of these factors is blocking. On the other hand, the correctness of the tester is560

far from trivial. The lengths and the number of factors of each lengths are chosen so that561

the number of queries is O(log(ε−1)/ε) and the probability of finding a blocking factor is562

maximized, regardless of their repartition in u.563

Algorithm 1 Generic ε-property tester using O(log(ε−1)/ε) queries

1: function Sample(u, ℓ)
2: i← uniform(0, n− 1)
3: l← max(i− ℓ, 0), r ← min(i + ℓ, n− 1)
4: η ← (l : u[l..r])
5: return v

6: function Tester(u, ε)
7: β ← 12m2/ε

8: if L(A) ∩ Σn = ∅ then
9: Reject

10: else if n < β then
11: Query all of u and run A on it
12: Accept if and only if A accepts
13: else
14: F ← ∅
15: T ← ⌈log(β)⌉
16: for t = 0 to T do
17: ℓt ← 2t, rt ← ⌈2 ln(3)β/ℓt⌉
18: for i = 1 to rt do
19: F ← F ∪ {Sample(u, ℓt)}
20: Reject if and only if F contains a factor blocking for A.

We now turn to proving these properties formally.564

▷ Claim 4.14. The tester given in Algorithm 1 makes O(log(ε−1)/ε) queries to u.565

Proof. If n ≤ β, then the tester makes |u| ≤ β = O(1/ε) queries, and the claim holds. The566

Sample function with parameter ℓ makes at most 2ℓ queries to u. Therefore, if n ≥ β,567

the tester it makes at most ℓt · rt = O(β) queries for every t = 0, . . . , T , which adds up to568

O(T · β) = O(log(ε−1)/ε) queries. ◀569

Next, we show an extension of Lemma 4.8 that shows that if u is ε-far from L(A), then570

(0 : u) contains Ω(εn) blocking factors of length O(1/ε).571

▶ Lemma 4.15. Let ε > 0, let u be a word of length n ≥ 6m2/ε and assume that L(A)572

contains at least one word of length n. If u is ε-far from L(A), then the positional word573

(0 : u) contains at least εn/(12m2) disjoint blocking factors of length at most 12m2/ε.574

Proof. Let u,A be a word and an automaton satisfying the above hypotheses. By Lemma 4.8,575

(0 : u) contains at least εn/(6m2) disjoint blocking factors. As these factors are disjoint, at576

most half of them (that is, εn/(12m2) of them) can have length greater than 12m2/ε, as the577

sum of their lengths cannot exceed n. ◀578
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For the correctness analysis, we assume that u is ε-far from L(A), and show that579

Algorithm 1 finds a blocking factor of (0 : u) with probability at least 2/3.580

▶ Lemma 4.16. In the last Else block, if u is ε-far from L(A), then Algorithm 1 rejects581

with probability at least 2/3.582

Proof. Assume that u is ε-far from L(A). As we are in the last Else block of Algorithm 1,583

L(A) ∩ Σn is not empty (i.e. L(A) contains a word of length n) and n ≥ β, therefore the584

conditions of Lemma 4.15 are satisfied. Let B denote the set of minimal blocking factors in585

(0 : u) given by Lemma 4.15: we have B ≥ n/β. We conceptually divide the blocking factors586

in B into different categories depending on their length: for t = 0, . . . , T, let Bt denote the587

subset of B of blocking factors of length at most ℓt = 2t. We then carefully analyze the588

probability that randomly sampled factors of length 2ℓt contains a blocking factor from Bt,589

and show that over all t, at least one blocking factor is found with probability at least 2/3.590

▷ Claim 4.17. If in a call to Sample, the value i is such that there exists indices l, r, l ≤ i ≤ r,591

such that (0 : u)[l, r] is a blocking factor of A of length at most ℓ, then the factor η returned592

by the function is blocking for A.593

As the factors given by Lemma 4.15 are disjoint, the probability pt that the factor returned594

by Sample is blocking is lower bounded by595

pt ≥
1
n

∑
τ∈Bt

|τ |596

The Sample function is called rt = 2 ln(3)β/ℓt times independently for each t, hence the597

probability p that the algorithm samples a blocking factor satisfies the following:598

(1− p) =
T∏

t=0
(1− pt)rt ≤ exp

(
−

T∑
t=0

ptrt

)
599

≤ exp
(
−2 ln(3)β

n

T∑
t=0

1
ℓt

∑
τ∈Bt

|τ |

)
600

= exp

−2 ln(3)β
n

∑
τ∈B
|τ |

T∑
t=⌈log |τ |⌉

2−t

601

≤ exp
(
−2 ln(3)β

n

∑
τ∈B
|τ | · 2−⌈log |τ |⌉

)
602

≤ exp
(
−2 ln(3)β

n

∑
τ∈B
|τ | 1

2|τ |

)
603

= exp
(
−2 ln(3)β

n
· |B|2

)
604

≤ exp
(
−2 ln(3)β

n
· n

2β

)
605

≤ exp (− ln(3)) = 1/3606

It follows that p ≥ 2/3, and Algorithm 1 satisfies Definition 2.1. ◀607
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4.5 Lower bound when there are infinitely many minimal blocking words608

We now show that languages with infinitely many blocking factors are hard, i.e. any tester609

for such a language requires Ω(log(ε−1)/ε) queries.610

▶ Theorem 4.18. Let A be a trim strongly connected automaton. If MBF(A) is infinite,611

then there exists a constant ε0 such that for any ε < ε0, any ε-property tester for L = L(A)612

uses Ω(log(ε−1)/ε) queries.613

Our proof of this result will look familiar to readers acquainted with the lower bound of614

Bathie and Starikovskaya [7, Theorem 15]: our proof extends theirs to any language with615

arbitrarily long minimal blocking words. One difference is that our lower bound applies616

to ε-testers for the Hamming distance, instead of the edit distance. This is a weakening617

assumption as the edit distance never exceeds the Hamming distance, but it appears to be618

needed in the proof of Lemma 4.23.619

Our proof is based on (a consequence of) Yao’s minmax principle, which we recall here.620

▶ Fact 4.19 (From Yao’s Minmax Principle [21]). Let f : R→ N be a nondecreasing function.621

Let T denote the set of all algorithms using less than f(ε) queries, and let TD denote the622

subset of deterministic algorithms. Let D be a probability distribution over Σ∗. Then, we623

have624

inf
T ∈T

sup
x∈Σ∗

PT (T errs on x) ≥ inf
T ∈TD

Px∼D(T errs on x).625

Therefore, to show that any randomized algorithm with less than log(ε−1)/ε queries errs626

with large probability, it suffices to exhibit a probability distribution over inputs such that627

any deterministic tester errs with large probability on this distribution.628

We will construct a hard distribution using long minimal blocking factors, and show629

that with large probability, any deterministic algorithm using less than log(ε−1)/ε queries630

has the same query results for many pairs of positive and ε-far instances. As the tester is631

deterministic, it must answer the same on all these pairs, and therefore make an error with632

large probability.633

Our proof of Theorem 4.18 goes through the following steps:634

1. first, show that with high probability, an input u sampled w.r.t. D is either in or ε-far635

from L (Lemma 4.23),636

2. show that with high probability, any deterministic tester that makes fewer than c ·637

log(ε−1)/ε queries (for a suitable constant c) cannot distinguish whether the instance u638

is positive or ε-far,639

3. combine the above to prove Theorem 4.18 via Fact 4.19.640

4.5.1 Constructing a hard distribution641

Let ε > 0 be sufficiently small and let n be a large enough integer. In what follows, m denotes642

the number of states of A. To construct the hard distribution D, we will use an infinite643

family of blocking factors that share a common structure, given by the following lemma.644

▶ Lemma 4.20. If MBF(A) is infinite, then there exist positional words ϕ, ν+, ν−, χ such645

that:646

1. the words ν+ and ν− have the same length,647

2. there exists a constant S = 2O(m) such that |ϕ|, |ν+|, |ν−|, |χ| ≤ S,648
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3. there exists an index i∗ ∈ Z/λZ and a state q∗ ∈ Qi∗ such that for every integer r ≥ 1,649

τ−,r = ϕ(ν−)rz is blocking for A, and for every s < r, we have650

q∗
τ+,r,s−−−−→ q∗ where τ+,r,s = ϕ(ν−)jν+(ν−)r−1−sχ.651

In particular, τ+,r,s is not blocking for A.652

The crucial property here is that τ−,r and τ+,r,s are very similar: they have the same653

length, differ in at most S letters, yet one of them is blocking and the other is not. The654

proof of this lemma is deferred to Appendix A.655

We now use the words τ−,r and τ+,r,s and the constant S to describe how to sample an656

input µ = (0 : u) of length n w.r.t. D.657

Let π be a uniformly random bit. If π = 1, we will construct a positive instance658

µ ∈ T L(A), and otherwise the instance will be ε-far from T L(A) with high probability.659

We divide the interval [1. .n] into k = εn intervals of length ℓ = 1/ε, plus small initial and660

final segments µi and µf of length O(ρ) to be specified later. For the sake of simplicity, we661

assume that k and ℓ are integers and that λ divides ℓ. For j = 1, . . . , k, let aj , bj denote662

the endpoints of the j-th interval. For each interval, we sample independently at random a663

variable τj with the following distribution:664

τj =
{

t, w.p. pt = 3 · 2tSε/ log((Sε)−1) for t = 1, 2, . . . , log((Sε)−1),
0, w.p. p0 = 1−

∑log((Sε)−1)
t=1 pt.

(3)665

The event τj > 0 means that the j-th interval is filled with with N ≈ 2−τj /ε “special” factors.666

When π = 0, these “special” factors will be minimal blocking factors τ−,r for r = 2τj , whereas667

when π = 1, they will instead be similar non-blocking factors τ+,r,s for a uniformly random668

s: they will be hard to distinguish with few queries. On the other hand, the event τj = 0669

means that the j-th interval contains no specific information. More precisely, we choose a670

positional word η∗ of length ℓ such that q∗
w∗−−→ q∗: by Fact 3.3, this is possible as ℓ = 0671

(mod λ). Then, if τj = 0, we set µ[aj ..bj ] = η∗, regardless of the value of π.672

Formally, if τj > 0, let r = 2τj , N = 2−τj /(Sε) and let η be a word of length ℓ−N · |τ−,r|673

such that q∗
η−→ q∗: such a word exists as λ divides ℓ and |τ−,r|. We construct the j-th674

interval as follows:675

if π = 0, we set µ[aj ..bj ] = (τ−,r)N η,676

if π = 1, we select s ∈ [0..r − 1] uniformly at random, and set µ[aj ..bj ] = (τ+,r,s)N η.677

Finally, the initial and final fragments µi and µf of µ are chosen to be the shortest words678

that label a transition from q0 to q∗ and q∗ to a final state, respectively.679

4.5.2 Properties of the distribution D680

We now conclude the proof of Theorem 4.2 by studying properties of the distribution D.681

▶ Observation 4.21. If ε is small enough, D is well-defined, i.e. for every t between 0 and682

log((Sε)−1), we have 0 ≤ pt ≤ 1.683

▶ Observation 4.22. If π = 1, then µ ∈ T L(A).684

Next, we show that when π = 0, the resulting instance is ε-far from L with high probability.685

▶ Lemma 4.23. Conditioned on π = 0, the probability of the event F = {µ is ε-far from686

T L(A)} goes to 1 as n goes to infinity.687
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Proof. When π = 0, the procedure for sampling µ puts blocking factors of the form (i∗ : x)688

at positions equal to i∗ mod λ. Any word containing such a factor at such a position is not689

in T L(A), therefore any sequence of substitutions that transforms µ into a word of T L(A)690

must make at least one substitution in every such factor. Consequently, the distance between691

µ and T L(A) is at least the number of blocking factors in µ. To prove the lemma, we show692

that this number is at least εn with high probability, by showing that it is larger than εn by693

a constant factor in expectation and using a concentration argument.694

Let Bj denote the number of blocking factors in the j-th interval: it is equal to 2−τj /(Sε)695

when τj > 0 and to 0 otherwise.696

▷ Claim 4.24. Let B =
∑k

j=1 Bj , and let E = E [B]. We have E ≥ 2εn.697

Claim proof. By direct calculation:698

E =
k∑

j=1
E [Bj ] by linearity699

=
k∑

j=1

log(S/ε)∑
t=1

2−t/(Sε) · pt def. of expectation700

=
k∑

j=1

log(S/ε)∑
t=1

2−t/(Sε) · 3 · 2tεS/ log(S/ε) def. of pt701

=
k∑

j=1

log(S/ε)∑
t=1

3/ log(S/ε)702

= 3k ≥ 2εn703

◀704

We will now show that P(B < εn) goes to 0 as n goes to infinity. By Claim 4.24, we have705

B < εn⇒ E − B ≥ εn, and therefore P(B < εn) ≤ P(E − B ≥ εn). The random variable706

B is the sum of k independent random variables, each taking values between 0 and 1/(Sε).707

Therefore, by Hoeffding’s Inequality (Lemma B.1), we have708

P(E −B < εn) ≤ exp
(
− 2ε2n2

k/(Sε)2

)
709

≤ exp
(
−2S2ε4n2

εn

)
as k ≤ εn710

≤ exp
(
−2S2ε3n

)
711

This probability goes to 0 as n goes to infinity, which concludes the proof. ◀712

▶ Corollary 4.25. For large enough n, we have P (F) ≥ 5/12.713

Intuitively, our distribution is hard to test because positive and negative instance are714

very similar. Therefore, a tester with few queries will likely not be able to tell them apart:715

the perfect completeness constraint forces the tester to accept in that case. Below, we prove716

this last part formally.717

▶ Lemma 4.26. Let T be a deterministic tester with perfect completeness (i.e. one sided718

error, always accepts τ ∈ T L(A)) and let qj denote the number of queries that it makes in719

the j-th interval. Conditioned on the event M = {∀j s.t. τj > 0, qj < 2τj}, the probability720

that T accepts u is 1.721
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Proof. We show that if there exists a τ with non-zero probability w.r.t. D under M that T722

rejects, then there exists a word τ ′ ∈ T L(A) that T rejects that also has non-zero probability,723

contradicting the fact that T has perfect completeness.724

Let τ be the word rejected by T : as T has perfect completeness, hence τ /∈ T L(A), and725

there must be at least one interval with τj > 0. Consider every interval j such that τj > 0: it726

is of the form (τ−,r)N v where r = 2τj and τ−,r = ϕ(ν−)rχ. Therefore, if qj < 2τj , then there727

is a copy of ν− that has not been queried by T across all copies of τ−,r. Consider the word728

τ ′ obtained by replacing this copy of ν− with ν+ in all N copies of τ−,r in the block. The729

result block is of the form (τ+,r,s)N v for some s < r, and by construction it is not blocking.730

Applying this operation to all blocks results in a word τ ′ that is in T L(A). Furthermore,731

τ ′ has non-zero probability under D conditioned on M: it can be obtained by flipping the732

random bit π and choosing the right index s in every block. ◀733

Next, we show that if a tester makes few queries, then the event M has large probability.734

▶ Lemma 4.27. Let T be a deterministic tester, let qj denote the number of queries that735

it makes in the j-th interval, and assume that T makes at most 1
72 · log(ε−1)/ε queries, i.e.736 ∑

j qj ≤ 1
72 · log(ε−1)/ε. The probability of the event M = {∀j s.t. τj > 0, qj < 2τj} is at737

least 11/12.738

Proof. We show that the probability of M, the complement of M, is at most 1/12. We739

have:740

P
(
M
)

= P (∃j : τj > 0 ∧ qj ≥ 2τj )741

≤
∑

j

P (τj > 0 ∧ qj ≥ 2τj ) by union bound742

≤
∑

j

⌊log qj⌋∑
t=1

pt743

=
∑

j

⌊log qj⌋∑
t=1

3 · 2tε

log(S/ε) by def. of pt744

≤ 3ε

log(S/ε)
∑

j

⌊log qj⌋∑
t=1

2t
745

≤ 3ε

log(S/ε)
∑

j

2qj746

= 3ε

log(S/ε) ·
2
72 ·

log(1/ε)
ε

747

≤ 1/12748

◀749

We are now ready to prove Theorem 4.2.750

Proof of Theorem 4.2. We want to show that any non-adaptive tester with perfect com-751

pleteness for L(A) requires at least 1
72 · log(ε−1)/ε queries, by showing that any tester with752

fewer queries errs with probability at least 1/3. We use Yao’s minmax principle (Fact 4.19),753

and show that any deterministic non-adaptive algorithm T with perfect completeness that754

makes less than 1
72 · log(ε−1)/ε queries errs on u when (0 : u) ∼ D with probability at least755

1/3.756
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Consider such an algorithm T . The probability that T makes an error on u is lower-757

bounded by the probability that u is ε-far from L(A) and T accepts, which in turn is larger758

than the probability ofM∩F . By Corollary 4.25, we have P (F) ≥ 5/12, and by Lemma 4.27,759

P (M) is at least 11/12. Therefore, we have760

P (T errs) ≥ P (M∩F) ≥ 1− 7/12− 1/12 = 1/3.761

This concludes the proof of Theorem 4.2. ◀762

5 The Case of General NFAs763

In this section we extend the previous characterisation to all finite automata, proving our764

main theorem, stated as Theorem 2.7 in the overview section. To do so, we generalise the765

notion of blocking factor: we introduce blocking sequences, which are sequences of factors that766

witness the fact that we cannot take any path through the strongly connected components of767

the automaton. We define a suitable partial order on blocking sequences, which extends the768

factor relation on words to those sequences. The classification between trivial, easy and hard769

of a language can be characterised by the set of minimal blocking sequences of an automaton770

recognising it. This is expressed by the following theorem, where MBS(A) stands for the set771

of minimal blocking sequences of A.772

The statement we will prove is the following:773

▶ Theorem 5.1. Let L be an infinite language recognised by the trim NFA A. The complexity774

of testing L is characterized by MBS(A) as follows:775

1. L is hard to test if and only if MBS(A) is infinite.776

2. L is easy to test if and only if MBS(A) is finite and nonempty.777

3. L is trivial if and only if MBS(A) is empty.778

Recall that we only consider infinite languages in this classification.779

This section uses the knowledge package, to help the reader keep track of the various
notions. Some important terms are coloured in red when we define them. Occurrences
of those important terms are coloured in blue. The reader can click on those (or just
hover over them on some PDF readers) to see the definition.

780

The rest of this section is dedicated to the proof of Theorem 5.1. Before we get into the781

proof, let us go through some examples, which illustrate some of the main difficulties. In all782

that follows we will abbreviate “strongly connected component” as SCC. We call an SCC783

trivial if it is just a single state with no self-loop.784

q0 q1 q2
c a

a, b b, c a, b, c

Figure 3 An automaton recognising the language (a + b)∗(b + c)∗.

▶ Example 5.2. Observe the automaton in Figure 3. It has two SCCs, plus a sink state.785

The set of minimal blocking factors of its language is infinite: it is the set cb∗a. Yet, it is786

https://www.irif.fr/~colcombe/knowledge_en.html
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easy: Given a word w, it suffices to sample O(1/ε) positions at random and reject if we787

see a c appearing before an a. Clearly if the word is in the language, every c must be after788

every a, thus we accept. On the other hand, suppose the word is ε-far from the language.789

Let u be the maximal prefix of w containing less than ε|w|/2 occurrences of c. If u = w790

then we can turn every c in w into an a to make it accepted, and thus d(w, L) < ε|w|/2, a791

contradiction. Hence we can write w as ucv. If v contains less than ε|w|/2 occurrences of a792

then d(w, L) < ε|w|, again a contradiction.793

Otherwise, u contains ε|w|/2 occurrences of c and v contains ε|w|/2 occurrences of a.794

Then the probability that when picking ε|w| letters at random we sample one of the c in u795

and one of the a in v is lower-bounded by a positive constant. In conclusion, we reject with796

constant probability when the word is ε-far from the language.797

The crucial point in the following proof is the use of blocking sequences instead of blocking798

factors. A blocking sequence is a list of factors that are blocking for SCCs of the automaton,799

so that seeing this sequence as disjoint factors of a word guarantees that it is rejected.800

Blocking sequences come with a natural notion of minimality, which lets us characterise801

languages that are easy as those that admit finitely many minimal blocking sequences.802

In the example above, a (unique) minimal blocking sequence is (c, a).803

q1

q0

q2 q3
a, c a

a

b, e

c, d, e

b, c, d, e a, b, c, d, e
db

Figure 4 An automaton recognising the language [ϵ + ((c + d + e)∗b(b + e)∗d)∗a](b + c + d + e)∗.

▶ Example 5.3. In Figure 4 we display an automaton with two SCCs and a sink state. The804

first SCC has blocking factors be∗c + a and the second one just a. This automaton is easy:805

intuitively, a word that is ε-far from this language has to contain many a, as otherwise we806

can make it accepted by deleting all a, thanks to the second SCC. As a is also a blocking807

factor of the first SCC, we only need to look for two as in the word.808

The family of unbounded blocking factors of the first SCC is made irrelevant by the fact809

that a word far from the language must contain many a anyway.810

We fix an NFA A = (Q, Σ, δ, qinit, qf ). Once again note that it has a single final state qf .811

Let S be its set of SCCs. We define the partial order relation ≤A on S as: S ≤A T if and812

only if T is reachable from S. We write <A for its strict part ≤A \ ≥A.813

We define p as the least common multiple of the lengths of all simple cycles of A. Given814

a number k ∈ {0, . . . , p− 1}, we say that a state t is k-reachable from a state s if there is815

a path from s to t of length k modulo p. In what follows, we use “positional words” for816

p-positional words with this value of p.817
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▶ Remark 5.4. In the rest of this section we will not try to optimise the constants in the818

formulas. They will, in fact, become quite large in some of the proofs. We make this choice819

to make the proofs more readable, although some of them are already technical.820

For instance, the choice of p as the lcm of the lengths of simple cycles is not optimal: we821

could use, for instance, the lcm of the periodicities of the SCCs.822

▶ Definition 5.5. A portal is a 4-tuple s, x⇝ t, y ∈ (Q× {0, . . . , p− 1})2, such that s and t823

are in the same SCC. It describes the first and last states visited by a path in an SCC, and824

the times at which it first and lasts visits that SCC (modulo p).825

The positional language of a portal is the set
826

PL(s, x⇝ t, y) = {(x : w) | t ∈ δ(s, w) ∧ x + |w| = y (mod p)}.827

Portals were already defined in [5], in a slightly different way. Our definition will allow us to828

express blocking sequences more naturally.829

▶ Definition 5.6. A positional word (n : u) is blocking for a portal s, x⇝ t, y if it is not a830

factor of any word of PL(s, x⇝ t, y). In other words, there is no path that starts in s and831

ends in t, of length y − x modulo p, which reads u after n− x steps modulo p.832

▶ Remark 5.7. There is an NFA with ≤ p|A| states recognising PL(s, x ⇝ t, y): it simply833

simulates the SCC of s while keeping track of the number of letters read, plus x, modulo p.834

Its set of states is thus a subset of {0, . . . , p− 1} ×Q.835

It is strongly connected: say we read a word u from (s, x) and reach (s′, x′). There is836

a path from s′ to s in A, labelled by a word v. Hence we can reach (s, x) from (s′, x′) by837

reading v(uv)p−1.838

Its periodicity is p. Hence we can use all results we obtained on strongly connected NFAs839

on portals, with p|A| as the number of states and p as the periodicity.840

▶ Definition 5.8. An SCC-path π of A is a sequence of portals linked by transitions841

π = s0, x0 ⇝ t0, y0
a1−→ s1, x1 ⇝ t1, y1 · · ·

ak−→ sk, xk ⇝ tk, yk,842

such that for all i ∈ {1, . . . , k}, xi = yi−1 + 1 (mod p), si ∈ δ(ti−1, ai), and ti−1 <A si.843

It is a description of the states and times at which a path through the automaton enters844

and leaves the SCCs.845

The language L(π) of an SCC-path π = s0, x0 ⇝ t0, y0
a1−→ · · · sk, xk ⇝ tk, yk is the set

846

L(π) = L(s0, x0 ⇝ t0, y0)a1L(s1, x1 ⇝ t1, y1)a2 · · · L(sk, xk ⇝ tk, yk)847

We say that π is accepting if x0 = 0, s0 = qinit, tk = qf and L(π) is non-empty.
848

▶ Fact 5.9.

L(A) =
⋃

π accepting
L(π).849

Proof. Let w = b1 · · · bℓ ∈ L(A). There exists ρ = q0
b1−→ q1 · · ·

bℓ−→ qℓ an accepting run in A.850

Let i1 < . . . < ik be the sequence of indices such that {i1, . . . , ik} = {i ∈ {1, . . . , m} |851

qi−1 <A qi}. We also define i0 = 0 and ik+1 = ℓ + 1. In other words, those are the indices at852

which ρ enters a new SCC.853
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We define the SCC-path π(ρ) as follows:854

π(ρ) = q0, 0⇝ qi1−1, y0
ai1−−→ qi1 , x1 ⇝ qi2−1, y1 · · ·

aik−−→ qik
, xk ⇝ qℓ, yk855

with xj = m + ij (mod p) and yj = m + ij+1 − 1 (mod p) for all j ∈ {0, . . . , k}. Clearly856

w ∈ L(π(ρ)) and π(ρ) is an accepting SCC-path.857

Conversely, let π = s0, x0 ⇝ t0, y0
a1−→ · · · sk, xk ⇝ tk, yk be an accepting SCC-path in A858

and let w ∈ L(π).859

For all j ∈ {0, . . . , k}, there is a word wj labelling a path from sj to tj , such that860

w = w0a1 · · ·wk. By gluing those paths and the transitions tj−1
aj−→ sj , we obtain an861

accepting run for w in A. ◀862

Decomposing A as a union of SCC-paths allows us to use them as an intermediate step.863

We define blocking sequences for SCC-paths before defining them on automata.864

▶ Definition 5.10. We say that a sequence ((n1 : u1), . . . , (nℓ : uℓ)) of positional factors is865

blocking for an SCC-path π = s0, x0 ⇝ t0, y0
a1−→ · · · sk, xk ⇝ tk, yk if there is a sequence of866

indices i0 ≤ i1 ≤ · · · ≤ ik such that (nij : uij ) is blocking for sj , xj ⇝ tj , yj, for all j.867

q0 q1

q2

q3

q4

a

a

a

b

b

a

ba

Figure 5 Automaton used for Example 5.11.

▶ Example 5.11. Take a look at the automaton displayed in Figure 5. It has four SCCs,868

including two trivial ones {q0} and {q4}. The lcm of the lengths of its simple cycles is p = 2.869

It has six accepting SCC-paths:870

q0, 0⇝ q0, 0 a−→ q1, 1⇝ q1, 1 a−→ q3, 0⇝ q3, 0 b−→ q4, 1⇝ q4, 1871

q0, 0⇝ q0, 0 a−→ q1, 1⇝ q1, 1 a−→ q3, 0⇝ q3, 1 b−→ q4, 0⇝ q4, 0872

q0, 0⇝ q0, 0 a−→ q2, 1⇝ q1, 0 a−→ q3, 1⇝ q3, 0 b−→ q4, 1⇝ q4, 1873

q0, 0⇝ q0, 0 a−→ q2, 1⇝ q1, 0 a−→ q3, 1⇝ q3, 1 b−→ q4, 0⇝ q4, 0874

q0, 0⇝ q0, 0 a−→ q1, 1⇝ q2, 0 b−→ q4, 1⇝ q4, 1875

q0, 0⇝ q0, 0 a−→ q2, 1⇝ q2, 1 b−→ q4, 0⇝ q4, 0876

The language of the first SCC-path is a(ba)∗a(a2)∗b. A blocking sequence for this SCC-877

path is (0 : aa), (0 : b), which is in fact blocking for all those SCC-paths. Another one is878

(1 : ab).879

On the other hand, (0 : ab) is not blocking for this path, as (0 : ab) is not a blocking880

factor for the portal q1, 1⇝ q1, 1. It is, however, a blocking sequence for the third, fourth881

and last SCC-paths.882

This is because if we enter the SCC {q1, q2} through q1, a factor ab can only appear883

after an even number of steps, while if we enter through q2, it can only appear after an odd884

number of steps.885
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▶ Example 5.12. The automaton A displayed in Figure 6 only has cycles of length 1, hence886

p = 1. They are totally ordered by ≤A.887

Observe that the sequence ((0 : a), (0 : b)) is a blocking sequence for the SCC-path888

π = q0, 0 ⇝ q0, 0 a−→ q1, 0 ⇝ q1, 0 a−→ q2, 0 ⇝ q2, 0 . Indeed, a is blocking for the first two889

portals, and b for the third. We can verify Lemma 5.15 here: If a word contains |Q| = 4890

disjoint sequences ((0 : a), (0 : b)), then in particular it must contain factors a, a and b in891

that order.892

Even two blocking sequences would be enough here, but note that containing one blocking893

sequence is not enough: the word aba contains ((a : 0), (b : 0)), yet it is in the language of π.894

q0 q1 q2 q3
a a b

b b a a, b

Figure 6 An automaton recognising the language b∗ + b∗ab∗a∗.

In order to smoothen the proofs of the following results, let us start with two technical895

lemmas expressing two basic properties of the Hamming distance with respect to A. The896

first one states that, for all SCC-path π and ℓ large enough, whether L(π) contains a word897

of length ℓ only depends on the value ℓ (mod p).898

▶ Lemma 5.13. Let π = s0, x0 ⇝ t0, y0
a1−→ · · · sk, xk ⇝ tk, yk be an SCC-path and899

r ∈ {0, . . . , p − 1}. If there exists a word w ∈ L(π) with |w| = r (mod p) and |w| ≥ |A|900

then for all ℓ ∈ N such that ℓ = r (mod p) and ℓ ≥ p|A|+ 3|A|3 there exists w′ ∈ L(π) with901

|w′| = ℓ.902

Proof. Suppose there exists w ∈ L(π) with |w| = r (mod p) and |w| ≥ |A|. Then we can903

decompose it as w = w0a1 · · ·wk with wi ∈ L(si, xi ⇝ ti, yi) for all i. For each i ∈ {0, . . . , k},904

let Si be the SCC of si, and pi the periodicity Si. For all i such that the Si is not trivial, by905

Fact 3.3, there is a word v′
i labelling a path from si to ti of length ℓi with ℓi = mi+1 −mi906

(mod pi) and ℓi ≤ 3|A|2. If i = k, we set mk+1 = r. Since the SCC of si is not trivial, there is907

a simple cycle from si to itself. Let ci be its length and ui the word it reads. Since pi divides908

p, we know that mi+1 −mi − ℓi = ripi (mod p) for some ri ∈ {0, . . . , p/pi − 1}. The word909

w′
i = uri

i v′
i labels a path from si to ti, of length ℓi + ripi = mi+1−mi (mod p). Furthermore910

we have |w′
i| ≤ p + 3|A|2. If si is in a trivial SCC, then wi is the empty word γ. In that case911

we set w′
i = γ. We set w′ = w′

1a1w′
2 · · · ak−1w′

k. We have w′ ∈ L(π), |w′| ≤ p|A|+ 3|A|3 and912

|w′| = r (mod p).913

Since w ∈ L(π) and |w| ≥ |A|, the run reading w has to go through a cycle, hence there914

must be an i such that Si is non-trivial. Let u be a word labelling a simple cycle from si915

to itself. Since |u| divides p, for any ℓ ∈ N such that ℓ = r (mod ) and ℓ ≥ p|A| + 3|A|3916

we can find a word of length ℓ in L(π) by adding this cycle enough times in the run of w′
917

constructed before. ◀918

Our second technical lemma expresses that adding p letters to a word can only increase919

the distance by p.920

▶ Lemma 5.14. Let s, x⇝ t, y be a portal such that the SCC of s and t is non-trivial, and921

w a word such that d(w,L(s, x⇝ t, y)) < +∞. Let u ∈ Σp. Then we have d(wu,L(s, x⇝922

t, y)) ≤ d(w,L(s, x⇝ t, y)) + p.923
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Proof. As d(w,L(s, x⇝ t, y)) < +∞, there exists w′ ∈ L(s, x⇝ t, y) such that d(w, w′) =924

d(w,L(s, x⇝ t, y)). Thus there is a path of length y− x (mod p) from s to t reading w′. As925

the SCC of t is non-trivial, there is a cycle from t to itself. Let v be a word labelling a simple926

cycle from t to itself. By definition of p, |v| divides p, thus there exists k such that k|v| = p. In927

consequence, the word w′vk is in L(s, x⇝ t, y). Furthermore, since d(w, w′) = d(w,L(s, x⇝928

t, y)), we have d(wu,L(s, x⇝ t, y)) ≤ d(wu, w′vk) ≤ d(w,L(s, x⇝ t, y)) + p. ◀929

We say that blocking sequences of a word are disjoint if they appear on disjoint sets of930

positions.931

▶ Lemma 5.15. If (0 : w) contains |Q| disjoint blocking sequences for an SCC-path π =932

s0, x0 ⇝ t0, y0
a1−→ · · · sk, xk ⇝ tk, yk, then w /∈ L(π).933

Proof. We prove a slightly stronger statement by induction on k:934

If (m : w) contains k disjoint blocking sequences for an SCC-path π = s0, x0 ⇝ t0, y0
a1−→935

· · · sk, xk ⇝ tk, yk, with x0 = m, then no word of L(π) has w as a suffix.936

The base case is trivial as the empty SCC-path has an empty language.937

Now let k > 0 and suppose this proposition holds for k − 1. Consider an SCC-path938

π = s0, x0 ⇝ t0, y0
a1−→ · · · sk, xk ⇝ tk, yk and disjoint blocking sequences σ1 . . . , σk. Let939

(m : w) = (m : w−)(mv : v)(m+ : w+) with (mv : v) the first factor from one of the blocking940

sequences that is blocking for (m1, s1, t1). Let σi be the blocking sequence in which it941

appears.942

Since the blocking sequences are disjoint, for every blocking sequence other than σ,943

its part appearing in w+ must be a blocking sequence for π, and thus also for s1, x1 ⇝944

t1, y1
a2−→ · · · sk, xk ⇝ tk, yk. Hence w+ contains k − 1 disjoint blocking sequences for945

s1, x1 ⇝ t1, y1
a2−→ · · · sk, xk ⇝ tk, yk. By induction hypothesis, no word of L(s1, x1 ⇝946

t1, y1
a2−→ · · · sk, xk ⇝ tk, yk) has w+ as a suffix. Let u be a word having w as a suffix.947

Suppose by contradiction that u ∈ L(π). Then u = u−a1u+ with u− ∈ L((m1, s1, t1)) and948

u+ ∈ L((m2, s2, t2), . . . , (mk, sk, tk)). Further, since w+ is a suffix of w which is a suffix of949

u, we have u = upw+ for some prefix up. Since w+ cannot be a suffix of u+, up must be a950

prefix of u−, meaning that (mv : v) must appear as a factor of (m : u−). As (mv : v) is a951

blocking factor for (m1, s1, t1), this contradicts the fact that u− should be read entirely in952

the SCC of s1. As a result, u /∈ L(π).953

This concludes our induction. ◀954

The following lemma expresses a sort of converse implication: if a word is far from the955

language then it contains many blocking sequences. Let B = p|A|+ 3|A|2.956

In the following results we will often use terms like “(x : w) contains at least N0 blocking957

factors for s0, x0 ⇝ t0, y0, ..., Nk blocking factors for sk, xk ⇝ tk, yk, in that order, all disjoint”.958

This means that we can cut the word (x : w) in k parts (x : w) = (x0 : w0) · · · (xk : wk),959

where for all i we have Ni disjoint blocking factors for si, xi ⇝ ti, yi.960

▶ Lemma 5.16. Let π = s0, x0 ⇝ t0, y0
a1−→ · · · sk, xk ⇝ tk, yk be an SCC-path. If |w| ≥961

max ( 6p2|A|2

ε , (k + 2)(B + p), (2k+4)p
ε ) and +∞ > d(w,L(π)) ≥ ε|w| then (x0 : w) contains962

at least ε|w|
12p2|A|2(k+2) blocking factors for s0, x0 ⇝ t0, y0, ..., ε|w|

12p2|A|2(k+2) blocking factors for963

sk, xk ⇝ tk, yk, in that order, all disjoint.964

Proof. We prove this by induction on k using Lemma 4.8. For k = 0 we can directly apply965

Lemma 4.8, in light of Remark 5.7.966

Let k > 0, suppose the lemma holds for k − 1. Since +∞ > d(w,L(π)), there is a word967

of length |w| in L(π), hence we must have |w| = yk − x0 (mod p).968

Our goal is now to cut w in two parts with an intermediate letter, w = w−aw+, so that:969



G. Bathie and N. Fijalkow and C. Mascle 27

d(w−,L(s0, x0 ⇝ t0, y0)) ≥ ε|w|
2k+4 , and we can apply Lemma 4.8970

d(w+,L(s1, x1 ⇝ t1, y1
a2−→ · · · sk, xk ⇝ tk, yk)) ≥ (k+1)ε|w|

k+2 and we can apply the971

induction hypothesis972

To do so, we use an intermediate value argument: We show that w has a short prefix973

which is very close to L(s0, x0 ⇝ t0, y0), and a large prefix which is far from it.974

Then, we use Lemma 5.14, which says that extending a prefix with p letters can only975

change the distance to L(s0, x0 ⇝ t0, y0) by p. We then argue that there is an intermediate976

prefix w− which is (roughly) at distance ε|w|
2k+4 from L(s0, x0 ⇝ t0, y0). We split w into977

w−aw+, with a a single letter. As d(w,L(π)) ≥ ε|w|, we infer that w+ must be at distance at978

least ε|w| − ε|w|
2k+4 from L(s1, x1 ⇝ t1, y1

a2−→ · · · sk, xk ⇝ tk, yk), which suffices to conclude.979

Let us now detail the proof. We define π+ = s1, x1 ⇝ t1, y1
a2−→ · · · sk, xk ⇝ tk, yk.980

▷ Claim 5.17. There is a prefix w′ of w such that |w′| ≤ B + p, |w′| = y0 − x0 (mod p) and981

d(w′,L(s0, x0 ⇝ t0, y0)) ≤ B + p.982

Proof. Let w′ be the prefix of w such that |w′| = y0−x0 (mod p) and p|A|+3|A|2 ≤ |w′| < B+983

p. It exists as |w| ≥ (k +2)(B +p) ≥ B +p. By Lemma 5.13, d(wp,L(s0, x0 ⇝ t0, y0)) < +∞984

and therefore d(w′,L(s0, x0 ⇝ t0, y0)) ≤ |wp| ≤ B + p. ◁985

▷ Claim 5.18. There is a prefix w′′ of w such that |w′′| > B + p, |w′′| = y0 − x0 (mod p)986

and d(w′′,L(s0, x0 ⇝ t0, y0)) ≥ ε|w| −B − p− 1.987

Proof. Let w = w′′aws such that p|A|+ 3|A|2 ≤ |ws| ≤ B + p and |ws| = yk − x1 (mod p).988

This decomposition exists as |w| ≥ (k + 2)(B + p) ≥ B + p. We have |w′′| = y0− x0 (mod p).989

Furthermore, as B ≤ |w+|, by Lemma 5.13, d(w+,L(π+)) < +∞. As a consequence,990

d(w+,L(π+) ≤ |w+| ≤ B + p).991

As d(w+,L(π+)) ≤ |w+| ≤ B+p and +∞ > d(w,L(π)) ≥ εn, we must have d(w−,L(s0, x0 ⇝992

t0, y0)) ≥ εn−B − p− 1. ◁993

▷ Claim 5.19. There exist words w−, w+ and a letter a such that w = w−aw+ and994

d(w−,L(s0, x0 ⇝ t0, y0)) ≥ ε|w|
2k+4 and d(w+,L(π+)) ≥ (k+1)ε|w|

k+2 .995

Proof. By the two previous claim, w has a prefix w′ of length ≥ B at distance ≤ B + p from996

L(s0, x0 ⇝ t0, y0), and a longer prefix w′′ at distance ≥ ε|w|−B−p−1 from L(s0, x0 ⇝ t0, y0).997

Furthermore, as |w| ≥ 2 B+p+1
ε , we have ε|w| −B − p− 1 ≥ ε|w|

k+2 .998

In consequence, there must exist w− a prefix of w and u a word of length p such that999

d(w−,L(s0, x0 ⇝ t0, y0)) < ε|w|
k+2 ≤ d(w−u,L(s0, x0 ⇝ t0, y0)).1000

By Lemma 5.14, we have d(w−,L(s0, x0 ⇝ t0, y0)) ≥ ε|w|
k+2 − p ≥ ε|w|

2k+4 . As |w| ≥ (2k+4)p
ε ,1001

we have ε|w|
k+2 − p ≥ ε|w|

2k+4 and thus d(w−,L(s0, x0 ⇝ t0, y0)) ≥ ε|w|
2k+4 .1002

On the other hand, as d(w−,L(s0, x0 ⇝ t0, y0)) < ε|w|
k+2 and +∞ > d(w,L(π)) ≥ ε|w|, we1003

must have d(w+,L(π+)) ≥ (k+1)ε|w|
k+2 . ◁1004

By the claim above and Lemma 4.8 we have that w− contains at least ε|w|
12p2|A|2(k+2)1005

blocking factors for s0, x0 ⇝ t0, y0. On the other hand, by induction hypothesis, w+ contains1006

at least ε|w|
12p2|A|2(k+2) blocking factors for s1, x1 ⇝ t1, y1, ..., ε|w|

12p2|A|2(k+2) blocking factors for1007

sk, xk ⇝ tk, yk, in that order, all disjoint.1008

By combining the two, we obtain the lemma. ◀1009
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A blocking sequence for A is a sequence ((n1 : u1), . . . , (nℓ : uℓ)) that is blocking for
1010

all SCC-paths of A. As an example, observe that the sequences (0 : ab), (1 : ab) and1011

(0 : aa), (0 : b) are both blocking for the automaton displayed in Figure 5 (see Example 5.11).1012

The goal of the next two lemmas is to show that we can reduce property testing of L(A)1013

to a search for blocking sequences in the word:1014

If we find a few blocking sequences in a word then we can answer no as it is not in the1015

language (Lemma 5.20).1016

A word that is far from the language contains many blocking sequences (Lemma 5.21).1017

Hence if we do not find blocking sequences in the word then it is unlikely to be far from1018

the language.1019

▶ Lemma 5.20. If w contains |A| disjoint blocking sequences for A then w /∈ L(A).1020

Proof. Let π be an accepting SCC-path through A. By definition a blocking sequence for A1021

is a blocking sequence for π. As w contains |Q| disjoint blocking sequences for A, it contains1022

|Q| disjoint blocking sequences for π, hence w /∈ L(π) by Lemma 5.15.1023

As a result, w is not in the language of any accepting SCC-path of A, and thus not in1024

L(A). ◀1025

Before going into the next proof, we start by observing that an SCC-path has at most1026

|A| terms, and thus there are at most (|A|2p2|Σ|+ 1)|A| SCC-paths in A.1027

Let C = (|A|2p2|Σ|+ 1)|A|.1028

▶ Lemma 5.21. If +∞ > d(w,L(A)) ≥ ε|w| and |w| ≥ max ( 6p2

ε , (k + 2)(B + p), (2k+4)p
ε )1029

then w contains ε|w|
12C|A|3p2 disjoint blocking sequences for A.1030

Proof. For each accepting SCC-path π, as L(π) ⊆ L(A), d(w,L(π)) ≥ d(w,L(A)). Thus, A1031

must have ε|w|
12|A|2p2 disjoint blocking sequences for π, by Lemma 5.16. It remains to prove that1032

ε|w|
12|A|2p2 disjoint blocking sequences for each π implies ε|w|

12C|A|3p2 disjoint blocking sequences1033

for A. Given a set of SCC-paths Π, we define ||Π|| as the sum of the lengths of its elements.1034

We say that a sequence is blocking for Π if it is blocking for all its elements.1035

We now prove the following statement by induction on ||Π||: Let Π be a set of SCC-paths1036

through A, and let w be a word with ε|w|
12|A|2p2 disjoint blocking sequences for each π ∈ Π.1037

Then w contains ε|w|
12||Π|||A|2p2 disjoint blocking sequences for Π.1038

The base case is immediate as w contains arbitrarily many disjoint occurrences of the1039

empty word, which is a blocking sequence for ∅.1040

Let w = w−w+ where w− is the minimal prefix of w containing ε|w|
12||Π|||A|2p2 disjoint1041

blocking factors for the first element of some π ∈ Π. That is, π = s0, x0 ⇝ t0, y0
a1−→1042

· · · sk, xk ⇝ tk, yk and w− contains ε|w|
12||Π|||A|2p2 disjoint blocking factors for s0, x0 ⇝ t0, y0.1043

Then, by minimality of w−, w+ must have (||Π||−1)ε|w|
12||Π|||A|2p2 many disjoint blocking sequences1044

for π′ = s1, x1 ⇝ t1, y1
a1−→ · · · sk, xk ⇝ tk, yk and for each π′′ ̸= π. We can then apply the1045

induction hypothesis on w+, with ε′ = (||Π||−1)ε
||Π|| and Π′ = Π \ {π} ∪ {π′}: it must contain1046

ε′|w|
12||Π′|||A|2p2 = ε|w|

12||Π|||A|2p2 disjoint blocking sequences for Π′.1047

Appending a blocking factor for s0, x0 ⇝ t0, y0 in front of any of those blocking sequences1048

for Π′ yields a blocking sequence for Π. In consequence, we can form ε|w|
12||Π|||A|2p2 disjoint1049

blocking sequences for Π by matching the ε|w|
12||Π|||A|2p2 blocking factors for s0, x0 ⇝ t0, y0 in1050

w− with the ε|w|
12||Π|||A|2p2 blocking sequences for Π′ in w+.1051

This concludes our induction. To obtain the lemma, we simply apply this property with1052

Π the set of accepting SCC-paths of A. ◀1053
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We define a partial order ⊴ on sequences of positional factors. It is an extension of the1054

factor order on blocking factors. It will let us define minimal blocking sequences, with which1055

we characterise hard languages.1056

▶ Definition 5.22. We have (n1 : u1), . . . , (nk : uk) ⊴ (n′
1 : u′

1), . . . , (n′
ℓ : u′

ℓ) when there1057

exists a sequence of indices i1 ≤ i2 ≤ ... ≤ ik such that (nij
: uij

) is a factor of (n′
j : u′

j) for1058

all j.1059

A blocking sequence (n1 : u1), . . . , (nk : uk) for A is minimal if it is minimal for ⊴1060

among blocking sequences of A.1061

▶ Remark 5.23. If σ ⊴ σ′ and σ is a blocking sequence for an SCC-path π then σ′ is also a1062

blocking sequence for π.1063

The left effect of a sequence σ on an SCC-path π = s0, x0 ⇝ t0, y0
a1−→ · · · sk, xk ⇝ tk, yk is

1064

the maximal index i such that the sequence is blocking for s0, x0 ⇝ t0, y0
a1−→ · · · si, xi ⇝ ti, yi1065

(−1 if there is no such i). It is written (σ≫π). Similarly, the right effect of a sequence on π1066

is the minimal index i such that the sequence is blocking for (mi, si), . . . , (mk, sk) (k + 1 if1067

there is no such i). It is written (π≪σ).1068

▶ Remark 5.24. A sequence σ is blocking for an SCC-path π = s0, x0 ⇝ t0, y0
a1−→ · · · sk, xk ⇝1069

tk, yk if and only if (σ≫π) = k if and only if (π≪σ) = 0.1070

Also, given two sequences σl, σr, the sequence σlσr is blocking for π if and only if1071

(σl≫π) ≥ (π≪σ)− 1.1072

We make the remark that minimal blocking sequences have a bounded number of terms.1073

This is because if we build the sequence from left to right by adding terms one by one, the1074

minimality implies that at each step the left effect on some SCC-path should increase. As the1075

number and lengths of SCC-paths are bounded, so is the number of terms in the sequence.1076

▶ Lemma 5.25. A minimal blocking sequence for A has at most |Q|(p|Q|)2|Q| terms.1077

Proof. The number of SCC-paths in A is bounded by (p|Q|)2|Q|, as each path has at most1078

|Q| portals and there are at most p2|Q|2 portals. Let σ = (n1 : u1), . . . , (nℓ : uℓ) be a minimal1079

blocking sequence for A. For all i ∈ {1, . . . , ℓ} we write σi for (n1 : u1), . . . , (ni : ui).1080

For all i ∈ {1, . . . , ℓ− 1} and SCC-path π, we have (σi≫π) ≤ (σi+1≫π). Furthermore,1081

for all i there must exist π such that (σi≫π) < (σi+1≫π): Otherwise we could remove1082

(ni+1 : ui+1) and the sequence would still be blocking for all SCC-paths of A, contradicting1083

the minimality of σ.1084

As there are at most (p|Q|)2|Q| SCC-paths, each of length at most |Q|, ℓ must be at most1085

|Q|(p|Q|)2|Q|. ◀1086

We now have all the tools to present the proof that languages recognised by automata1087

with bounded minimal blocking sequences are exactly easy languages. Let us start with the1088

easier direction.1089

▶ Lemma 5.26. If A has finitely many minimal blocking sequences, then it is easy.1090

Proof. As the length of minimal blocking sequences of A is bounded, so is the number of1091

minimal blocking sequences. Let K be the bound on the length and P the bound on the1092

number of minimal blocking sequences.1093

Let us first sketch the proof before detailing the formulas. We infer from the fact that1094

there are boundedly many blocking sequences that if a word w is ε-far from the language of1095

A then it must contain O(ε|w|) many times the same minimal sequence σ.1096
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Since each positional word in this sequence has length at most K, by sampling O( 1
ε )1097

factors of length K uniformly at random, we can show a positive constant lower bound on1098

the probability to find σ. We can repeat this step to obtain a probability > 1/2 to find |A|1099

times the sequence σ. This proves that w /∈ L(A) by Lemma 5.20.1100

We now develop the formal proof, starting with a proof that a word that is ε-far from1101

L(A) must contain many times some minimal blocking sequence σ. The next claim shows1102

that having many sequences ⊴ -greater than a sequence σ implies having many occurrences1103

of σ.1104

▷ Claim 5.27. Let σ = (n1 : u1) · · · (nk : uk) be a blocking sequence for A and let M ∈ N. If1105

a positional word (m : w) contains M disjoint blocking sequences for A that are all greater1106

or equal to σ for ⊴ , then (m : w) contains at least M
k occurrences of (n1 : u1), ..., M

k1107

occurrences of (nk : uk), in that order, all disjoint.1108

Proof. We proceed by induction on k. If k = 0 the claim is immediate.1109

Let k > 0, suppose the claim holds for sequences of length k−1. Suppose (m : w) contains1110

M disjoint blocking sequences for A that are all greater or equal to σ for ⊴ . We can assume1111

without loss of generality that all those sequences have (n1 : u1) as a factor of their first1112

element: If a sequence σ′ = (n′
1 : u′

1) · · · (n′
l : u′

l) is such that σ ⊴ σ′ and (n1 : u1) is not a1113

factor of (n′
1 : u′

1), then we must have σ ⊴ (n′
2 : u′

2) · · · (n′
l : u′

l). Hence we can shorten the1114

sequences of timed words until they all have (n1 : u1) as a factor of their first term.1115

Let (m : w1) be the smallest prefix of w containing M
k occurrences of (n1 : u1). Let1116

(m′ : w′) be such that (m : w) = (m : w1)(m′ : w′). As (m : w) contains M disjoint blocking1117

sequences for A which all have (n1 : u1) as a factor of their first term, we can find at least1118

M − M
k of them in (m′ : w′). As they are all greater or equal to σ, they are also greater1119

or equal to (n2 : u2), . . . , (nk : uk). By induction hypothesis, (m′ : w′) contains at least1120

1
k−1 (M − M

k ) = M
k disjoint occurrences of (n2 : u2), ..., (nk : uk), in that order, all disjoint.1121

As a result, (m : w) contains at least M
k occurrences of σ. ◁1122

We can move on to the next step, which is to show that a word that is ε-far from L(A)1123

contains many occurrences of some minimal blocking sequence σ.1124

Let D = 12C|A|4(p|A|)2|A|p2P .1125

▷ Claim 5.28. If +∞ > d(w,L(A)) ≥ ε|w| and |w| ≥ max ( 6p2|A|2

ε , (k + 2)(B + p), (2k+4)p
ε )1126

then there exists a minimal blocking sequence σ = (n1 : u1) · · · (nk : uk) for A such that w1127

contains ε|w|
D occurrences of (n1 : u1), ..., ε|w|

D occurrences of (nk : uk), in that order, all1128

disjoint.1129

Proof. We start by applying Lemma 5.21. We obtain that w contains ε|w|
12C|A|3p2 disjoint1130

blocking sequences for A.1131

Each one of those sequences if greater or equal to a minimal blocking sequence of A for1132

⊴ . As a result, there exist σ a minimal blocking sequence and ε|w|
12C|A|3p2P disjoint blocking1133

sequences in w that are all greater or equal to σ for ⊴ . Furthermore, by Lemma 5.25, σ1134

has at most |A|(p|A|)2|A| terms.1135

We can then apply Claim 5.27 and obtain that w contains ε|w|
D disjoint occurrences of1136

each term of (n1 : u1), ..., (nk : uk), in that order, all disjoint. ◁1137

Given a word of length n, we start by checking that A accepts a word of length n. If not,1138

we reject.1139

If |w| ≤ max ( 6p2|A|2

ε , (k + 2)(B + p), (2k+4)p
ε ) then we read w entirely, and accept iff it1140

is in L(A).1141
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Otherwise, for each minimal blocking sequence σ, we sample uniformly at random D
ε1142

intervals of length K in w. We reject if we find |A| disjoint occurrences of σ. If we have gone1143

through every minimal blocking sequence without rejecting, we accept.1144

If the word is in L(A), then by Lemma 5.15 it cannot contain |Q| disjoint blocking1145

sequences, hence the algorithm will accept.1146

If the word is ε-far from L(A) (but within a finite distance), then by Claim 5.28 there1147

exists a minimal blocking sequence σ = (n1 : u1) · · · (nk : uk) for A such that w contains1148
ε|w|
D occurrences of (n1 : u1), ..., ε|w|

D occurrences of (nk : uk), in that order, all disjoint.1149

Recall that by Lemma 5.25, σ has at most T = |A|(p|A|)2|A| terms, hence k ≤ T . By1150

sampling O( 1
ε ) factors of length K at random, we have a constant positive lower bound1151

on the probability of finding |Q| of those occurrences of (ni : ui), for any i. From this we1152

infer that by sampling O( 1
ε ) factors of length K at random, we have a constant positive1153

lower bound on the probability of finding |A| occurrences of (ni : ui) for each i, and thus |A|1154

occurrences of σ.1155

We can iterate this procedure a constant number of times to obtain a procedure using1156

O( 1
ε ) samples that accepts every word in the language and rejects with probability > 1/21157

words that are ε-far from the language. ◀1158

In order to prove a lower bound on the number of samples necessary to test a language1159

with infinitely many minimal blocking sequences, we proceed as follows. We exhibit a portal1160

with infinitely many minimal blocking factors s, x⇝ t, y and “isolate it” by constructing two1161

sequences of timed factors σl and σr such that for all (n′ : u′), σl(n′ : u′)σr is blocking for A1162

if and only if (n′ : u′) is blocking for s, x⇝ t, y. Then we reduce the problem of testing the1163

language of this portal to the problem of testing the language of A.1164

For the next proof we define a partial order on portals: s, x⇝ t, y ⪯ s′, x′ ⇝ t′, y′ if all
1165

blocking factors of s′, x′ ⇝ t′, y′ are also blocking factors of s, x ⇝ t, y. We write ⪰ for1166

the reverse relation, ≃ for the equivalence relation ⪯ ∩ ⪰ and ̸≃ for the complement1167

relation of ≃ .1168

Additionally, given an SCC-path π = s0, x0 ⇝ t0, y0
a1−→ · · · sk, xk ⇝ tk, yk and two1169

sequences of positional words σl, σr, we say that the portal si, xi ⇝ ti, yi survives (σl, σr) if1170

(σl≫π) < i < (π≪σr).1171

▶ Definition 5.29. Let s, x⇝ t, y be a portal and σl and σr sequences of positional words.1172

We define four properties that those objects may have:1173

P1 σlσr is not blocking for A1174

P2 s, x⇝ t, y has infinitely many minimal blocking factors1175

P3 for all accepting SCC-path π in A, every portal in π which survives (σl, σr) is ≃ -1176

equivalent to s, x⇝ t, y.1177

▶ Lemma 5.30. If A has infinitely many minimal blocking sequences, then there exist a1178

portal s, x⇝ t, y and sequences σl and σr satisfying properties P1, P2 and P3.1179

Proof. If A has infinitely many minimal blocking sequences, let (σj)j∈N be a family of1180

minimal blocking sequences such that the sum of the lengths of the elements of σj is at least1181

j for all j.1182

By Lemma 5.25, a minimal blocking sequence has a bounded number of elements. We1183

can thus extract from this sequence another one (σ′
j)j∈N such that each σ′

j contains a factor1184

of length at least j.1185

For each j let ij be the index in σ′
j of a factor of length at least j, and lj and rj respectively1186

the left effect of the ij − 1 first factors and the right effect of the kj − ij last ones, with1187
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kj the length of σ′
j . As those objects are taken from bounded sets, we can obtain a third1188

sequence (σ̄j)j∈N and α and K such that the ith element of each σ̄j has length at least j1189

and the set of components for which it is blocking is K.1190

For all j let (nj , uj) be the ith element of σ̄j . Define σl = (nl
1 : ul

1), . . . , (nl
k : ul

k) and1191

σr = (nr
1 : ur

1), . . . , (nr
ℓ : ur

ℓ) so that σ̄1 = σl(n1, u1)σr. For all j, σl(nj : uj)σr is a minimal1192

blocking sequence.1193

We call surviving portals the portals that survive (σl, σr) in at least one SCC-path.1194

▷ Claim 5.31. There exists a surviving portal with infinitely many minimal blocking factors1195

that is minimal for ⪯ among surviving portals.1196

Proof. Suppose by contradiction that all ⪯ -minimal surviving portals have finitely many1197

minimal blocking factors.1198

For all j, (nj : uj) must be blocking for all surviving portals (otherwise σj would not be1199

blocking for A). Hence (nj : uj) contains a blocking factor for each ⪯ -minimal surviving1200

portal. As those factors are bounded while (nj : uj) can get arbitrarily large, there exists1201

j such that (nj : uj) can be split into two non-empty parts (nj : u−
j )(n+

j : u+
j ) so that1202

each ⪯ -minimal surviving portal has a minimal blocking factor in either (nj : u−
j ) or1203

(n+
j : u+

j ). As a consequence, every surviving portal has a blocking factor in either (nj : u−
j )1204

or (n+
j : u+

j ).1205

Let P be the number of portals of A. We obtain that σl[(nj : u−
j )(n+

j : u+
j )]P σr is a1206

blocking sequence for A, contradicting the minimality of σl(nj : uj)σr for ⊴ . In conclusion,1207

there is a ⪯ -minimal surviving portal with infinitely many minimal blocking factors. ◁1208

Let s, x⇝ t, y be a ⪯ -minimal surviving portal with infinitely many minimal blocking1209

factors: It satisfies P2.1210

The following claim shows that there is a pair of sequences (σl, σr) such that properties1211

P1 and P3 are satisfied.1212

▷ Claim 5.32. There exist σl, σr such that σlσr is not a blocking sequence for A, and for1213

all accepting SCC-path π in A, every surviving portal in π is ≃ -equivalent to s, x⇝ t, y.1214

Proof. We start from the sequences σl, σr defined before and extend them so that they have1215

the desired property.1216

For each s′, x′ ⇝ t′, y′ ̸≃ s, x ⇝ t, y, since s, x ⇝ t, y is ⪯ -minimal we can pick a1217

positional word (n : u)s′,x′⇝t′,y′ that is blocking for s′, x′ ⇝ t′, y′ but not for s, x⇝ t, y.1218

We extend σl and σr as follows. While there is a surviving portal s′, x′ ⇝ t′, y′ that is1219

not ≃ -equivalent to s, x⇝ t, y:1220

We pick an SCC-path π such that s′, x′ ⇝ t′, y′ survives in π.1221

Let iℓ = (σl≫π) and ir = (π≪σr)1222

If for all i ∈ {iℓ + 1, . . . , ir − 1}, si, xi ⇝ ti, yi ̸≃ s, x ⇝ t, y then we append at the1223

end of σl the sequence (n : u)siℓ+1,xiℓ+1⇝tiℓ+1,yiℓ+1 , . . . , (n : u)sir−1,xir−1⇝tir−1,yir−1 . The1224

sequence σlσr is now blocking for π. On the other hand, since we did not add any1225

blocking factor for s, x⇝ t, y, there must still be a surviving portal that is ≃ -equivalent1226

to it.1227

If there is an i ∈ {iℓ + 1, . . . , ir−1} such that si, xi ⇝ ti, yi ≃ s, x⇝ t, y then let c be the1228

maximal index in {iℓ + 1, . . . , i} such that (mc, sc, tc) is not equivalent to s, x⇝ t, y for1229

≃ , or iℓ if there is no such index. Symmetrically, let d the minimal index in {i, . . . , ir−1}1230

such that (md, sd, td) ̸≃ s, x ⇝ t, y, or ir if there is no such index. We append at the1231

end of σl the sequence (n : u)siℓ+1,xiℓ+1⇝tiℓ+1,yiℓ+1 , . . . , (n : u)mc,sc,tc
. We append at the1232
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beginning of σr the sequence (n : u)sd,xd⇝td,yd
, . . . , (n : u)sir−1,xir−1⇝tir−1,yir−1 . Now all1233

surviving portals in π are ≃ -equivalent to s, x⇝ t, y, and si, xi ⇝ ti, yi still survives.1234

We iterate this step until all surviving portals are ≃ -equivalent to s, x⇝ t, y. We made1235

sure that at least one portal was still surviving after each step, hence in the end the sequence1236

σlσr is not blocking for A. ◁1237

◀1238

▶ Lemma 5.33. Let π = s0, x0 ⇝ t0, y0
a1−→ · · · sℓ, xℓ ⇝ tℓ, yℓ be an accepting SCC-path, and1239

let i ∈ {0, . . . , ℓ}. Let σl = (nl
1 : ul

1), . . . , (nl
k : ul

k) a sequence such that (σl≫π) < i and1240

N ∈ N.1241

Then there is a word wl of length at most (3|A|3 + |A|)(k + 1) + N(2p2 + p)k|A| +1242

pN
∑k

i=1 |ul
i| such that |wl| = xi − x0 (mod p), there is a run reading wl from s0 to si in A,1243

and (x0 : w) contains N times (nl
1 : ul

1), ..., N times (nl
k : ul

k) as disjoint factors, in that1244

order.1245

Proof. We define wl by induction on k. As π is accepting, by definition L(π) ̸= ∅, and thus1246

for all j ∈ {0, . . . , ℓ} there exists a word of length yj − xj (mod p) labelling a path from1247

sj to tj . By Fact 3.3, there is such a word vj of length at most 3|A|2. As a result, for all1248

z ∈ {0, . . . , ℓ} we can form a word wz = v0a1v1 · · · az, of length at most 3|A|3 + |A|, labelling1249

a path of length xz (mod p) from qinit to sz in A. If k = 0, we can simply set wl = wi.1250

Let k > 0, suppose the lemma holds for k−1. Let j = ((n1 : ul
1)≫π). As ((n1 : ul

1)≫π) ≤1251

(σl≫π) < i, we have j < i. By definition, (n1 : ul
1) is not blocking for sj+1, xj+1 ⇝ tj+1, yj+1.1252

As a consequence, there is a word vj labelling a path from sj to tj such that (xj : vj) has1253

(n1 : ul
1) as a factor. We can remove cycles of length 0 (mod p) in that path, before and1254

after reading (xj : vj), so we can assume that |vj | ≤ |ul
1|+ 2p|A|. As sj and tj are in the1255

same SCC, we can extend vj into a word v′
j of length ≤ |vj |+ |A| ≤ |ul

1|+ (2p + 1)|A| that1256

labels a cycle from sj to itself.1257

Let σ′ = (nl
2 : ul

2), . . . , (nl
k : ul

k) and π′ = sj+1, xj+1 ⇝ tj+1, yj+1
aj+2−−−→ · · · sℓ, xℓ ⇝ tℓ, yℓ.1258

By definition, we have (σ′≫π′) = (σl≫π) < i. By induction hypothesis, there is a word w′
1259

of length ≤ (3|A|3 + |A|)k + N(2p2 + p)(k − 1)|A|+ pN
∑k−1

i=1 |ui| such that |w′| = xi − xj1260

(mod p), there is a run reading w′ from sj to si in A, and (xj : w) contains N times (nl
2 : ul

2),1261

..., N times (nl
k : ul

k) as disjoint factors, in that order.1262

We set wl = wj(v′
j)pN w′. This word has length xi (mod p), and at most |wj |+ pN |v′

j |+1263

|w′| ≤ 3|A|3 + |A|+ pN(|ul
1|+ (2p + 1)|A|) + |w′| ≤ (3|A|3 + |A|)(k + 1) + N(2p2 + p)k|A|+1264

pN
∑k

i=1 |ul
i|. It labels a path from s0 to si, and contains N times (nl

1 : ul
1), ..., N times1265

(nl
k : ul

k) as disjoint factors, in that order. ◀1266

▶ Lemma 5.34. Let π = s0, x0 ⇝ t0, y0
a1−→ · · · sℓ, xℓ ⇝ tℓ, yℓ be an accepting SCC-path, and1267

let i ∈ {0, . . . , ℓ}. Let σr = (nr
1 : ur

1), . . . , (nr
k : ur

k) a sequence such that (π≪σr) > i and1268

N ∈ N.1269

Then there is a word wr of length at most (3|A|3 + |A|)(k + 1) + N(2p2 + p)k|A| +1270

pN
∑k

i=1 |ur
i | such that |wr| = yℓ − yi (mod p), there is a run reading wr from ti to tℓ in A,1271

and (yi : wr) contains N times (nr
1 : ur

1), ..., N times (nr
k : ur

k) as disjoint factors, in that1272

order.1273

Proof. By a symmetric proof to the one of the previous lemma. ◀1274

Given a sequence σ, define ||σ|| as the sum of the lengths of the terms of σ.
1275
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▶ Lemma 5.35. If there exist s, x ⇝ t, y and σl, σr satisfying properties P1, P2 and P31276

then L(A) is hard.1277

Proof. A direct consequence of properties P1 and P3 is that for all (n′ : u′), σl(n′ : u′)σr is1278

blocking for A if, and only if (n′ : u′) is blocking for s, x⇝ t, y.1279

The proof goes as follows: we show that we can turn an algorithm testing L(A) with f(ε)1280

samples into an algorithm testing L(s, x ⇝ t, y) with f(ε/X) samples with X a constant.1281

We then apply Theorem 4.18 to obtain the lower bound.1282

Consider an algorithm testing L(A) with f(ε) samples for some function f . We describe1283

an algorithm for testing L(s, x ⇝ t, y). Say we are given a threshold ε and a word v of1284

length n. First of all we can apply Lemmas 5.33 and 5.34 to compute two words wl and1285

wr of length at most E + εnF for some constants E and F such that we can read wl from1286

qinit to s and wr from t to qf and wl contains each element of σl at least εn times and wr1287

contains each element of σr at least εn times. Let w = wlvwr. Suppose |v| ≥ 6p2|A|2

ε and1288

d(v,L(s, x⇝ t, y)) < +∞.1289

If v ∈ L(A) then clearly w ∈ L(A).1290

If d(v,L(s, x⇝ t, y)) ≥ εn then by Lemma 4.8 (in light of Remark 5.7), (x : v) contains at1291

least εn
6p2|A|2 blocking factors for s, x⇝ t, y. Then we have that w contains at least εn

6p2|A|21292

disjoint blocking sequences for A. As a result, d(w,L(A)) ≥ εn
6p2|A|2 . We divide this by1293

the length of w, which is at most 2E + 2Fεn + n. We obtain that d(w,L(A)) ≥ ε
X |w| for1294

some constant X.1295

Let us now describe the algorithm for testing L(s, x⇝ t, y).1296

If L(s, x⇝ t, y) ∩ Σn = ∅ then we reject.1297

If |v| < 6p2|A|2

ε then we read v entirely and check that it is in L(s, x⇝ t, y).1298

If v ∈ L(s, x⇝ t, y) then we apply our algorithm for testing L(A) on w = wlvwr with1299

parameter ε′ = ε
X .1300

The number of samples used on v is at most the number of samples needed on w, hence1301

f(ε/X). We obtain a procedure to test L(s, x⇝ t, y) using f(ε/X) samples.1302

By Theorem 4.18, f(ε/X) = Ω(log(ε−1)/ε), hence f(ε) = Ω(log(ε−1)/ε). This concludes1303

our proof. ◀1304

▶ Proposition 5.36. If A has infinitely many minimal blocking sequences, then L(A) is hard.1305

Proof. We combine Lemmas 5.30 and 5.35. ◀1306

5.1 Trivial languages1307

We now characterise trivial languages, as defined in [5]. The definition given there is that1308

a language is trivial if for all threshold ε > 0, above a certain length N , every word is at1309

distance ≤ ε|w| or +∞ from the language. Hence, on words of length more than N , we do1310

not need to sample any letter: we just check if the language contains a word of length |w|. If1311

not, we answer no. If yes, then we know that w is ε-close to the language and we can answer1312

yes.1313

We present here some other characterisations of this set of languages. They are exactly1314

the languages such that there is a bound B such that every word is at distance either ≤ B1315

or +∞ from the language.1316

They are also the languages that are either finite or described by an automaton with a1317

blocking sequence.1318
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▶ Example 5.37. A representative example of trivial language is L1 = a∗ba∗, the set of1319

words containing a b over {a, b}.1320

Given any word w, it is at distance at most 1 from L1: it suffices to make the first letter1321

a b to obtain a word of L1.1322

In consequence, all words of length at least 1
ε are ε-close to the language, which allows us1323

to simply answer yes without sampling anything. For words of length < 1
ε , we simply read1324

the word in full and check if it is in the language.1325

Now consider the language L2 = L1∩ ({a, b}2)∗. It is still trivial, but now we have to take1326

into account the parity of the length of the input word: If |w| is odd then d(w, L2) = +∞1327

and we can answer no. If |w| is even then d(w, L2) ≤ 1 and we can answer yes as soon as1328

|w| ≥ 1
ε .1329

▶ Lemma 5.38. Let A a trim NFA. The following are equivalent:1330

1. There exists ε0 > 0, such that for infinitely many n there exist words in L(A) ∩ Σn and1331

there exists w ∈ Σn such that d(w,L(A)) ≥ ε0n1332

2. There exists a family of words (wi)i∈N such that for all i, i ≤ d(wi,L(A)) < +∞1333

3. L(A) is infinite and A admits a blocking sequence.1334

4. L(A) is infinite and every portal appearing in an accepting SCC-path in A has a blocking1335

factor.1336

Proof. 1⇒ 2 is immediate.1337

2 ⇒ 3: For all i, i ≤ d(wi,L(A)) < +∞ implies that |wi| ≥ i and that there exists a1338

word ui ∈ L(A) of length |wi|.1339

It remains to prove that A has a blocking sequence. We use Lemma 5.21. Fix an arbitrary1340

ε, for instance ε = 1/2. Let i be such that i ≥ max ( 6p2

ε , (k + 2)(B + p), (2k+4)p
ε ) and1341

i > 12C|A|p2

ε .1342

Then as i ≤ d(wi,L(A)) < +∞, we can apply Lemma 5.21 and obtain that wi contains1343
ε|wi|

12C|A|p2 > 1 blocking sequences for A. In particular, A has a blocking sequence.1344

3 ⇒ 1: Let σ = (n1 : u1), . . . , (nk : uk) be a blocking sequence for A. As A is infinite,1345

there exists an SCC-path π in A and w ∈ L(π) with |w| ≥ |A|. By Lemma 5.13, for all1346

ℓ ≥ p|A|+ 3|A|3 such that ℓ = |w| (mod p) there exists w′ ∈ L(π) with |w′| = ℓ.1347

For all i ∈ {1, . . . , k} we define vi as a word of length ≤ ui + 2p such that (0 : vi) has1348

(ni : ui) as a factor. For all N ∈ N, we can then define the word wN = vN
1 · · · vN

k a|w| with1349

a an arbitrary letter. As it is of length |w| (mod p), there is a word of the same length1350

in L(A). On the other hand, it contains N disjoint occurrences of σ, which is a blocking1351

sequence for A. Let ε0 = 1
|u1|+|u2|+···+|uk|+2kp+|w| . We have ε0|wN | ≤ N ≤ d(wN ,L(A)).1352

3⇒ 4: If A has a blocking sequence, then every portal in A appearing in an accepting1353

SCC-path has to have a blocking factor in that sequence.1354

4⇒ 3: If L(A) is infinite and every portal appearing in an accepting SCC-path in A has1355

a blocking factor, then we can construct a blocking sequence for A as follows. Let P be1356

the number of those portals in A. Let σ be a sequence containing a blocking factor for1357

each of those portals. The sequence σP is blocking for A.1358

◀1359

This concludes the proof of Theorem 5.1.1360

6 Hardness of classifying1361

In the previous sections, we have shown that testing some regular languages (easy ones)1362

that requires fewer queries than testing others (hard ones). Therefore, given the task of1363
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testing a word for membership in L(A), it is natural to first try to determine if the language1364

of A is easy, and if this is the case, run the appropriate ε-tester, that uses fewer queries.1365

In this section, we investigate the computational complexity of checking which class of the1366

trichotomy the language of a given automaton belongs to. We formalize this question as the1367

following decision problems:1368

We show that, unfortunately, our combinatorial characterization based on minimal1369

blocking sequences does not lead to efficient algorithms: both problems are PSPACE-complete.1370

▶ Theorem 6.1. The triviality and easiness problems are both PSPACE-complete, even for1371

strongly connected NFAs.1372

In the following section we show the PSPACE upper bounds on both problems (Proposi-1373

tions 6.8 and 6.9).1374

6.1 A PSPACE upper-bound on classifying automata1375

Let us first provide another characterisation of hard automata.1376

▶ Lemma 6.2. Let π = s0, x0 ⇝ t0, y0
a1−→ · · · sℓ, xℓ ⇝ tℓ, yℓ be an SCC-path, i an index,1377

Π a set of SCC-paths and (σπ′)π′∈Π a family of sequences of positional words such that1378

(σπ′≫π′) < i for all π′.1379

There exists a sequence of positional words σ such that:1380

(σ≫π) < i1381

(σπ′≫π′) ≤ (σ≫π′) for all π′ ∈ Π.1382

Proof. We prove this by induction on the sum of the lengths of the elements of Π. If Π is1383

empty then we can set σ as the empty sequence.1384

If not, let πmin be such that the first term of σπmin
has the least left effect on π. Let1385

σπmin
= (n1 : u1), . . . , (nk : uk) and πmin = s′

0, x′
0 ⇝ t′

0, y′
0

a1−→ · · · s′
ℓ, x′

ℓ ⇝ t′
ℓ, y′

ℓ. Let1386

j = ((n1 : u1)≫πmin) and r = ((n1 : u1)≫π).1387

Let π′ = s′
j+1, x′

j+1 ⇝ t′
j+1, y′

j+1
a1−→ · · · s′

ℓ, x′
ℓ ⇝ t′

ℓ, y′
ℓ. Define Π′ = Π \ {πmin} ∪ {π′} if1388

j < ℓ and Π′ = Π \ {πmin} otherwise. In the first case the sequence associated with π′ is1389

σπ′ = (n2 : u2), . . . , (nk : uk).1390

▷ Claim 6.3. For all π ∈ Π \ {πmin}, we have (σπ≫π) = r + (σπ≫sr+1, xr+1 ⇝1391

tr+1, yr+1
ar+2−−−→ · · · sk, xk ⇝ tk, yk)1392

Proof. Since the first term of σπ′ was the one with the least left effect on π, the first term of1393

every other sequence has a left effect at least r on it.1394

Let π ∈ Π \ {πmin}, let σπ = (n1 : u1), . . . , (nm : um). Let z = ((n1 : u1)≫π). This1395

means (n1 : u1) is not a blocking factor for sz+1, xz+1 ⇝ tz+1, yz+1.1396

We have (σπ≫π) = z + ((n2 : u2), . . . , (nm : um)≫sz+1, xz+1 ⇝ tz+1, yz+1) and1397

(σπ≫sr+1, xr+1 ⇝ tr+1, yr+1
ar+2···−−−−→) = z − r + ((n2 : u2), . . . , (nm : um)≫sz+1, xz+1 ⇝1398

tz+1, yz+1) = (σπ≫π)− r.1399

◁1400

As a consequence of this claim, we have that (σπ≫sr+1, xr+1 ⇝ tr+1, yr+1
ar+2−−−→1401

· · · sk, xk ⇝ tk, yk) < i− r for all π ∈ Π \ {π′}.1402

By induction hypothesis, we obtain a sequence σ′ such that1403

(σ≫sr+1, xr+1 ⇝ tr+1, yr+1
a1−→ · · · sℓ, xℓ ⇝ tℓ, yℓ) < i− r1404

(σπ′≫π′) ≤ (σ′≫π′) for all π′ ∈ Π′.1405
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The sequence (n1 : u1), σ′ satisfies both conditions of the lemma. ◀1406

▶ Lemma 6.4. An automaton A is hard if and only if there exists an accepting SCC-path π1407

containing a portal s, x⇝ t, y such that:1408

s, x⇝ t, y has infinitely many minimal blocking factors.1409

For all accepting SCC-path π′ there exist sequences σl, σr such that:1410

s, x⇝ t, y survives (σl, σr) in π1411

All portals surviving (σl, σr) in π′ are ≃ -equivalent to s, x⇝ t, y1412

Proof. Let us start with the left-to-right direction. If A is hard then by Lemma 5.26 it1413

has infinitely many minimal blocking sequences. Then by Lemma 5.30 we have a portal1414

s, x⇝ t, y and sequences σl, σr satisfying properties P1, P2 and P3.1415

By P1, σlσr is not blocking for A, thus there exists an SCC-path π = s0, x0 ⇝ t0, y0
a1−→1416

· · · sk, xk ⇝ tk, yk and an index i such that (σl≫π) < i < (π≪σr).1417

As a consequence, we have si, xi ⇝ ti, yi ≃ s, x⇝ t, y, by P3. We can assume without1418

loss of generality that si, xi ⇝ ti, yi = s, x ⇝ t, y. As a result, for all accepting SCC-path1419

π′ we have that s, x⇝ t, y survives (σl, σr) in π and all portals surviving (σl, σr) in π′ are1420

≃ -equivalent to s, x⇝ t, y (we use the same pair (σl, σr) for all π′).1421

Let us now prove the other direction. Suppose we have π and s, x⇝ t, y satisfying the1422

conditions of the lemma. We only need to construct two sequences σl, σr such that properties1423

P1 and P3 are satisfied. The result follows by Lemma 5.35.1424

let Π be the set of accepting SCC-paths in A. Consider families of sequences (σl
π′)π′∈Π1425

and (σr
π′)π′∈Π such that for all π′ ∈ Π:1426

s, x⇝ t, y survives (σl
π′ , σr

π′) in π1427

All portals surviving (σl
π′ , σr

π′) in π′ are ≃ -equivalent to s, x⇝ t, y1428

Let i be the index of s, x⇝ t, y in π. By Lemma 6.2 we can build a sequence σl such that1429

(σl≫π) < i1430

(σl
π′≫π′) ≤ (σl≫π′) for all π′ ∈ Π.1431

Using a symmetric argument, we build a sequence σr such that1432

i < (π≪σr)1433

(π′≪σr
π′) ≥ (π′≪σr) for all π′ ∈ Π.1434

As a consequence, for all accepting SCC-path π′ ∈ Π, all portals surviving (σl, σr) in π′
1435

are ≃ -equivalent to s, x⇝ t, y. Furthermore, s, x⇝ t, y survives (σl, σr) in π.1436

We have shown that s, x⇝ t, y and (σl, σr) satisfy properties P1 and P3. P2 is immediate1437

by assumption. We simply apply Lemma 5.35 to obtain the result. ◀1438

Next, we establish that the items listed in the previous lemma can all be checked in1439

polynomial space in |A|.1440

▶ Lemma 6.5. Given a portal s, x ⇝ t, y, we can check whether it has infinitely many1441

minimal blocking factors in polynomial space in |A|.1442

Proof. We start by defining a deterministic automaton B recognising the set of positional1443

words that are factors of PL(s, x⇝ t, y).1444

For each i ∈ {0, . . . , p− 1} let Qi be the set of states in the SCC of s that can be reached1445

in i − x steps from s. It is easily computable using the partition of the states given by1446

Fact 3.3.1447

Let Ai be A where the initial states are Qi and every state in the SCC of s is final. It1448

recognises words that can be read from Qi in A without leaving the SCC.1449
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Then, we define Bi as the automaton obtained by determinising Ai. It has size at most1450

2|A|. From Bi we easily obtain an automaton B′
i of size p|Bi| recognising the set of positional1451

words {(i : w) | w ∈ L(Bi)}: we simply keep track in the states of the number of letters read,1452

plus i, modulo p.1453

Lastly, we define B as follows: We take all automata Bi and merge their initial states into1454

one. Observe that B is deterministic as all Bi are, and for all letter (j, a) there is at most one1455

transition from the initial state reading (j, a), which goes to a state of Bj . This automaton1456

is of at most exponential size in |A|. It recognises the set of positional words that are factors1457

of PL(s, x⇝ t, y).1458

We can complement it to obtain an automaton B recognising the complement language,1459

i.e., the set of positional words that are not factors of PL(s, x⇝ t, y). We have |B| ≤ |B|+ 1.1460

A positional word (n : w) is a minimal blocking factor of s, x ⇝ t, y if and only if it is1461

not a factor of PL(s, x⇝ t, y) while removing its first or its last letter makes it a factor of1462

PL(s, x⇝ t, y).1463

The set of blocking factors can thus be recognised by an automaton of size |B|3, which1464

runs B on the input word, while running B from the second to the last letter and from the1465

first to the second to last letter. The automaton accepts if all three runs are accepting. It is1466

of exponential size in |A|.1467

We simply need to check if this automaton has an infinite language, which is the case if and1468

only if it has a cycle reachable from the initial state and from which a final state is reachable.1469

This can be checked by exploring the state space of the automaton, in non-deterministic1470

polynomial space (in |A|), and applying Savitch’s theorem. ◀1471

▶ Lemma 6.6. Given two SCC-paths π and π′, one can check in PSPACE whether there is a1472

sequence σ that is blocking for π and not π′.1473

Proof.1474

▷ Claim 6.7. There is a sequence σ that is blocking for π = s0, x0 ⇝ t0, y0
a1−→ · · · sk, xk ⇝1475

tk, yk and not π′ = s′
0, x′

0 ⇝ t′
0, y′

0
a′

1−→ · · · s′
ℓ, x′

ℓ ⇝ t′
ℓ, y′

ℓ if and only if either:1476

there is a positional word (n : w) that is a blocking factor for s0, x0 ⇝ t0, y0 and1477

not s′
0, x′

0 ⇝ t′
0, y′

0 and there is a sequence σ′ that is blocking for s1, x1 ⇝ t1, y1
a2−→1478

· · · sk, xk ⇝ tk, yk and not π′,1479

or there is a positional word (n : w) that is a blocking factor for s0, x0 ⇝ t0, y0 and s′
0, x′

0 ⇝1480

t′
0, y′

0 and there is a sequence σ′ that is blocking for s1, x1 ⇝ t1, y1
a2−→ · · · sk, xk ⇝ tk, yk1481

and not s′
1, x′

1 ⇝ t′
1, y′

1
a′

2−→ · · · s′
ℓ, x′

ℓ ⇝ t′
ℓ, y′

ℓ.1482

Proof. The right-to-left direction is clear (just take σ = (n : w), σ′ in both cases).1483

For the left-to-right direction, consider a sequence σ that is blocking for π and not π′, of1484

minimal length. Let σ+ and (n : w) be such that σ = (n : w)σ+.1485

If (n : w) is not blocking for s0, x0 ⇝ t0, y0 then σ+ is blocking for π and not π′,1486

contradicting the minimality of σ.1487

If (n : w) is blocking for s0, x0 ⇝ t0, y0 and not s′
0, x′

0 ⇝ t′
0, y′

0 then we set σ′ = σ. We1488

know that σ is not blocking for π′. On the other hand, as σ is blocking for π, it is also1489

blocking for s1, x1 ⇝ t1, y1
a2−→ · · · sk, xk ⇝ tk, yk.1490

If (n : w) is blocking for both s0, x0 ⇝ t0, y0 and s′
0, x′

0 ⇝ t′
0, y′

0 then we set σ′ = σ.1491

As σ is blocking for π, it is also blocking for s1, x1 ⇝ t1, y1
a2−→ · · · sk, xk ⇝ tk, yk. On1492

the other hand, if σ was blocking for s′
1, x′

1 ⇝ t′
1, y′

1
a′

2−→ · · · s′
ℓ, x′

ℓ ⇝ t′
ℓ, y′

ℓ, then it would1493
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also be blocking for π′, a contradiction. Hence σ is not blocking for s′
1, x′

1 ⇝ t′
1, y′

1
a′

2−→1494

· · · s′
ℓ, x′

ℓ ⇝ t′
ℓ, y′

ℓ1495

◁1496

The claim above lets us define a recursive algorithm.1497

First check if there is a positional word (n : w) that is blocking for s0, x0 ⇝ t0, y0 and1498

not s′
0, x′

0 ⇝ t′
0, y′

0. If it is the case, make a recursive call to check if there is a sequence1499

σ′ that is blocking for s1, x1 ⇝ t1, y1
a2−→ · · · sk, xk ⇝ tk, yk and not π′. If it is the case,1500

answer yes.1501

Then check if there is a positional word (n : w) that is a blocking factor for s0, x0 ⇝ t0, y01502

and s′
0, x′

0 ⇝ t′
0, y′

0. If so, make a recursive call to check if there is a sequence σ′ that is1503

blocking for s1, x1 ⇝ t1, y1
a2−→ · · · sk, xk ⇝ tk, yk and not s′

1, x′
1 ⇝ t′

1, y′
1

a′
2−→ · · · s′

ℓ, x′
ℓ ⇝1504

t′
ℓ, y′

ℓ. If it is the case, answer yes.1505

If both items fail, answer no.1506

The existence of those positional words can be checked in polynomial space using the1507

automaton B constructed in the proof of Lemma 6.5. The depth of the recursive calls is at1508

most the sum of the lengths of π and π′, which is bounded by 2|A|. In consequence, this1509

algorithm runs in polynomial space.1510

◀1511

▶ Proposition 6.8. The following problem is in PSPACE: Given an automaton A, is it hard?1512

Proof. We use Lemma 6.4. We guess an SCC-path π = s0, x0 ⇝ t0, y0
a1−→ · · · sk, xk ⇝ tk, yk1513

and an index i.1514

We check that si, xi ⇝ ti, yi has infinitely many minimal blocking factors, using Lemma 6.5.1515

We then enumerate all SCC-paths in A. For each one π′ = s′
0, x′

0 ⇝ t′
0, y′

0
a′

1−→ · · · s′
ℓ, x′

ℓ ⇝1516

t′
ℓ, y′

ℓ we guess indices jl and jr. We check that every portal s′
j , x′

j ⇝ t′
j , y′

j with jl < j < jr
1517

is ≃ -equivalent to s, x⇝ t, y.1518

Then, we use Lemma 6.6 to check that there is a sequence σl that is blocking for1519

s′
0, x′

0 ⇝ t′
0, y′

0
a′

1−→ · · · s′
jl , x′

jl ⇝ t′
jl , y′

jl and not s0, x0 ⇝ t0, y0
a1−→ · · · si, xi ⇝ ti, yi.1520

Symmetrically, we check that there is a sequence σr that is blocking for s′
jr , x′

jr ⇝1521

t′
jr , y′

jr

a′
1−→ · · · s′

ℓ, x′
ℓ ⇝ t′

ℓ, y′
ℓ and not si, xi ⇝ ti, yi

ai+1−−−→ · · · sk, xk ⇝ tk, yk.1522

If all those tests succeed, we answer yes, otherwise we answer no. This algorithm is1523

correct and complete by Lemma 6.4. ◀1524

Our last result is the PSPACE upper bound on the complexity of checking if a language1525

is trivial. It is based on the characterisation of trivial languages given by Lemma 5.38.1526

▶ Proposition 6.9. One can check if an automaton has a trivial language in PSPACE.1527

Proof. By Lemma 5.38, it suffices to enumerate all accepting SCC-paths in the automaton,1528

and then check that all portals appearing in them have a blocking factor. This is feasible in1529

PSPACE, using the automaton B from the proof of Lemma 6.5. ◀1530



40 The Trichotomy of Regular Property Testing

6.2 Hardness of classifying automata1531

We prove hardness of the triviality problem and easiness problems, concluding on their1532

PSPACE-completeness. We reduce from the universality problem for NFAs, which is well-1533

known to be PSPACE-complete (see e.g. [1, Theorem 10.14]).1534

▶ Lemma 6.10. The triviality problem is PSPACE-hard.1535

Proof. Consider an NFA A = (Q, Σ, δ, q0, F ) on an alphabet Σ. Without loss of generality,1536

we assume that A is trim (up to removing unreachable or non-co-reachable states) and that1537

it accepts all words of length less than 2: this can be checked in polynomial time. Let # and1538

! be two letters that are not in Σ. We apply the following transformations to A:1539

add a transition labeled by ! from every final state to the initial state q01540

add a self-loop labeled by # to each state.1541

We call the resulting automaton B = (Q, Σ ∪ {!, #}, δ′, q0, F ). Note that B is strongly1542

connected: consider any two states q, q′ ∈ Q, we show that q′ is reachable from q. As A is1543

trim, there exists qf ∈ F that is reachable from q, and q′ is reachable from the initial state1544

q0. Furthermore, we have put a ! transition from qf to q0, hence q′ is reachable from q.1545

Recall that the language of a strongly connected automaton is trivial if and only if it1546

has no minimal blocking factor. Hence, to complete this reduction, we need to show that1547

MBF(B) is empty if and only if A is universal.1548

First, let us describe the language recognized by B. It is given by1549

L(B) = {u1!u2! · · ·!un | ∀i, ui ∈ (Σ ∪ {#})∗ ∧ πΣ(ui) ∈ L(A)},1550

where πΣ(u) is the word in Σ∗ obtained by removing all letters not in Σ from u.1551

▷ Claim 6.11. If A is universal, then B is also universal.1552

Proof. Indeed, any word in u in can be uniquely decomposed into u = u1!u2! · · ·!un where1553

each ui does not contain the letter “!”. As # is idempotent on B, δ′(q0, ui) is equal to1554

δ(q0, πΣ(ui)) for every i. Since A is universal, each of the δ′(q0, ui) contains a final state,1555

hence δ′(q0, ui!) = {q0}. Therefore, the set δ′(q0, u) is equal to δ′(q0, un), which contains a1556

final state, and u is in L(B), which shows that B is universal. ◁1557

This shows that if A is universal, then MBF(B) is empty.1558

For the converse, we show that a word w ∈ Σ∗ not in L(A) induces minimum blocking1559

factors for B. Consider such a w of minimal size. As we assumed that A accepts all words of1560

size less than 2, |w| ≥ 2. Let u, v be words of length at least 1 such that w = uv. For all1561

n ∈ N, at least one of u#nv, !u#nv, u#nv!, !u#nv! is a minimal blocking factor (depending1562

respectivelyon whether w is not a factor of any word of L(A) or is a prefix/suffix of a word1563

of L(A) or not). As a consequence, B has infinitely many blocking factors, and is thus hard1564

to test by Theorem 4.2.1565

In summary, A is universal if and only if B is trivial to test. This shows the PSPACE-1566

hardness of the triviality problem. ◀1567

The above proof can be extended to show the PSPACE-hardness of the easiness problem.1568

▶ Corollary 6.12. The easiness problem is PSPACE-hard.1569
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Proof. We proceed as in the proof of Lemma 6.10: given an automaton A over an alphabet1570

Σ, we build an automaton B over the alphabet Σ∪{!, #} such that if A is universal, MBF(B)1571

is empty, and if A is not universal, then MBF(B) is infinite.1572

To show the hardness of the easiness problem, let ♭ denote a new letter not in Σ ∪ {#, !}1573

and consider the automaton B′ equal to B but taken over the alphabet Σ ∪ {#, !, ♭}. As1574

there are no transitions labeled by ♭ in B′, the word ♭ is always a minimum blocking factor1575

of B′. As a result, we have MBF(B′) = MBF(B) ∪ {♭}, hence A is universal if and only if1576

MBF(B′) is finite but non-empty: by Theorem 4.2, this is equivalent to L(B′) is easy to test.1577

Therefore, the easiness problem is also PSPACE-hard. ◀1578

This concludes the proof of Theorem 6.11579
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A Properties of minimal blocking factors1640

In this section, we discuss properties of the set of minimal blocking factors of an NFA. First,1641

we show the set of minimal blocking factors of an automaton is a regular language.1642

▶ Lemma A.1. Let A = (Q, Σ, δ, I, F ) be a strongly connected NFA with m states and let1643

λ = λ(A). For every i ∈ Z/λZ, the set of minimal blocking factors of A of the form (i : u) is1644

a regular language recognized by a NFA of size 2O(m).1645

Proof. We call blocking factors of A of the form (i : u) its i-blocking factors.1646

We first show that the set of i-blocking factors of A, but not necessarily minimal ones, is1647

a regular language recognized by an NFA Ai with m + 1 states. The result follows by using1648

a standard construction for the automaton recognizing words in a regular language L that1649

have no proper factor in a regular language L′, which gives an automaton of size 2O(m).1650

Consider the NFA Ai obtained by adding a new sink state ⊥ to A, making it the only1651

accepting state, with initial states Qi. Formally, Ai is defined asAi = (Q∪{⊥}, Σ, δ′, Qi, {⊥}),1652

where δ′ is defined as follows:1653

∀p ∈ Q,∀a ∈ Σ : δ′(p, a) =
{
{⊥} if δ(p, a) = ∅,
δ(p, a) otherwise.

1654

This automaton3 recognizes the set of i-blocking factors of A and has size O(m). Applying1655

the aforementioned construction to L = L′ = L(Ai) yields the desired automaton, of size1656

2O(m). ◀1657

It follows that the set of minimal blocking factors of A is also a regular language.1658

▶ Corollary A.2. Let A be an NFA with m states. The set of minimal blocking factors of A1659

is a regular language recognized by an NFA of size 2O(m).1660

Therefore, if MBF(A) is infinite, we can use Kleene’s lemma to find an infinite family of1661

minimal blocking factors with a shared structure {ϕνrχ, r ∈ N}.1662

▶ Lemma 4.20. If MBF(A) is infinite, then there exist positional words ϕ, ν+, ν−, χ such1663

that:1664

1. the words ν+ and ν− have the same length,1665

2. there exists a constant S = 2O(m) such that |ϕ|, |ν+|, |ν−|, |χ| ≤ S,1666

3. there exists an index i∗ ∈ Z/λZ and a state q∗ ∈ Qi∗ such that for every integer r ≥ 1,1667

τ−,r = ϕ(ν−)rz is blocking for A, and for every s < r, we have1668

q∗
τ+,r,s−−−−→ q∗ where τ+,r,s = ϕ(ν−)jν+(ν−)r−1−sχ.1669

In particular, τ+,r,s is not blocking for A.1670

Note that here, the state q∗ is the same for every integers r, s.1671

Proof. As MBF(A) is infinite, there must exist an i∗ such that A has infinitely many minimal1672

i∗-blocking factors; we fix such an i∗ in what follows.1673

As the set of minimal i∗-blocking factors is an infinite regular language recognized by1674

an NFA of size S = 2O(m), by Kleene’s Lemma, there exist positional words τ, µ, η, each of1675

3 Our definition of NFAs does not allow for multiple initial states. As there is no constraint of strong
connectivity for Ai, this can be solved using a simple construction that adds a new initial state.
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length at most S with |µ| ≥ 1, such that for any non-negative integer k, τµkη is a minimal1676

i∗-blocking factor. We can assume w.l.o.g. that neither τ nor η is empty, otherwise we set1677

their value to µ: after this modification, τµkη is still a minimal i∗-blocking factor for every1678

k ≥ 0.1679

Notice that the word τµm is not a blocking factor, as a proper factor of the minimal1680

blocking factor τµmη. Therefore, by the pigeonhole principle, there exist integers k0, k1 ≥ 11681

with k0 + k1 = m and states p, p1 such that we have1682

p
τµk0
−−−→ p1

µk1
−−→ p1.1683

Note that, by Fact 3.3, p1
µk1
−−→ p1 implies that k1 · |µ| = 0 (mod λ).1684

Similarly, the word µmη is not a blocking factor, since it is a proper factor of the minimal1685

i∗-blocking factor τµmη. Again, there exist integers k2 ≥ 1, k3 summing to m and states p21686

and q such that1687

p2
µk2
−−→ p2

µk3 η−−−→ q.1688

Now, define ϕ = τµk0 , χ = µk3η and ν− = µK , where K = ρ · k1 · k2. As there are1689

transitions starting from p1 and p2 labeled by µ, p1 and p2 belong to the same periodicity1690

class. Therefore, by Fact 3.3, as K ≥ ρ and K · |µ| = 0 (mod λ), there exists a word ν+ of1691

length K · |µ| such that p1
ν+−−→ p2. This choice of ϕ, ν+, ν− and χ satisfies all the conditions1692

of the lemma. ◀1693

B Hoeffding’s inequality1694

▶ Lemma B.1 ([15, Theorem 2]). Let X1, . . . , Xk be independent random variables such that1695

for every i = 1, . . . , k, we have ai ≤ Xi ≤ bi, and let S =
∑k

i=1. Then, for any t > 0, we1696

have1697

P (E[S]− S ≥ t) ≤ exp
(
− 2t2∑k

i=1(bi − ai)2

)
.1698
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