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Abstract
The population control problem is a parameterized control problem where a population of agents
has to be moved simultaneously into a target state. The decision problem asks whether this can
be achieved for a finite but arbitrarily large population. We focus on the random version of this
problem, where every agent is a copy of the same automaton and non-determinism on the global
action chosen by the controller is resolved independently and uniformly at random. Controller seeks
to almost-surely gather the agents in the target states. We show that the random population control
problem is EXPTIME-complete.
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1 Introduction

An arbitrary number N of tokens are placed on the initial state of a non-deterministic finite
automaton. They are updated in rounds, each resolving their non-deterministic choices: in
every round, a controller selects a letter a and then every token independently selects and
moves to an a-labelled successor state to the one it resides in. The goal for the controller is
to eventually gather all tokens in an accepting state. The larger the number N , the harder
it is to control the population of N tokens. Crucially, the decision question we study is
parameterized in the number of tokens: given the automaton, decide whether controller can
succeed for arbitrarily large population sizes N?

This approach follows a line of models for biological or chemical systems with large crowds
of simple finite-state systems, like population protocols [1] or Petri nets [11]. Population
control problems provide a formal framework for the design of strategies to control a large
number of identical agents. This framework was introduced in [3], as a model for the
synchronization of large populations of yeasts [18]. It fits into parameterized verification, a
line of research that aims to verify distributed protocols over arbitrarily large networks [17, 7].

The population control problem has been studied both in the adversarial and stochastic
settings, which differ in how agents resolve choices and what guarantees the controller is after.
In the adversarial setting, an antagonistic environment resolves all agent’s choices, trying
to avoid synchronization. Bertrand et al. [2, 3] showed that this (adversarial) population
control problem is decidable and EXPTIME-complete.

In the stochastic setting, all agent’s choices are made uniformly at random and the
controller aims to synchronize the agents almost-surely, with probability one. This random
population control is known to be EXPTIME-hard [12] and decidable [4, 5]. Colcombet
et al.’s decision procedure is based on two key ingredients. First, winning regions are
downward-closed with respect to the natural product order on NS and can therefore be
finitely represented and manipulated as a union of ideals. The second key ingredient involves
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the sequential flow problem, which asks whether an unbounded number of tokens can be
moved from one set of states to another while remaining within a specific safe region. They
solve this problem by a reduction to the boundedness problem on distance automata [10].
The main limitation of this approach is that the termination of the resulting algorithm relies
on well quasi-orders, resulting in a non-primitive recursive upper bound.

Our Contribution We show that the random population control problem is EXPTIME-
complete (Theorem 10). The upper-bound proceeds in two steps, first arguing that it is
sufficient for successful strategies to be based on a bounded abstraction of the winning regions
(Theorem 7). The second step is to solve what we call the Path problemin exponential
time. Roughly speaking, this problem asks whether we can transfer, with positive probability,
arbitrarily many tokens from an initial configuration to the set of final configurations, and all
the while surely staying in a given set of safe configurations. To solve the Path problemwe
compute an appropriate semigroup, called the flow semigroup, which characterizes the
existence of such unbounded paths (Theorem 27). To prove this characterization correct,
we use two intermediate semigroups called the cut semigroups, one infinite and the other of
doubly-exponential size (Theorem 22). We exhibit a duality between the flow semigroup and
the symbolic cut semigroup which is a reflection of the max-flow min-cut duality (Lemma 25).
This contribution also contains the original (unpublished) lower bound [12] (Theorem 29).

The following example shows an instance where Controller can win using the probabilistic
behavior of the tokens.

a

a

a, b

b

a, b

Figure 1 An automaton for which Controller wins against a random environment but not an
adversarial one. The initial state is on the left and the target is the one on the right. Omitted, but
implicitly present is a sink state, to which all states move on actions not shown.

▶ Example 1. The automaton in Figure 1 is a positive instance of the random population
control problem. For every population size N , Controller can play the action a until all
tokens are in the central state, which almost-surely happens eventually. She can then play b
to send some of them to the target, while some are sent back to the first state. At that point,
every token that was in the second state has a fixed probability to be in the target state. By
repeating this procedure while there are tokens left in the first state, Controller almost-surely
ends up putting all tokens in the target state. This shows that even though Controller wins
in the stochastic setting, the expected time to synchronize all agents can be exponential in
N , since just getting all tokens to the center state takes exponential expected time.

This paper uses hyperlinks. Occurrences of some notions are linked to their definition. The
reader can click on words and symbols (or just hover over them on some PDF readers) to see the
definition.

2 Preliminaries

We assume familiarity with automata theory [15] and Markov Decision Processes [14] and
proceed to recall some necessary notation.
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Markov decision processes. A Markov decision process (MDP) M = (S,Σ,∆) consists of
a set S of states, Σ a set of actions, and a transition function ∆ : S × Σ→ Dist (S), where
Dist (S) denote the set of probability distributions over a set S.

We consider MDPs with almost-sure reachability objectives, given by a set F ⊆ S of
target states 1. When F is reached the play is over and controller wins. If the play is infinite
then controller loses. For such objectives it is well-known [13, Thm. B] that stationary
(a.k.a. memoryless) strategies suffice to win. In this paper, a strategy is therefore a function
σ : S → Dist (Σ). A strategy might be partially defined, typically it is not defined on states
from which there is no hope to win. If a state on which σ is not defined is reached, and if
moreover this state is not final, then the play is over and controller loses. Once a strategy σ
is fixed, the resulting process is a Markov chain, whose probability measure is denoted Pσ

(see [14] for details). A strategy is winning from some state if it ensures that F is reached
Pσ-almost-surely. The winning region is the subset W ⊆ S from which a winning strategy
exists.

Random walks in winning regions. In an MDP with finitely many states, there is a canonical
almost-surely winning strategy for Controller: play at random any action which guarantees
to stay in the winning region. This is formalized using arenas and safe random walks, as
follows.

Call an MDP simple if for all s ∈ S, the set of configurations reachable from s is finite.
A commit is an element of S × Σ. An arena is a set W ⊆ S × Σ of commits such that for all
(w, a) ∈ W and s ∈ S, if ∆(w, a)(s) > 0 then there exists b ∈ Σ such that (s, b) ∈ W . We
occasionally abuse notations and write s ∈W instead of ∃b ∈ Σ, (s, b) ∈W . A path in arena
W is a path s0

a1−→ s1
a2−→ · · · ak−→ sk in M such that sj ∈ W for all j and (sj−1, aj) ∈ W

for all j > 0. The safe random walk in the arena W is the strategy σ defined on W such
that σ(w) is the uniform distribution on {a ∈ Σ | (w, a) ∈W}. An arena is winning if for all
w ∈W there is a path in W from w to F . This is closely linked with the notion of a winning
region, as shown in the next lemma.

▶ Lemma 2 (Winning arenas). Given a simple MDP and reachability target F .
1. The union of two winning arenas is a winning arena and the winning region is the

projection on S of the largest winning arena.
2. In a winning arena, the safe random walk is a winning strategy from every state.

Random Populations. We consider populations of random agents, called tokens, described
by an MDP M = (S,Σ,∆).

The n-fold product of M is the MDP where the controller selects at each step a global
action a ∈ Σ which applies simultaneously to all n tokens, whose states are independently
updated with respect to the global action. Formally, M(n) = (Sn,Σ,∆) is the MDP whose
states, called configurations here, are n-dimensional vectors with components in S, and ∆ is
lifted to Sn in the natural way: ∆(q, a)(p) =

∏n−1
i=0 ∆(q(i), a)(p(i)) for all q,p ∈ Sn and

a ∈ Σ. The configuration of M(A)n where a state i ∈ S is duplicated n times is denoted
i(n). Equivalently, for convenience, we let T∞ be a countably infinite set of tokens and
configurations are elements in ST where T is a finite subset of T∞.

1 Exact transition probabilities do not matter for these objectives, so one can assume w.l.o.g. that
all probability distributions in ∆ are uniform. The MDP can be equivalently represented as a non-
deterministic automaton (NFA).
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The present paper focuses on the following decision problem:

The Random population control problem

Given: an MDP M = (S,Σ,∆), initial state i ∈ S and target set F ⊆ S.
Question: Does the winning region of M(n) with respect to the reachability
objective F (n) always contain i(n), for arbitrarily large n > 0?

i f
a

a
b d

b c ΣaΣ

Figure 2 A positive instance of the Random population control problem.

▶ Example 3. Controller has a winning strategy in the MDP associated with the automaton
of Figure 2, where the target is F = {f}. Whenever a transition is not represented on the
figure, it leads to a losing sink state, which Controller wants to avoid at all cost. Regardless
of the size N of the population, she plays the action a until exactly one token is in the second
state (which happens eventually with probability 1), and then plays b followed by either b or
c (which ever is the safe move) to send that token to the final state. She then repeats that
strategy until every token is at the target. This is the only way to progress: if she plays b
while more than one token are in the second state, then some may be sent to different states,
and she is stuck.

Symbolic configurations and the Path problem. Since the tokens are treated symmetrically,
we sometimes abstract configurations by simply counting the number of tokens in each state.
This offers a convenient way to represent sets of configurations using ideals.

We use the natural ordering on natural numbers, as well as its extension with a maximal
element ω: N = {0 < 1 < 2 < 3 < . . . < ω} . We also use the product ordering on NS : x ≤ y
if and only if x(s) ≤ y(s) for all s ∈ S.

▶ Definition 4 (Symbolic configurations and commits). A symbolic configuration is an
element of NS. A symbolic commit is an element of NS × A. For a configuration w ∈ ST

over a set of tokens T , write |w| ∈ NS for the vector that counts tokens in each state:
|w|(s) = |{t ∈ T | w(t) = s}|. The ideal w↓ is the set of all configurations v such that
|v| ≤ w. For a set of configurations W and a symbolic configuration w ∈ NS we say that w
belongs to W , denoted as w ∈W , if w↓ ⊆W.

Another central decision problem in the paper is:

The Path problem

Given: an MDP M = (S,Σ,∆), a finite set W of symbolic commits, an element w0 ∈W
and a subset F ⊆ W . Question: Does every configuration in w0↓, admit a path to F↓
inside W↓?

The input in general contains constants that are arbitrarily large, but for our purpose we
will only consider versions with small constants.
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▶ Definition 5. The largest constant of an instance of the Path problemis the largest
finite coordinate which appears in one of the finite sets (w0,W , F ) (by convention 0 in the
rare cases where there is no such finite coordinate).

3 Main results

In this section we present our main algorithmic result: the Random population control
problem is EXPTIME-complete. This result relies on several intermediary results that are
of independent interest, especially the algebraic arguments.

1. Whenever the answer to the Random population control problem is positive, there
is a winning arena defined by abstract configuration using coefficients in {0, 1, . . . , |S|, ω}
(Theorem 7 and Section 4);

2. As a consequence, the Random population control problem can be solved with
exponentially many calls to a subprocedure solving the Path problem with largest
constant 1 (Lemma 9);

3. The Path problem with largest constant 1 reduces to the computation of a (large) finite
semigroup, called the symbolic cut semigroup (Theorem 22, Section 5);

4. The Path problem with largest constant 1 reduces to the computation of a (small)
finite semigroup, called the flow semigroup, and is therefore decidable in exponential time
(Theorem 27, Section 6).

5. The Random population control problem is EXPTIME-hard (Theorem 29, Sec-
tion 7).

Combining the first four results, we present in this section an exponential-time fix-point
algorithm for the Random population control problem. The presentation of the
algorithm and its correctness proof requires introducing the notion of K-definability.

▶ Definition 6 (K-definability). A set of configurations is called K-definable if it is a union
of ideals of the form w↓ with w ∈ {0, . . . ,K, ω}S.

In all that follows, denote W the arena of almost-surely winning configuration and
commits, and for every K ∈ N, denote W0,...,K,ω the maximal K-definable subset of W , i.e.,
the union of ideals w↓ included in W such that the finite coordinates of w are ≤ K. Note
that F ⊆W0,ω. The answer to the Random population control problem is positive if
and only if W0,ω contains i.

We can now state one of the key ingredients of the EXPTIME upper bound.

▶ Theorem 7 (Almost-surely winning with a few stray sheep). Let W be the arena of almost-
surely winning configurations and commits. There exists a sub-arena Y of W such that:

Y contains W0,ω; and
Y is |S|-definable; and
Y is a winning arena for reaching F .
The main arguments for proving Theorem 7 are exposed in Section 4 and the formal

proof is available in appendix Section E.
▶ Remark. Theorem 7 implies that, if we can control arbitrarily many tokens then we can
do so with an |S|-definable strategy, one that make the same choice in configurations that
agree on the token multiplicites up to |S|. This has no immediate consequences for the shape
of the winning region W . In fact, W may not be |S|-definable and its ideal representation
may require doubly exponentially large constants (cf. Section B.2). Therefore, in general, Y
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is strictly contained in W . Moreover, despite there existing memoryless and deterministic
strategies from every configuration in the winning region [13], the |S|-definable winning
strategies guaranteed by Theorem 7 may still require randomization (cf. Section B.1).

Theorem 7 suggests a simple dynamic programming algorithm to compute Y and decide
the random population control problem, see Algorithm 1, which refines a candidate set V
until the corresponding ideal is a winning arena.

Recall that we use the notation u ∈ W for ∃b ∈ Σ, (u, b) ∈ W . For a set V ⊆
{0, . . . , |S|, ω}S × Σ of symbolic commits let V ↓ denote the set of commits (w, a) ∈ NS × Σ
with w ≤ v for some (v, a) ∈ V . Write i for the vector mapping i to ω and other states to 0.

Algorithm 1 Algorithm for the Random population control problem

1: V ← {0, . . . , |S|, ω}S × Σ
2: repeat
3: if ∃(v, a) ∈ V , w ∈ v↓, u /∈ V ↓ s.t. ∆(w, a)(u) > 0 then
4: V ← V \ {(v, a)}
5: if ∃(v, a) ∈ V and w ∈ v↓ s.t. there is no path from w to F↓ in V ↓ then
6: V ← V \ {(v, a)}
7: until V does not change
8: return ∃a, (i, a) ∈ V

Line 3 can be made effective in time exponential in |S| (cf. Appendix F, Lemma 45).

▶ Lemma 8. Algorithm 1 returns True if and only if the answer to the Random population
control problem is positive.

Proof. Let V0 ⊋ V1 ⊋ . . . ⊋ Vn be the successive values of V throughout the execution,
which terminates by monotonicity.

Suppose the algorithm returns True in line 8. Let Y = Vn↓. As we exited the loop in
line 7, no symbolic commit was removed in lines 4 and 6. Thus, Y is a winning arena for
reaching F and, according to Lemma 2, the safe random walk in Y almost-surely reaches F .

For the other direction, suppose there is a winning strategy. By Theorem 7 there is
a sub-arena Y of W satisfying the three conditions of Theorem 7. Let X = {(w, a) ∈
{0, . . . , |S|, ω}S × Σ | (w, a)↓ ⊆ Y }. As Y is |S|-definable, we have Y = X↓.

We show that the algorithm maintains the following invariant, defined for i ∈ {0 . . . n}.

X ⊆ Vi. (1)

This is clear for i = 0. Assume the invariant holds for some i < n: since X ⊆ Vi, we have
Y ⊆ Vi↓. Since Vi ⊋ Vi+1, some symbolic commit (v, a) is removed from Vi to obtain Vi+1.
As Y is a winning arena, for all (y, a) ∈ Y every successor of y by a is in Y , and thus in Vi↓.
Also, for all y ∈ Y there is a path in Y (and thus in Vi↓) from y to F . As a consequence,
(v, a)↓ ⊈ Y , hence (v, a) /∈ X. Hence X ⊆ Vi \ {(v, a)} = Vi+1.

Finally, the invariant holds for i = n. Thus, Y ⊆ Vn↓ Furthermore we have W0,ω ⊆ Y ,
from Theorem 7. As there is a winning strategy, we also have i↓ ⊆W0,ω. Hence i↓ ⊆ Y , and
i ∈ X. As a result, ∃a, (i, a) ∈ Vn and the algorithm therefore returns True. ◀

The condition in line 5 requires solving the Path problem. The following Lemma,
(proved in Appendix F), shows that it suffices to solve instances whith largest constant 1.
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▶ Lemma 9. There is a computable reduction from the Path problem to the same problem
with largest constant 1. The reduction increases the state space polynomially, when constants
are encoded in unary.

Section 6 provides an algorithm which solves the Path problem with largest constant 1
is time exponential in the number of states |S| (Theorem 27), hence our main result:

▶ Theorem 10. The Random population control problem is EXPTIME-complete.

Proof. EXPTIME-hardness is Theorem 29. For the upper bound, we rely on the fact
that both the Path problem with largest constant 1 and the Path problem with largest
constant |S| can be solved in exponential time in the number of states |S|. The former result
is established in Section 6 (Theorem 27), while the latter is a consequence of Lemma 9. We
have already established that Algorithm 1 is correct (Lemma 8). We argue that it takes at
most exponential time.

V has (|S|+ 2)|S||Σ| elements at the start, and every iteration removes at least one.
The first condition (line 3) can be checked simply by computing the set of successors of
each symbolic commit in V . This can be straightforwardly done in exponential time in
the number of states (cf. Appendix F, Lemma 45).
Checking the second condition (line 5) is an instance of the Path problem with largest
constant ≤ |S|, which as discussed above, is solvable in exponential time in |S|.

Therefore, Algorithm 1 takes exponential time in the size of the input. As a result, the
Random population control problem is EXPTIME-complete. ◀

4 Winning by counting up to |S|

4.1 Overview
The non-elementary complexity in the algorithm of [5] arises from the fact that their algorithm
requires to describe a set of configurations defined by potentially very large integers. We
show that a full description of the winning region is not required to solve the Random
population control problem. Instead, we show that if a winning strategy exists then
there is one that tracks only a few tokens and a set of unbounded states.

We will illustrate intuitions using a shepherd-sheep metaphor: the tokens are sheep, split
between the herd and the stray sheep (or just strays). Intuitively, we can add as many sheep
as we want in states occupied by the herd while staying in the winning region. By contrast,
strays occupy bounded places. We describe a winning strategy based on two modes.

The first mode we call “Funneling obedient sheep”. Here, the tokens follow a predetermined
funnel path that leads to a final configuration. On the funnel path, only a few sheep at a time
may leave the herd, and none of those who do meet: they are expected to stay in different
states. Formally, this means that the path stays within W0,1,ω. The existence of such a path
is given by Lemma 14. Controller selects actions to stay on the funnel path, in the hope that
all sheep follow it. This is not guaranteed but happens with positive and lower-bounded
probability.

The second mode is called “Gathering the herd”, and is entered just after some non-
obedient stray sheep have left the funnel path. As sheep outside the herd are alone in their
state, there are at most |S| of them. Controller’s primary objective now is to gather all sheep
back together into a herd, including the strays. Formally, the new objective is to reach W0,ω

while remaining in the winning region W . This must be possible because final configurations,
which are reachable from everywhere in W , belong to W0,ω.
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By Lemma 14 once more, Controller finds a new funnel path to W0,ω and proceeds
according to that. Again, the sheep might deviate from this path and produce more strays.
We then select yet another funnel path to recover those and get to W0,ω and so on. The
issue with this approach is that Controller may continue to be unlucky and produce ever
more strays. However, as we show in Lemma 15, Controller can play as described above
while ensuring that strays introduced at different steps never meet before they are brought
back to the herd. This is illustrated in Figure 3.

As at each step we produce at most |S| stray sheep, we can have at most |S| strays in
each state. This strategy thus defines a sub-arena of the winning region in which we have a
herd of sheep and at most |S| strays in each state at all times, as stated in Theorem 7.

· · ·

W0,ω

Y = Y0,...,|S|,ω

F

i

ω, 2, 0, ω, 0

0, ω, 0, ω, 0

0, 0, ω, ω, 0

ω, 1, 1, ω, 0

0, 1, ω, 1, ω

ω, 1, 2, 0, 0

1, 2, ω, 1, ω

2, ω, 2, 0, ω

2, 2, 1, ω, 1

Figure 3 Controller tries to follow the black path from i to F . Isolated tokens (in blue) may be
spawned along that path. Lemma 14 guarantees that they are alone in their state at all times along
the path. However, we may be unlucky and diverge from the path (red arrow), with those stray
tokens potentially meeting. We then try again to reach W0,ω by selecting a new black path, possibly
spawning new isolated tokens (in orange). If we get unlucky again, we try to recover them using
a new black path, and maybe spawning some new (green) isolated tokens. Lemma 15 will let us
guarantee that tokens of different colors never meet before being brought back to an ω. This means
that we have at most |S| layers, since we cannot have more than |S| isolated groups. We define Y as
the union of all those layers: it is a winning arena.

4.2 Funneling obedient sheep
This is the first part of the proof of Theorem 7. Informally, in this section is exposed the
way to guide a herd of obedient sheep to the objective.

Assume that we play in some arena W , from some initial position w0. In the following
statements, the set of tokens Tω typically denotes the herd and Tf the strays.

In a configuration, we say that a set of states is an ω-base if an arbitrary amount of extra
tokens could be placed on these states without exiting the arena W . This is formally defined
as follows.

▶ Definition 11 (ω-base and finite base). Fix an arena W and a configuration w ∈W . A set
of states Sω is an ω-base of w in W if

w[Sω ∗ ω]↓ ⊆W .

with w[Sω ∗ ω] the symbolic configuration obtained from |w| by mapping states of Sω to ω.
By extension, a set of tokens Tω is an ω-base of w in W if the set of states occupied by

those tokens in w is. Dually, a set of tokens Tf is a finite base of w in W iff its complement
is an ω-base of w in W .

We extend naturally the notions of finite base and ω-base to commits.
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The notions of ω-base and finite base will be crucial in the rest of this section. Note
that a configuration w may have several ω-bases and finite bases: for instance, say we
have two states s1, s2 and the winning region is (ω, 1)↓ ∪ (1, ω)↓, then the configuration
[t1 7→ s1, t2 7→ s2] has {t1} and {t2} as ω-bases, but not {t1, t2}.

Finally, we define the type of arena that we will deal with throughout the proofs.

▶ Definition 12. A population arena is an arena that is a finite union of ideals.
Sometimes we will need to keep track of a small set of tokens. Let Tf be a finite set of

tokens. Given a vector w ∈ NS and a mapping vf : Tf → S, the ideal tracking Tf generated
by w and vf is written vf + w↓ and defined as the set of configurations w such that:

for all t ∈ Tf , w(t) = vf (t)
for all s ∈ S, s contains at most w(s) tokens of T∞ \ Tf

We extend this notion naturally to commits, with the notation (vf + w, a)↓ . A population
arena tracking Tf is an arena that is a finite union of ideals tracking Tf .

Those arenas are the ones that are closed under renaming and removing tokens, as the
winning region naturally is. We sometimes need to keep track of a small set of tokens that
should not be renamed or removed. This is why we introduce population arenas tracking Tf .

▶ Definition 13. Let w be an arena. For every K ∈ N, denote W0,...,K,ω,Tf
the union of all

ideals tracking Tf of the form vf + w↓ with w ∈ {0, . . . ,K, ω}S that are included in W .

▶ Lemma 14 (Funneling the herd, except for a few loners). Let Tf be a finite set of tokens, F
a finite union of ideals tracking Tf and W a population arena tracking Tf that is winning
with respect to F . For every configuration w0 in W0,ω,Tf

there exists a path in W0,1,ω,Tf
from

w0 to F .

Sketch of proof. The full proof is presented in Appendix C. As W is a population arena
tracking Tf , it is the union of finitely many ideals tracking Tf . Let B be the highest number
used to define those ideals.

By definition, W0,ω,Tf
is also a finite union of ideals tracking Tf . Let I = vf + w↓ with

w ∈ {0, ω}S be one of them. Define I[N ] as a configuration obtained by taking vf and adding
N tokens on each state such that w(s) = ω. We only need to show that for all N we have a
path from I[N ] to F in W0,1,ω,Tf

. Let d be the number of states s such that w(s) = ω.
We have I[B ·N ] ∈ I ⊆W , hence there is a path from I[B ·N ] to F in W . Let n be its

length. We interpret it as a directed weighted graph G whose vertices are S × {1, . . . , n}. Its
edges are so that there is an edge from (s, j) to (s′, j + 1) whenever there exists t ∈ T \ Tf

such that wj(t) = s and wj+1(t) = s′.
We assign weights to all vertices of G according to the ideals of W the associated commits

belong to. Those weights are in {0, . . . , B, ω}. The trajectories of tokens outside of Tf in the
path define a flow in G of capacity dBN . We replace every positive finite weight in G by 1
and use the max-flow min-cut theorem to show that the new graph has a flow ≥ dN . This
flow defines a path from I[N ] to F in W0,1,ω,Tf

. ◀

4.3 The isolation lemma
Informally, the isolation lemma says that when a group of strays leaves the herd, the strays
can be brought back in the herd without ever meeting any other strays outside their group.
This will in turn let us bound the number of strays at all times.

We say that two tokens t1, t2 meet in a configuration w if they share the same state i.e.
if w(t1) = w(t2).
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▶ Lemma 15 (Isolation Lemma). Fix a finite set of tokens Tf , a population arena W , and
a configuration w0 of W such that Tf is a finite base of w0 in W . Denote Z the set of
configurations in which a strict subset of Tf is a finite base.

Assume that W is winning with respect to the set of configurations with a finite base of
size < |Tf |.

Then there is a strategy σ in W which, when starting from w0:
guarantees to reach Z almost-surely, and
guarantees that the tokens from Tf never meet the other ones until Z is reached.

Sketch of proof. Since W is a population arena, it is a finite union of ideals. Let B be the
highest number used to define those ideals.

Let M ∈ N. We define wM as the configuration obtained from w0 by putting M additional
tokens for each token outside Tf in each state containing such tokens. Since Tf is a finite
base of w0, wM is in W , so the safe random walk in W brings us in Z almost-surely.

We count the expected number of tokens outside Tf met by a token t ∈ Tf before t is
part of an ω-base. Before that happens, t can only meet B tokens at a time. Furthermore,
since we are following a safe random walk in a population arena, all tokens are treated
symmetrically. Hence every time t meets other tokens outside Tf , it has a probability at
least 1/B of being the first one of them to become part of an ω-base. Furthermore there can
be at most B|S| tokens that are not part of an ω-base in a configuration. From this we infer
an upper bound B3|S| on the expected number of tokens outside Tf met by t before it is
part of an ω-base. Since all tokens outside Tf start with at least M other tokens in their
state, and they are all treated symmetrically, we can show that each one has a probability
≤ B3|S|/M of meeting t.

Furthermore, when t is saved, there can be at most B|S| tokens in states containing at
most B tokens. The probability that a token of Tω is one of them is at most B|S|/M .

For all M , we can apply a randomized strategy from w0 which simulates the safe random
walk with the additional tokens of wM . Therefore, we can make the probability that t meets a
token outside Tf before a token is saved as close to 0 as we want while making the probability
that there is a finite base without tokens of Tω as close to 1 as we want.

Since the set of configurations reachable from W0 is finite, we conclude that we actually
have a strategy that makes those probabilities respectively 0 and 1, yielding the result. The
proof is detailed in Appendix D. ◀

4.4 Gathering the sheep
The proof of Theorem 7 uses an induction on (the number of states minus) the number of
isolated groups of strays in the arena. The induction step is done as follows:

We try to follow a path to the target set F . We can choose this path so that we create at
most |S| isolated tokens, by Lemma 14.
If we deviate from that path, we use Lemma 15 to define a sub-arena that lets us recover
stray tokens while making sure that they don’t meet any token from another group. We
then apply the induction hypothesis to recover those stray tokens within an |S|-definable
sub-arena.
Once the stray tokens are recovered, we apply the first step again, until we successfully
follow the path to the end.

We define the desired sub-arena Y as the union of those paths and sub-arenas. This proof is
detailed in Appendix E.
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5 An algebraic solution to the Path problem with largest constant 1

In this section the Path problem with largest constant 1 is reformulated in the algebraic
framework developed by Imre Simon for tackling the unboundedness problem of distance
automata [16]. This allows to express the solution as a decidable property of a computable
finite semigroup.

For the remainder of this section we fix an MDP (S,A, pM) and a population arena W
with largest constant 1.

Borrowing notations of [16], consider the semirings:

M = ({0 < 1 < 2 < . . . <∞},min,+), the tropical semiring
T = ({0 < 1 < 2 < . . . < ω <∞},min,+), the extended tropical semiring
R = ({0 < 1 < ω <∞},min,max), the minmax semiring
R̄ = ({0 < 1 < ω <∞},max,min), the maxmin semiring .

where as usual, + is subject to ∞+ x = x+∞ = ∞,∀x ∈ N ∪ {ω} and ω + n = n+ ω =
ω,∀n ∈ N.

The central objects are flows and cuts.

▶ Definition 16 (Flows, cuts and tropical cuts). Matrices with coefficients in the maxmin
semiring R̄ indexed by S2 are called flows. Denote by P(S) the collection of subsets of S.
Matrices with coefficients in the minmax semiring R (resp. M) indexed by P(S)2 are called
cuts (resp. tropical cuts).

Flows which abstract the actions in the arena W are called action flows.

▶ Definition 17 (Action flows). Let

ϕ :M→ {0, 1, ω} (2)

which stabilizes 0 and 1 and sends ∞ to ω, as well as any integer ≥ 2. The domain of a
matrix f ∈MS2 with coefficients in the tropical semiring is the vector in {0, 1, ω}S defined
by: dom(f)(s) = ϕ

(∑
t∈S f(s, t)

)
. An action flow f is a flow whose coefficients belong to

{0, 1,∞} (i.e. there is no ω-entry in f), such that there is an action a ∈ A which satisfies
two conditions:

(dom(f), a) ∈W
∀s, t ∈ S2, f(s, t) ̸= 0 =⇒ pM(s, a, t) > 0 .

The set of action flows is denoted by F .

There is a duality between cuts and flows, whose basis is the next definition, and which
is further developed in the next section.

▶ Definition 18 (flow-to-cut and cut-to-flow). For every flow f ∈ R̄S2 let M(f) ∈ RP(S)2

denote the cut defined as:

M(f) =

 max
s∈S0

t∈S\T

f(s, t)


S0∈P(S),T ∈P(S)

, (3)

with the convention max(∅) = 0. Conversely, let M ∈ RP(S)2 be a cut. The associated flow
fM is defined as

fM = (M ({s} , S \ {t}))s∈S,t∈S .
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In [16], the decidability of the unboundedness problem for distance automata is tackled
using two semigroups. In our specific context, both semigroups are generated by the cuts of
action flows {M(f), f ∈ F}. Since the coefficients of action flows belong to {0, 1,∞}, they
do live in the intersection of the minmax semiring R and the tropical semiring M. Thus
{M(f), f ∈ F} can be seen both as a family of cuts or a family of tropical cuts.

▶ Definition 19 (tropical mincut semigroup CM). The tropical mincut semigroup, denoted
CM, is the sub-semigroup of MP(S)2 generated by {M(f), f ∈ F}.

The tropical mincut semigroup CM can perform exact computations of minimal cuts in a
graph with capacities (cf. Lemma 48). This is exactly the purpose of the distance automaton
introduced in [4], which computes minimal cuts in single-source capacity graphs. This is
no coincidence: the correspondance between distance automata and tropical semigroups
developed in [16] produces exactly CM when applied to the distance automaton of [4].
This expressivity of the tropical mincut semigroup CM comes at the cost of being, in
general, infinite. We also make use of a finite abstraction of CM provided by Imre Simon’s
framework [16], called the symbolic mincut semigroup, better suited for algorithmic purposes.

▶ Definition 20 (symbolic mincut semigroup CR). The symbolic mincut semigroup, denoted
CR, is the least sub-semigroup of RP(S)2 which contains {M(f), f ∈ F} and is stable by the
iteration operation, defined as follows.

Let E = E2 be an idempotent symbolic cut of RP(S)2 . A pair (S0, T ) ∈ P(S)2 such that
E(S0, T ) = 1 is stable in E if

∃R ∈ P(S), E(R,R) = 0 ∧max{E(S0, R), E(R, T )} = 1 (4)

and unstable otherwise. Then the iteration of E, denoted E♯, is defined by:

E♯(S0, T ) =


E(S0, T ) if E(S0, T ) ∈ {0, ω,∞}
1 if E(S0, T ) = 1 and (S0, T ) is stable in E

ω if E(S0, T ) = 1 and (S0, T ) is unstable in E.

The following lemma provides some more intuition about (un)stability.

▶ Lemma 21 (Stability). Let E = E2 be an idempotent symbolic cut of RP(S)2 . Let F = E

be exactly the same matrix but considered as tropical, i.e. an element of T P(S)2 . Let (Fn)n∈N
the sequence of powers of F , computed in the extended tropical semiring T . Let S0, T ∈ P(S)
such that E(S0, T ) = 1. Then the following properties are equivalent:
a) (S0, T ) is unstable in E;
b) (Fn(S0, T ))n∈N is a sequence of integers which converges to ∞.

These tools provide an algebraic solution to the Path problem.

▶ Theorem 22 (Solving the Path problem with cuts). Let S0 ∈ P(S) be a non-empty set
of states and w0 be the symbolic configuration with ω on coordinates in S0 and 0 elsewhere.
The following statements are equivalent:

(i) the answer to the Path problem in the arena W with initial configuration w0 and
final states F is positive;

(ii) the subset of N ∪ {∞}

Z =
{

min
s∈S0

M({s}, S \ F ),M ∈ CM

}
(5)

contains ∞ or is infinite;
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(iii) the symbolic cut semigroup contains an element M ∈ CR such that:

min
s∈S0

M({s}, S \ F ) ≥ ω .

Sketch of proof. The equivalence between (i) and (ii) relies on the idea introduced in [4]:
exploit the max-flow min-cut duality in order to caracterise the existence of flows carrying an
arbitrary amount of tokens as the unboundedness of minimal cuts computed by a distance
automaton.

For the equivalence between (ii) and (iii), the case where ∞ ∈ Z is easy to tackle, this is
the specific case where a single fixed path can carry an unbounded number of tokens. The
case where Z is infinite is solved using a direct pick-up from Simon’s toolbox: an application
of Simon’s tropical unboundedness theorem [16, Theorem 12] to our semigroups.

▶ Theorem 23 (Simon’s tropical unboundedness theorem applied to the cut semigroups). Let
S0, T ∈ P(S). The following statements are equivalent:
(a) the integer-valued coefficients of cuts at coordinates (S0, T ) are unbounded, i.e., {M(S0, T ) |

M ∈ CM} is infinite;
(b) there is a cut M ∈ CR whose coefficient at the coordinate (S0, T ) is ω, i.e., ∃M ∈

CR,M(S0, T ) = ω.
This shows the equivalence between (ii) and (iii) in case Z does not contain ∞. ◀

Theorem 22 above provides a doubly-exponential algorithm for the Path problem with
largest constant 1: compute CR and look for an element satisfying the condition (iii). Using
a non-deterministic guess, the complexity can even be reduced to EXPSPACE, following a
common argument on the maximal length of strictly decreasing chains of J -classes (see [10]
for more details). The next section provides a way to check condition (iii) more efficiently:
instead of computing explicitely the (big) symbolic cut semigroup CR, a smaller semigroup,
called the flow semigroup, is computed in EXPTIME.

6 An EXPTIME algorithm to solve the Path problem with largest
constant 1

In this section we introduced yet another algebraic structure, called the flow semigroup,
which is the key to obtain our EXPTIME complexity upper bound.

The symbolic mincut semigroup CR is the central finite object in the proof of decidability
of the Path problem with largest constant 1 (cf. Theorem 22). However CR does contain a
lot of redundant information. The flow semigroup is more compact. The two semigroups do
run on different gears: whereas CR is based on the minmax semiring R, the flow semigroup
FR is based on the maxmin semiring R̄.

▶ Definition 24 (flow semigroup). The flow semigroup, denoted FR, is the least sub-semigroup
of R̄S×S which contains the set F of action flows and is stable by the iteration operation,
defined as follows. Let e = e2 be an idempotent flow of FR. A pair (s, t) ∈ S2 such that
e(s, t) = 1 is unstable in e if there exists s0, t0 ∈ S such that

e(s, s0) ≥ ω ∧ e(s0, t0) = 1 ∧ e(t0, t) ≥ ω .

it is called stable otherwise. Then the iteration of e, denoted e♯, is defined by

e♯(s, t) =


e(s, t) if e(s, t) ∈ {0, ω,∞}
1 if e(s, t) = 1 and (s, t) is stable in e

ω if e(s, t) = 1 and (s, t) is unstable in e.
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There is a duality between flows and cuts, whose basis is Definition 18, and which is
further developped in the next lemma.

▶ Lemma 25 (duality between flows and cuts). For every flow f ∈ R̄S2 and cut M ∈ RP(S)2 ,
fM(f) = f and M(fM ) = M . The symbolic cut semigroup and the flow semigroup are dual
from each other:

FR = {fM ,M ∈ CR} (6)
CR = {Mf , f ∈ FR} . (7)

This duality is the key to solve the Path problem with largest constant 1 using the flow
semigroup.

▶ Theorem 26 (Solving the Path problem with largest constant 1 with flows). Let S0 ∈ P(S)
a non empty set of states. Denote w0 the symbolic configuration with ω on coordinates of S0
and 0 elsewhere. The following statements are equivalent:

(i) the answer to the Path problem with largest constant 1 in the arena W with initial
configuration w0 and final states F is positive;

(ii) the flow semigroup FR contains a flow f such that:

∀s ∈ S0,∃t ∈ F, f(s, t) ≥ ω .

Proof. According to Lemma 25, the condition (iii) of Theorem 22 is equivalent to the
condition (ii) of the present theorem. ◀

Condition (ii) is pretty easy to check algorithmically, as a consequence:

▶ Theorem 27. The Path problem with largest constant 1can be solved in exponential
time in the number of states |S|.

Proof. It is enough to compute the flow semigroup FR, according to Theorem 26. This
computation performs basic algebraic operations on finite matrices in FR, a single multiplic-
ation or iteration operation is performed in polynomial time. There are at most 4|S|2 such
matrices, thus the computation of FR can be performed in EXPTIME. ◀

7 Lower bound

An exponential time lower bound for the Random population control problem can be
shown by reduction from countdown games, as follows.

▶ Definition 28. A Countdown Game is given by a directed graph G = (V,E), where edges
carry positive integer weights, E ⊆ (V × N>0 × V ). For an initial pair (v, c0) ∈ V × N of
a vertex and a number, two opposing players (Player 1 and 2) alternatingly determine a
sequence of such pairs as follows. In each round, from (v, c), Player 1 picks a number d ≤ c
such that E contains at least one edge (v, d, v′); then Player 2 picks one such edge and the
game continues from (v′, c−d). Player 1 wins the game iff the play reaches a pair in V ×{0}.

Determining the winner of a Countdown Game, where all constants are given in binary,
is EXPTIME-complere [9]. We state the lower bound and a sketch of the construction. The
full proof is detailed in Appendix A.

▶ Theorem 29. The Random population control problem is EXPTIME-hard.



H. Gimbert, C. Mascle, P. Totzke XX:15

Proof sketch. By reduction from solving Countdown games. First observe that the number
of turns in a Countdown Game cannot exceed the initial value of the counter, as the initial
counter value decreases at each turn. Thus, if Player 2 has a winning strategy, choosing
actions at random yields a positive probability of applying that strategy, hence a positive
probability of winning. Therefore, Player 1 wins the initial game if, and only if, she wins
with probability one against a randomized adversary.

The main idea for our further construction is to require Controller, who impersonates
Player 1, to move tokens one-by-one away from a waiting state, first into the control graph
of the Countdown game, and ultimately into the target. To avoid a loss in the intermediate
phase, she needs to win an instance of the game against a randomizing opponent. This is
enforced using a combination of gadgets, including two binary counters that can effectively
test for zero, be set to specific numbers, and that are set up so that they can decrement at the
same rate. These are used to hold the global integral value of the game n, and an auxiliary
counter holding the value d chosen by Player 2. Controller is compelled to reduce them
both and can only continue once the auxiliary counter is exhausted. She can only afford to
safely end the simulation of the game if the first counter holds value 0. As a result, Player 1
has a winning strategy for the two-player Countdown Game if, and only if, Controller can
synchronize the n-fold product of the constructed MDP for all n. ◀

8 Conclusion

We showed that the Random population control problem is EXPTIME-complete.
There are two main ingredients for the upper-bound. First, we establish that it is possible
to win the population MDP while staying in a part of the winning region that has low
descriptive complexity, in the sense of Theorem 7. This is the key to define an algorithm
(Algorithm 1) to solve the Random population control problem using an exponential
number of calls to an oracle solving the Path problem with largest constant 1. Second, we
developed new algebraic tools that allow to solve the Path problem with largest constant 1
in time exponential in the number of states of the MDP (Theorem 27). The upper-bound is
optimal: the Random population control problem is EXPTIME-hard (Theorem 29).

These results shed new light on parameterized control and pave the way to further positive
results with more ambitious objectives. There is hope, for example, to use the toolset of the
present paper to cope with a generalized version of the explorability problem, where infinite
executions have to satisfy ω-regular conditions.

Further natural extensions of this work concerns qualitative (as opposed to almost-sure)
guarantees, or identifying cases where synchronization can be fast. In practical applications,
the requirement that every token should be synchronized with probability 1 may be considered
too strong and we may be after less strict, quantitative constraints. For instance, one may
want to ensure that a lower-bounded proportion of tokens are synchronized, or with lower-
bounded probability below 1.

Even in simple positive instances, the expected time to synchronize all tokens can be
exponential in the number of tokens. It is currently open if one can decide the existence of a
strategy that requires at most poly-logarithmic (resp. polynomial) time.
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Figure 4 The waiting (on left) and the control gadgets (on right). Edges labelled by ΣX are
shorthand for several edges, one for each action in ΣX . All but the depicted actions are daemonic.

A Lower Bound

In this section we show the lower bound for our main complexity result.

▶ Theorem 29. The Random population control problem is EXPTIME-hard.

A.1 Countdown Games
A Countdown Game is given by a directed graph G = (V,E), where edges carry positive
integer weights, E ⊆ (V × N>0 × V ). For an initial pair (v, c0) ∈ V × N of a vertex and a
number, two opposing players (Player 1 and 2) alternatingly determine a sequence of such
pairs as follows. In each round, from (v, c), Player 1 picks a number d ≤ c such that E
contains at least one edge (v, d, v′); then Player 2 picks one such edge and the game continues
from (v′, c− d). Player 1 wins the game iff the play reaches a pair in V × {0}.

CountdownGame is the decision problem which asks if Player 1 has a strategy to win a
given game for a given initial pair (v0, c0). All constants in the input are written in binary.

▶ Proposition 30 (Thm. 4.5 in [9]). CountdownGame is EXPTIME-complete.

A.2 The Reduction
In order to reduce CountdownGame to Random population control problemwe
first observe that the number of turns in a Countdown Game cannot exceed the initial value
of the counter, as the initial counter value decreases at each turn. Thus, if Player 2 has a
winning strategy, choosing actions at random yields a positive probability of applying that
strategy, hence a positive probability of winning. Therefore Player 1 wins the initial game if,
and only if, she wins with probability one against a randomized adversary.

The main idea for our further construction is to require Player 1 to move components
one-by-one away from a waiting state, first into the control graph of the Countdown Game,
and ultimately into the goal. To avoid a loss in the intermediate phase she needs to win an
instance of that game against a randomizing opponent. This is enforced using a combination
of gadgets, including two binary counters that can effectively test for zero, be set to specific
numbers, and that are set up so that they can decrement at the same rate. As a result,
Player 1 has a winning strategy for the two-player Countdown Game if, and only if, the
controller can synchronize the n-fold product of the constructed MDP for all n.

For a given Countdown Game G with an initial pair (v0, c0) we construct an MDP M as
follows. We write that action a takes state s to successor t to mean that δ(s, a)(t) > 0.

A state s is marked in a configuration w if at least one token occupies it: ∃t.w(t) > 0.
Whenever action a takes state s only back to itself we say that s ignores a. There are states
Heaven (the target) and Hell which ignore all actions. For a given state s, an action a is
angelic if it takes s only to Heaven, and daemonic if it takes s to Hell. An action a is safe
in a configuration if it is not daemonic for any marked state (in any gadget).
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Besides the special states Heaven and Hell, M contains several gadgets described below.

Waiting. The waiting gadget has two states Wait and Ready which react to the action wait
as depicted in Figure 4 (left). Whenever a configuration marks one of these states, a strategy
that continuously plays wait will almost-surely reach a configuration in which exactly one
component marks Ready.

A special action go (to indicate successful isolation of one component) takes Ready to
the initial state v0 of the game G. All other actions (in gadgets described below) are ignored.
This is similar to what happens in Example 3.

Game. The game G = (G,E) is directly interpreted as MDP: For every edge (s, d, s′) ∈ E
there is an action (s, d) which takes s to s′ and which is daemonic for all states s′ ̸= s.

The action win is angelic for every state of G. All other actions are ignored.

Binary Counters. A (k-bit) Counter consists of states (i:j) for all 0 ≤ i < k and j ∈ {0, 1}.
For every bit i there is a decrement action (deci) which

takes (j:0) only to (j:1) for all 0 ≤ j < i,
takes (i:1) only to (i:0),
is daemonic for (i:0), and
is ignored by all (j:l), for all i < j and l ∈ {0, 1}.

We say that a configuration holds the number c < 2k in this counter if it marks those
states that represent the binary expansion of c: for all 0 ≤ i ≤ k − 1, state (i:j) is marked
iff the ith bit in the binary expansion of c is j. An action a sets the counter to number d if
for all 0 ≤ i < k, it takes (i:0) to only (i:j) where j ∈ {0, 1} is the ith bit in the binary
expansion of d, and is daemonic for all (i:1) (to ensure that the counter can only be set if
it holds 0).

Additionally, for every bit i the gadget has an error action errori, which is daemonic for
(i:0) and (i:1), and angelic for every other state (of M). These actions can be used to
quickly synchronize any configuration in which the counter is not correctly initialized, i.e.,
does not hold a number. See Figure 5 for a depiction of a 4-bit counter.

The MDPM will contain two distinct counter gadgets. A main counter MC has log2(n0)
bits to hold possible counter values of the Countdown Game. An auxiliary counter AC has
log2(dmax) many bits to hold the largest edge weight dmax in G. These have distinct sets of
states and actions, so for clarity, we write C.x to refer to state (or action) x in gadget C.
We connect some new actions to these two counters as follows.

The action go sets MC to n0; this ensures that MC holds n0 when starting to simulate G.
The action win is daemonic for every state MC.(i:1). This enforces that the MC must
hold 0 when a strategy claims Player 1 wins G.
Any action (v, d) ∈ ΣG sets AC to d;
The action next is daemonic for every state AC.(i:1). This enforces that a strategy
must first count down from d to 0 before it can simulate the next move in G.

Control. The control gadget will enforce that a synchronizing strategy proposes actions
in a proper order; see Figure 4. It consists of states W,G,A,B, and contains actions of all
gadgets above (including go, win, next) and a new error action, which is angelic for all
states except W , for which it is daemonic. All omitted edges in Figure 4 are daemonic.
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Figure 5 A (4-bit) Binary Counter. Not displayed are edges labelled by (deci) that make the
respective actions daemonic for state (i:0), and error actions errori, which are daemonic for (i:0)
and (i:1), for all bits i ∈ {0, 1, 2, 3}.

Start/End. To complete the construction of M, we introduce an initial state Init and
actions start and end. The action start takes Init to Wait (Waiting gadget), W (Control
gadget), and all (i:0) states of counters AC and MC. It is daemonic for every other state.

The action end is daemonic for Wait and Ready, and angelic for every other state in M.

▶ Theorem 31. M(n) is synchronizable for all n ∈ N iff Player 1 wins G.

Proof. Suppose Player 1 wins the game G. Fix n. Recall that in M(n) all components of
the initial configuration mark Init. A synchronizing strategy proceeds as follows:

Play start to initialize the Waiting and Control gadgets, and to set AC and MC to 0. If
any of the gadgets is not correctly initialized afterwards, play the respective error action
to win directly. For instance, if W is unmarked, play error to synchronize.
Reduce the number of components marking Wait one by one until a configuration is
reached in which Wait is not marked. Once this is true, play end to synchronize.
To reduce the number of components marking Wait, isolate one of them, and move it to
Heaven by simulating the Countdown Game:

1. Play wait until only a single component marks Ready, then play go. This will mark v0
in the game gadget and sets MC to n0. Recall that (v0, n0) is the initial pair of G.

2. Simulate rounds of the game G: assume state v in the game gadget is marked and
the counter MC holds c, then let d be the the number Player 1 plays to win from the
pair (v, c) in G. Play (v, d). This action will set AC to d. Alternate between (safe)
decrement actions in AC and AB until they hold 0 and c− d, respectively. Play next.

3. The above simulation of rounds in G is repeated until both AC and AB hold 0, by
assumption that Player 1 wins G this is possible. At this point it is safe to play win.

Conversely, assume that Player 1 cannot win G. Suppose that after the (only possible)
initial move start, all gadgets are correctly initialized. Clearly, for every n, this event has
strictly positive probability. We argue that no strategy can synchronize such a configuration.
Indeed, a successful strategy had to play a sequence in wait∗ · go first, followed by actions in
(ΣG · (ΣAC · ΣMC · next)∗)∗, by construction of the control gadget. If after playing go, more
than one component mark v0, there is a non-zero chance that these will diverge, making
subsequent actions in ΣG unsafe. If exactly one component marks v0 then the second sequence
of actions (assuming all actions are safe) corresponds to a play of G. This inevitably leads to
a configuration in which counter MC holds 0 and the control enforces that the next action is
in ΣMC . But any such action will be daemonic for some state in MC and thus not be safe.
We conclude that every strategy will lead to a configuration that at least one component
marks Hell and thus cannot be synchronized. ◀

Theorem 29 follows immediately from Proposition 30 and Theorem 31.
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B Hard Cases

Throughout this section, we construct an automata relying on the the language introduced
in Appendix A.2. Specifically, a state s is marked in a configuration w if at least one token
occupies it: ∃t.w(t) > 0. Whenever action an a takes state s only back to itself we say that
s ignores a. There are states Heaven (the target) and Hell which ignore all actions. For a
given state s, an action a is angelic if it takes s only to Heaven, and daemonic if it takes s
to Hell. An action a is safe in a configuration if it is not daemonic for any marked state (in
any gadget).

B.1 A Butterfly
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Figure 6 An automaton where Controller can synchronize any finite number of tokens but no
deterministic and k-definable winning strategy exists.

Consider now the example in Figure 6. We will set it up so that initially, all tokens are
randomly distributed onto states L and R, and Controller must eventually place all of them
on only on one side of the graph. To do so,

add an initial action which moves tokens from an initial state to L and R and is daemonic
everywhere else;
add a fresh winning action that is angelic for all red states and daemonic for all green
states; and
add a fresh winning action that is angelic for all green states and daemonic for all red
states.

Idea Each round starts with all tokens on L and R. Controller stepwise proposes a sequence
of actions, either in l+l1[l2l3] or r+r1[r2r3]. Notice that until one side is empty, these are
the only safe sequences to play. At the end of each round, all tokens (except possibly one)
will switch sides. Controller can chose to isolate one token and keep it on its side, thereby
getting closer to her goal of moving everyone to one side. The relevant decisions to make are

1. whether to go left or right at the start of a round
2. when to stop playing l (or r, resp.)

Recall that a strategy is K-definable if it bases all decision only on a {0, 1, ω} abstraction.
That is, it can be given as mapping from the finitely many symbolic configurations with
constants in {0, 1, . . . , ω}, to distributions over actions.
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(b) A bottleneck with capacity 2k.

Figure 7 Depiction of bottleneck gadgets using actions in Σ = {a, b, c, d, e}. Each starts in a
state s and action b, and ends in a target state t with action e.

▶ Lemma 32. The example is a positive instance of Random population control
problem. However, for every k ≥ 0, every deterministic and k-definable strategy is losing.

Proof. Referring to the revevant decisions above, a winning strategy is to 1. always pick the
smaller side and 2. play l (or r) until exactly one token is isolated.

Consider a deterministic and k-definable strategy. If for 2., a strategy does not separate
exactly one token, then the next round will start in an equivalent position. For 1., by virtue
of being determinisctic and k-definable, our strategy must either always play left or right,
with probability one, because the start of a round will place ω’s onto L and R and 0 elsewhere.
After two rounds one necessarily ends in an equivalent configuration. ◀

B.2 A Chain of Bottlenecks
One central result of this work, Theorem 7, implies that a variant of this conjecture holds.
Namely, for a positive instance of the population control problem with K many states, there
exists a K-definable strategy: one that gives the same distribution over actions from all
configurations that agree on token counts up to K. The example in Appendix B.1 shows that
such strategies still need to randomize. Here, we show that for every K, one can construct a
positive instance of the population control problem in which all < K-definable strategies are
not winning. Our construction to show this uses the bottleneck gadgets above, in a way that
prevents winning strategies that are 1-definable.

We present gadgets that we call bottlenecks with a fixed capacity k. These are designed
so that Controller can “pass through” up to k many tokens, but not more, meaning that
each such gadget is a negative instance of the random population control problem.

Bottlenecks Consider first the automaton in part Figure 7(a). One readily sees that it is a
negative instance of the population control problem (both in antagonistic and stochastics
settings). Controller can however safely move one token from start s to the target t.

Figure 7(b) shows how to construct bottlenecks of arbitrary finite capacity. To do this,
we replace the the red (blue) edge by a bottleneck of capacity k so that 1) all its actions are
distinct to, and ignored outside of, that red (blue) gadget. 2) the global actions a, b, e are
daemonic for all but the last state of the red (blue) gadget. For instance, for k = 2, both red
and blue edges are replaced by disjoint copies of the capacity-1 bottleneck in Figure 7(a).

▶ Lemma 33. Controller can simultaneously move 2k, but not more, tokens through a
bottleneck of capacity 2k.
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Proof. She can do so by playing b and then repeating actions a until exactly k tokens reside
on states l and r, respectively. She can then use the actions in the red (blue) gadgets to
move these tokens to the central state c. Only then is it safe to play the action e and move
them all to the target. Note that, no action other than a is safe to play until tokens are
equally split among states l, r. Indeed, the action a is daemonic outside of these two states.
Therefore, once an action from the red or blue gadgets is played, further redistributing tokens
betweek l and r is impossible. From that point onwards, the only way to move all tokens to
the target t is to move them through the red (blue) gadgets. ◀

It is natural to conjecture that for any positive instance of the population control problem
and N ∈ N , Controller has a winning strategy that considers only which states currently
host 0, 1, or more tokens. After all, such strategies are sufficient to isolate and move a single
token as in the canonical example in Figure 2 and if a gadget is traversable for k tokens then
also, with the same strategy, for strictly fewer tokens.

A length-K chain of bottlenecks with capacity 1 We join K many copies of the gadget
depicted in Figure 8 so that for all 1 ≤ n < K − 1, the right-most state of the n-th copy is
the left-most state of the (n + 1)-th copy. he initial state is q1, the start of the first copy
at level one, and the ultimate target state is qK+1, the last state in the K-th copy. Notice
that each member of the chain is an instance of Figure 2 followed by a bottleneck of capacity
one (Figure 7(a)), and operates on its own alphabet Σn of actions. We further impose the
following constraints.
1. In all states with index n, all actions in Σ<n can be ignored and all actions bm, em with

m > n are daemonic.
2. In states sn, action en is daemonic and in state cn, action bn is daemonic.
3. In states qn, actions bm, for m ≤ n, lead back to q1 (indicated by the blue arrow).

▷ Claim 34. To send even one token completely through the n-th gadget, Controller has to
gather all tokens in state qn twice: once upon entering and once upon exiting the bottleneck.

Notice that, when moving a large number of tokens from q0 to qK+1, she will reach at
least one configuration with exactly one token on every state ci for 0 ≤ i < K, at which point
she choses action e0. Indeed, to move a token from cK−1 to the target, she needs to play
action eK−1, which is blocked until all other tokens are moved up to the final gadget. This
is done by untimately playing eK−2 many times, which is similarly blocked by the presence
of lower-indexed tokens and so on.

A Leaky Chain We describe the input automaton, which has two disjoint parts. The first
is the chain of K many bottlenecks of capacity 1 described just above.

The second part of the construction is a bottleneck of capacity K. This gadget is disjoint
from, and its actions are ignored throughout, the chain of bottlenecks. The purpose of the
capacity-K bottleneck is to recover up to K many tokens and move them back to the initial
state q1 in the chain. The final part in our construction is to add edges from all states cn to
the initial state of the capacity-K bottleneck. This happens on action e0 and is indicated by
the red arrow in Figure 8.

We summarize in the following lemma.

▶ Lemma 35. In the automaton constructed above is a positive instance of the population
control problem: For every N ∈ N , Controller has a strategy to almost-surely move N tokens
from q1 to qK+1.

For N ≥ K, every (K − 1)-definable strategy is losing.
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Figure 8 A member of the chain

Proof. She can win by combining strategies for the individual bottleneck gadgets: push one
token into a chain i, have it wait in state ci while all tokens on lower-indexed states move
back to qn, then move it out. This proceeds recursively and ultimately moves all tokens
to qK+1. On the way following the suggested strategy, she will visit configurations where
all state ci holds at most one token each, and where she next plays action e1, potentially
sending all of these ≤ K tokens to the recovery gadget. If at least one of them follow this
route, she follows the strategy in the K-bottleneck to move these tokens back to s1 and start
over, which is possible by Lemma 33. This shows points 1 (the strategy outlined is winning)
and 2, because Controller cannot avoid placing K tokens into the capacity-K bottleneck and
by Lemma 33.

◀

C Proof of Lemma 14

Let us start by defining flows and cuts. Let R+ be the set of non-negative real numbers, with
an additional maximum element ω. The addition is naturally extended: ω+ r = r+ ω for all
r ∈ R+.

Given a finite directed graph G = (V,E), a capacity function c : V → R+, and two
vertices src and tgt (a source and a target), we define a flow as follows. It is a function
f : E → R+ such that for all v ∈ V \ {s, t}, we have∑

(v−,v)∈E

f(v−, v) =
∑

(v,v+)∈E

f(v, v+) ≤ c(v).

The value of the flow is then defined as
∑

(src,v)∈E f(src, v).
A cut is a set M of vertices such that every path from src to tgt goes through one of

those vertices. Its value is
∑

v∈M c(v).
The classic max-flow min-cut theorem states that the maximum value of a flow is equal

to the minimal value of a cut [8].
We state it here with the capacities on the vertices, as it is convenient for the next proof.

However, it is usually defined with capacities on the edges c : E → N. The constraints on
the flow is then

∑
(v−,v)∈E f(v−, v) =

∑
(v−,v)∈E f(v−, v) for all v ∈ V and f(e) ≤ c(e) for

all e ∈ E. A cut is then defined as a set of edges, and the theorem is stated analogously.
For the proofs of the results of Sections 5 and 6 we will use that second convention.
Finally, another classic result is the integer flow theorem. It says that if all capacities in

the graph are integers, then there is an integer maximal flow f : E → N. This is a by-product
of the Ford-Fulkerson algorithm [8].

▶ Lemma 14 (Funneling the herd, except for a few loners). Let Tf be a finite set of tokens, F
a finite union of ideals tracking Tf and W a population arena tracking Tf that is winning
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with respect to F . For every configuration w0 in W0,ω,Tf
there exists a path in W0,1,ω,Tf

from
w0 to F .

Proof. As W is a population arena tracking Tf , it is the union of finitely many ideals tracking
Tf . We call those the ideal decomposition of W . Let B be the highest number used to define
those ideals.

By definition, W0,ω,Tf
is also a finite union of ideals tracking Tf . Let I = vf + w↓ with

w ∈ {0, ω}S be one of them. Let Sω be the set of states s such that w(s) = ω. Define I[N ]
as a configuration obtained by taking vf and adding N tokens on each state of Sω. We only
need to show that for all N we have a path from I[N ] to F in W0,1,ω,Tf

. Let d be the number
of states s such that w(s) = ω. Let N ∈ N, we show that such a path exists.

We have I[B · N ] ∈ I ⊆ W , hence there is a path w0
a1−→ w1

a2−→ · · · an−−→ wn with
w0 = I[B ·N ] and wn ∈ F . Consider the following directed weighted graph G. Its vertices
are S × {1, . . . , n}, plus a source src and a target tgt. Its edges are so that there is an edge
from (s, j) to (s′, j+1) whenever there exists t ∈ T \Tf such that wj(t) = s and wj+1(t) = s′.
We add edges from src to (s, 0) and from (s, n) to tgt for all s ∈ S.

We assign weights to all vertices of G as follows: for all j ∈ {0, . . . , n − 1}, we pick
a maximal ideal tracking Tf (vj + wj , aj+1)↓ in the ideal decomposition of W such that
(wj , aj+1) is in it. For j = n, we pick a maximal ideal tracking Tf (vn + wn)↓ in F in which
wn is. For all state s and index j, the vertex (s, j) is assigned weight wj(s). Furthermore,
for all s ∈ S, (s, 0) has weight B ·N if w(s) = ω and 0 otherwise. Both src and tgt have
weight ω.

The trajectories of tokens outside of Tf in the path w0
a1−→ w1

a2−→ · · · an−−→ wn naturally
define a flow ϕ from src to tgt in G of capacity dBN : for each edge e = ((s, j − 1), (s′, j))
we define ϕ(e) as the number of tokens of T \ Tf going from s to s′ at the jth step. We also
define ϕ((src, (s, 0))) = BN for all s ∈ Sω and 0 otherwise. For all s ∈ S, ϕ(((s, n), tgt)) is
the number of tokens of T \ Tf in s at the end of the path. This flow satisfies the capacity
constraints of G by definition of the wj .

Let G1 be the graph identical to G except that:
the weight of (s, 0) is N if s ∈ Sω and 0 otherwise.
every other positive finite weight has been replaced by 1

We claim that G1 has an integer flow of capacity dN . Suppose the contrary, then by the
max-flow min-cut theorem there is a cut in G1 of weight < dn. Then, as the weight of a
vertex in G is always at most B times the one in G1, that same cut has weight < dBN in G,
contradicting the existence of a flow of value dBN . By contradiction, we obtain that G1 has
a flow of value dN . This value is optimal as {(s, 0) | s ∈ S} is a cut of weight dN .

By the integer flow theorem, as all weights over G1 are integers, it has an optimal integer
flow. This integer flow defines a path from I[N ]: at step j, the tokens of Tf move in the
same way as in the previous path. The number of other tokens sent from state s to s′ is
given by the flow between (s, j − 1) and (s, j) in the graph. It stays in W as for all j, the
jth commit is constrained to belong to the ideal (vj−1 + wj−1, aj)↓ by the weights. In fact,
as every positive finite coordinate has been replaced by 1, the jth commit belongs to a
smaller ideal, with a finite base made of tokens of Tf and tokens that are alone in their state.
Consequently, it belongs to W0,1,ω,Tf

.
It ends in F as the weights of (s, n)s∈S constraint the final configuration to be in

vn + wn↓ ⊆ F .
This concludes the proof. ◀



XX:26 Optimally Controlling a Random Population

D Proof of Lemma 15

▶ Definition 36 (Meetings). We say that two tokens t1, t2 ∈ T meet in a configuration
w ∈ ST if they are placed on the same state i.e. if w(t1) = w(t2).

▶ Lemma 15 (Isolation Lemma). Fix a finite set of tokens Tf , a population arena W , and
a configuration w0 of W such that Tf is a finite base of w0 in W . Denote Z the set of
configurations in which a strict subset of Tf is a finite base.

Assume that W is winning with respect to the set of configurations with a finite base of
size < |Tf |.

Then there is a strategy σ in W which, when starting from w0:
guarantees to reach Z almost-surely, and
guarantees that the tokens from Tf never meet the other ones until Z is reached.

Proof. As W is a population arena, it is a finite union of ideals. As a consequence, there
exists a bound B such that W = W0,...,B,ω.

Denote Tω the set of tokens in w0 which are not in Tf , and Sω the states occupied in
w0 by tokens in Tω. By hypothesis, Sω is an ω-base of w0 in W . Let M ∈ N, and wM the
configuration obtained from w0 by adding M tokens for each token in Tω, on the state of
that token. We write TM for the set of tokens on Sω in wM , and call them the herd tokens
of wM .

We say a token t ∈ Tf ∪ TM is saved in a configuration if it is in an ω-base of that
configuration. By definition of B, while a token t ∈ Tf ∪ TM is not saved then it shares its
state with at most B − 1 other tokens. Denote Z ′ the set of configurations where one of
the tokens in Tf is saved. Then Z ⊆ Z ′. Note that this inclusion may be strict. Indeed, it
might be the case that there is a finite base not containing t but containing some tokens of
Tω which have “left the herd”.

Let σ be a safe random walk in W , which guarantees to reach Z almost-surely from
everywhere in W , and thus in particular to reach Z ′ almost-surely.

Let t be one of the stray sheep of Tf . When t meets one or more tokens of TM , we call
this event a meeting. Denote V the random variable counting the number of different herd
tokens met by t before reaching Z ′.

We show that the expected value of V is finite and upper-bounded independently of M .
To do so, we argue that the probability that V is above B · |S| · ℓ decreases exponentially
with ℓ.

▷ Claim 37. The probability that V ≥ B · |S| · ℓ is at most (1− 1/B)ℓ.

Proof. First, we show that, every time t meets some herd tokens of wM , there is probability
at most 1− 1/B that one of the tokens met by t is saved before t is. Until Z ′ is reached, no
more than B − 1 other tokens can share the same state than t.

Since W is a population arena, the random walk σ only depends on the number of tokens
on every state, not their exact identity. In particular, the random walk σ does not make a
difference between t and the herd tokens meeting t. After a meeting, all of them thus have
the same probability measure on their possible future trajectories (and btw this measure only
depends on the current number of tokens in each state). Since σ guarantees to almost-surely
reach Z someday, all of the herd tokens met by t will almost-surely be saved someday, thus t
as well. By symmetry, all of them have the same probability to be among the first to be
saved, thus the probability that none of the ≤ B − 1 herd tokens is saved before t is at least
1/B.
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Now, look at those finite pathes where t meets at least B|S| different herd tokens, and
still t is not saved. By definition of B, among those B|S| herd tokens, at least 1 has been
saved. Thus, at every moment the probability that t meets B|S| different herd tokens in the
future is at most 1− 1/B, hence

Pσ,wM
(V ≥ B · |S| · ℓ) ≤ (1− 1/B)ℓ . (8)

This completes the proof of Claim 37. ◁

Consequently, we can bound the expected value of V independently of M .

Eσ,wM
[V ] ≤

∑
ℓ∈N

B · |S| · (ℓ+ 1) · (1− 1/B)ℓ = B3 · |S| .

Let h be a herd token, we can then bound its probability to meet t before reaching
Z ′. As h starts in the same state as at least M other herd tokens, and σ treats all tokens
symmetrically, all those tokens have the same probability p of meeting t. As a result, the
expected number of them which meet t is ≥ M · p. On the other hand, this number is
bounded by the expected total number of meetings between t and herd tokens. We obtain
Mp ≤ B3 · |S| and thus p ≤ B3|S|

M . As a result, the probability that a herd token h meets t
before t is saved converges to 0 as M grows.

Recall that Tω denotes the set of tokens in Sω in w0, and TM the set of tokens in Sω

in wM . The safe random walk σM from wM can be projected onto a strategy from w0 by
simulating the additional tokens in TM \Tω. The resulting strategy is randomized. According
to (8), the probability that a token in Tω meets a token in Tf before Z ′ occurs can be made
arbitrarily small, by increasing the number M of tokens being simulated, while guaranteeing
at the same time that Z ′ occurs almost-surely.

Since the set of configurations reachable from w0 is finite, and the corresponding condition
is a reachability condition under safety constraint, the probability can be turned to 0: there
is a memoryless strategy that achieves an optimal probability (i.e. 1) of reaching Z ′ [13]
without any meeting between Tf and other tokens. Hence there is a strategy to reach Z ′

almost-surely, while keeping the tokens in Tf isolated. We have shown that there exists a
strategy to reach Z ′ almost-surely while making sure that no token of Tf meets a token
outside Tf .

We have not quite proven our goal: when starting the play in w0 we can keep the tokens
in Tf isolated and reach almost-surely Z ′, but what about reaching Z? The inclusion Z ⊆ Z ′

might be strict because when one of the stray sheep t in Tf is saved, it might be that other
sheep from the herd prevent a strict subset of Tf \ {t} to be a finite base.

Let T ′
f the set of tokens that share their state with ≤ B other tokens when t is saved. By

definition, there are at most B|S| tokens in T ′
f . Call the tokens of TM ∩T ′

f the blockers. Then
the expected number of blockers is ≤ B|S|. But then, by symmetry, the probability that a
given token from Tω becomes a blocker is less than B|S|/M . Furthermore, by definition of
B, the non-blockers must form an ω-base of the configuration reached when t is saved. Thus,
by increasing M and following σM , we can have a probability arbitrarily close to 1 that the
configuration when we reach Z ′ has a finite base with no tokens of Tω.

Using the same argument as before, we obtain that from w0 we can make the probability
that a token in Tω is a blocker as close to 0 as we want, while ensuring reaching Z ′ and
keeping the tokens in Tf isolated.

Again, since the set of configurations reachable from w0 in W is a finite MDP, we can
make this probability 0, in which case reaching Z ′ is equivalent to reaching Z. We have
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shown that there exists a strategy to reach Z almost surely while making sure that tokens of
Tf never meet tokens outside Tf before reaching Z. ◀

E Proof of Theorem 7

▶ Theorem 7 (Almost-surely winning with a few stray sheep). Let W be the arena of almost-
surely winning configurations and commits. There exists a sub-arena Y of W such that:

Y contains W0,ω; and
Y is |S|-definable; and
Y is a winning arena for reaching F .
In this section we combine the funneling lemma (Lemma 14) and the isolation lemma

(Lemma 15) in order to almost-surely gather the stray sheep back in the herd, while keeping
the total number of stray sheep below some bound.

In order to articulate those lemmas together, we need the following definitions. Throughout
the proofs, we track specific subsets of tokens. However, we sometimes need to re-anonymize
some of them: for instance, to apply Lemma 15, we need W to be a population arena, which
does not track any specific token. This is why we introduce the following closure operation,
which closes an arena under renaming and removing tokens (apart from a set Tf ), making it
a population arena (tracking Tf ).

▶ Definition 38. Let W be a set of configurations and commits and Tf a finite set of tokens.
We define WTf as its closure under renaming and deleting tokens outside Tf . When Tf = ∅
we simply write W .

Formally, for all configuration w ∈W we define ϕTf
(w) as the pair (vf , w) ∈ ST × NS,

where vf is the projection of w on Tf and w counts the number of other tokens in each state.
Then we define WTf =

⋃
(vf ,w)∈ϕTf

(W ) (vf , w)↓.

▶ Lemma 39. Let Tf be a finite set of tokens, let F be a union of ideals tracking Tf . Let W
be a winning arena with respect to F . Then W

Tf is a population arena tracking Tf , and is
winning with respect to F .

Proof. The fact that WTf is an arena is straightforward. Dickson’s lemma implies that the
set

⋃
(vf ,w)∈ϕTf

(W ) (vf , w)↓ is in fact a finite union of ideals tracking Tf [6]. There exists a

finite set V ⊆ NS such that WTf =
⋃

(vf ,w)∈V (vf , w)↓.
Consequently, WTf is a population arena tracking Tf . It is winning as a consequence

of the fact that F is a union of ideals tracking Tf , and is thus closed under renaming and
deleting tokens outside Tf .

◀

We will now tackle the induction on the number of groups of stray sheep that lets us
prove Theorem 7. In all that follows we call a set of tokens isolated in a configuration w if
every state contains either only tokens of that set or no token of that set.
▶ Remark 40. We can assume without loss of generality that Σ contains a letter □ that
labels a loop on each state of A, and no other transition. Adding that letter clearly does not
affect the answer to the Random population control problem.

▶ Lemma 41 (Induction). Let T1, . . . , Td be disjoint non-empty sets of tokens of size at most
|S|. Let Tf =

⋃d
i=1 Ti. Let I a set of initial configurations containing at least one token of

each Ti. Let F be a finite union of ideals tracking Tf of the form vf + w↓ with w ∈ {0, ω}S.
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Let W a population arena tracking Tf such that:
I ⊆W , and for all w ∈ I, Tf is a finite base of w in W , and
for all w ∈W \ F , for all s and Ti, either w−1(s) ⊆ Ti or w−1(s) ∩ Ti = ∅,and
W is winning with respect to reaching F

Then there exists a winning sub-arena Y of W such that I ⊆ Y and Y = Y0,...,|S|,ω,Tf
.

Proof. We proceed by induction on |S| − d.
Suppose |S| = d. By hypothesis on W , the tokens of T1, . . . , Td occupy disjoint sets of

states in every configuration of W \ F . Furthermore, there is at least one token of each set
and no other token can be on the states they occupy. Hence for all w ∈ W \ F , the only
tokens in w are the ones of T1, . . . , Td, and they each occupy one state. As a consequence,
we have W = W0,...,|S|,ω,Tf

. Hence setting Y = W yields the result.
Now suppose |S| > d. By Lemma 14, for all w0 ∈W0,ω,Tf

there is a path in W from w0
to F along which every commit is in W0,1,ω,Tf

.
Let V be the set of configurations v ∈ W such that there is a non-empty set T v of at

most |S| tokens such that:
Tf ∪ T v is a finite base of v, and
all Ti and T v are isolated in v.

For each v ∈ V , we choose such a set Tv of minimal size. We also define F v the set of
configurations of W with a strict subset of Tf ∪ T v as a finite base.

Note that as all Ti are isolated in every configuration of W \ F , they must be contained
in every finite base of every configuration of W \ F . As a consequence, every configuration
of F v is either in F or has a finite base of the form Tf ∪ T ′ with T ′ ⊊ T v.

▷ Claim 42. For every commit (w, a) in W0,1,ω,Tf
, every successor v of (w, a) is either in F ,

in W0,ω,Tf
or in V .

Proof. First of all, as W0,1,ω,Tf
⊆W and W is an arena, v ∈W .

Suppose v /∈ F , then T1, . . . , Td are isolated in v. Let IT be the set of tokens that
are not in any Ti and that were alone in their state in w. Let T v be the set of tokens of
IT whose state in v only contains tokens of IT . Note that by definition of IT , we have
|T v| ≤ |IT | ≤ |S|.

It remains to show that Tf ∪ T v is a finite base of v in W . As (w, a) ∈ W0,1,ω,Tf
, we

know that T ′
f = IT ∪

⋃d
i=1 Ti is a finite base of (w, a). Let Sω be the set of states containing

tokens outside T ′
f in w. It is an ω-base of (w, a).

Let S′
ω be the set of states reachable from Sω by playing a. As Sω is an ω-base of (w, a),

we can safely play a from any configuration obtained from w by adding tokens in states of Sω.
As we may then get arbitrarily many tokens in each state of S′

ω, it is an ω-base of v in W .
Every token outside T ′

f must end up in S′
ω in v. Consequently, T ′

f is a finite base of v in W .
Furthermore, since v /∈ F , tokens of Tf cannot meet other tokens, hence states containing

tokens of IT either contain only those or are in S′
ω.

If Tf is a finite base of v then v is in W0,ω,Tf
. Otherwise, Tf is not a finite base of v in W

and thus T v ̸= ∅. Then, as Tf ∪ T v is a finite base of v in W , and all Ti and T v are isolated
in v, we have v ∈ V . ◁

Now, for all v ∈ V , we define an arena Y v that allows us to bring back some tokens of
T v in the herd while keeping all Ti and T v isolated.

▷ Claim 43. For all v ∈ V , there is a sub-arena Y v of W such that:
v ∈ Y v
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Y v = Y v
0,...,|S|,ω,Tf ∪T v

a safe random walk in Y v almost-surely reaches F v

T1, . . . , Td, T
v are isolated in every configuration of Y v \ F v

Proof. Observe that F v is a finite union of ideals tracking Tf ∪ T v. As F only contains
configurations of which Tf is a finite base, F ⊆ F v. Furthermore, F v is a subset of the set
F ′ of configurations with a finite base of size < |Tf ∪ T v|. Hence W is also winning for F ′.

Since F ′ is a finite union of ideals, we can apply Lemma 39 with Tf = ∅ to conclude that
W is a population arena and is winning with respect to F ′.

By Lemma 15, there is a strategy to almost-surely reach F v from w while remaining in
W and ensuring that Tf ∪ T v stays isolated while we have not reached F v.

As we stay in W , we furthermore maintain the fact that the groups of tokens T1, . . . , Td

are isolated. As a consequence, T1, , . . . , Td, T
v and the rest of the tokens occupy disjoint sets

of states at all times. We can therefore define R the set of commits reachable from v while
following this strategy. It is clearly an arena. It is a winning arena with respect to reaching
F ′. By Lemma 39, so is W ′Tf ∪T v

. Furthermore, since R ⊆W and W is a population arena
tracking Tf , we have RTf ∪T v

⊆WTf ∪T v

= W .
We apply the induction hypothesis to get a winning sub-arena Y v of R (and of W ) such

that {v} ⊆ Y v and Y v = Y v
0,...,|S|,ω,Tf ∪T v . ◁

Define X = W0,1,ω,Tf
∪

⋃
v∈V Y

v ∪ {(w,□) | w ∈ F}. Note that as v ∈ Y v for all v,
V ⊆ X. The letter □ is given by Remark 40. It is used here to integrate F in Y without
conflicts in definitions (an arena being a set of commits and not configurations).

▷ Claim 44. X is a winning arena with respect to F .

Proof. We start by showing that X is an arena. Let (x, a) ∈ X. If a = □ then the only
successor is x itself. If (x, a) ∈ Y v for some v ∈ V , as Y v is an arena, the successors are all
in Y v. If (x, a) ∈W0,1,ω,Tf

, then by Claim 42 every successor v is in V , and thus in X.
We now show that for all x ∈ X, there is a path from x to F .
First, we now show that for all v ∈ V , there is a path from every configuration of Y v to

F , by strong induction on |Tv|. Let v ∈ V , and x ∈ Y v. As Y v is winning with respect to
F v, there is a path in Y v from y to some configuration z ∈ F v.

If z ∈ F then we are done
If z /∈ F then T1, . . . , Td are isolated in z.

If z ∈W0,ω,Tf
then z ∈ P and there is a path from z to F in P

If z /∈ W0,ω,Tf
then z ∈ V . As z ∈ F v, |T z| < |T v|. We can apply the induction

hypothesis to get a path from z to F .
In both cases we have a path from x to z and from z to F , thus from x to F .

Then, observe that every configuration in W0,1,ω,Tf
is either in F , in V or in W0,ω,Tf

. In
the first case, we are done. In the second case we have already shown the existence of the
path to F , and in the third case we simply apply the fact that P ⊆W0,1,ω,Tf

⊆ Y . ◁

Clearly I ⊆W0,ω,Tf
⊆ P ⊆ Y .

In order to satisfy the condition that Y = Y0,...,|S|,ω,Tf
, we close Y under renaming and

removing tokens outside Tf and downward-closure.
By Lemma 39, we obtain a population arena tracking Tf that is winning for F . Clearly

W0,1,ω,Tf
is closed under those operations. For all v, as Y v = Y v

0,...,|S|,ω,Tf ∪T v , and T v has at
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most |S| elements and is isolated in all of Y v \ F v, the set Y vTf is a union of ideals tracking
Tf with largest constant |S|.

As a result, so is Y . Hence Y = Y0,...,|S|,ω,Tf
. ◀

Proof of Theorem 7. Since W is the winning region, it is the maximal winning arena. As a
consequence, by Lemma 39, we have W = W , hence W is a population arena. We can then
straightforwardly apply Lemma 41 with d = 0 (and Tf = ∅). ◀

F Reduction to the Path problem with upper-bound 1

▶ Lemma 9. There is a computable reduction from the Path problem to the same problem
with largest constant 1. The reduction increases the state space polynomially, when constants
are encoded in unary.

Proof of Lemma 9. We prove that there exists an algorithm which solves the Path problem
in time ≤ 2O(|S|) whenever the largest constant is ≤ |S|. Let (M, I,W, F ) an instance. We
create a new instance (M′, w′

0,W
′
, F

′) whose finite constants are at most 1, whose size is
polynomial in the size of (M, w0,W , F ) , and for which the answer to the Path problem is
the same as for (M, w0,W , F ).

The definition of (M′, w′
0,W

′
, F

′) is as follows. Let K be the sum of the finite coordinates
in w0 (at most |S|2). Let T0 be a set of K tokens. The MDP M′ consists in K + 1 disjoint
copies of M. The initial configuration w′

0 is obtained as follows. On the K first copies of M,
we place exactly 1 token of T0 on one of the state, so that the projection matches the finite
coordinates of w0. On the K+1th copy, we place the ω like in w0. The final configurations F ′

are those whose sum over the different copies is in F . From every anonymous configuration
w′ of M′ one can obtain a configuration w = ϕ(w′) in M by summing up the coordinates in
the different copies. Fix an abstract configuration w in M we denote ψ(w) all the abstract
configurations w′ of M′ such that:

the coordinates of w′ on the K first copies are either 0 or 1; and
the coordinates of w′ on the K + 1th copy are in {0, 1, ω}; and
ϕ(w′↓) ⊆ w↓ .

Remark that there are at most |S|K · 3|S| such configurations. We define W ′ = ψ(W ) and
F ′ = ψ(F ). According to Lemma 14, the answer to the Path problem is the same for
(M′, {w′

0},W ′, F ′) and (M, {w0},W, F ). ◀

▶ Lemma 45. Given a finite set V ⊆ {0, . . . , |S|, ω} of symbolic commits with constants
below |S| and (v, a) ∈ V , one can check, in exponential time in |S|, if there exist a commit
(w, a) ∈ (v, a) and a configuration u /∈ V ↓ with ∆(w, a)(u) > 0.

Proof. Notice that if such configurations w and u exists, then already a small one. Indeed,
let u− a configuration obtained as follows: in every state s ∈ S, if u has more than |S|+ 1
tokens in s, remove every token from s except |S|+ 1 of them. Remove the same tokens from
w to obtain a configuration w−.

As constants in V do not exceed |S|, and as u /∈ V ↓, u− is not in V ↓. As w ∈ V ↓, we
have w− ∈ V ↓

Observe that u− and w− contains at most |S|2 + |S| tokens. We can enumerate triples
w, a, u (up to renaming tokens) with at most |S|2 + |S| tokens in w and u, and check that
they satisfy the conditions, in time |S|O(|S|2). ◀
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G Multi-source flow

We extend the notion of flow (defined in Section C) in a graph G = (V,E) with capacities
c : E → R+ to sets of sources and targets Src, Tgt ⊆ V . Note that we put capacities on the
edges here.

The constraints are adapted naturally: a flow f : E → R+ must be such that for all
v ∈ V \ (Src ∪ Tgt), we have

∑
(v−,v)∈E f(v−, v) =

∑
(v−,v)∈E f(v−, v) and for all e ∈ E,

f(e) ≤ c(e). The value of the flow is defined as minsrc∈Src

∑
(src,v)∈E f(src, v).

In the following sections we will need the following observation. It says that if we have a
weighted graph with d sources, if we can have a flow of N from any individual source, we
can have a flow of N/d from all sources simultaneously.

As a consequence, if we can have arbitrarily large flows from each of the sources, then
there are arbitrarily large flows for the whole set of sources.

▶ Lemma 46. Let G = (V,E) be a graph and c : E → N an integer capacity function. Let
Src, Tgt ⊆ V be sets of sources and targets, and N ∈ N. If for all s ∈ Src there is a flow
from s to Tgt of value at least N , then there is an integer flow f : E → from Src to Tgt of
value ≥ N/|Src|.

Proof. Let d = |Src|. For convenience we will assume that d divides N . Add a node s′ to G,
with outgoing edges to each s ∈ Src with capacity N/d. We distinguish two cases.

If a maximal flow f from s′ to Tgt has value ≥ N then as {(s′, s) | s ∈ Src} is a cut,
all those edges must be mapped to N/d by f (and f must have value N). Therefore the
projection of that flow on G is a flow from Src to Tgt whose output on each s ∈ Src is N/d.
We conclude by the integer flow theorem.

If the maximal flow from s′ to Tgt is < N then there is a minimal cut C and some
s ∈ Src such that (s′, s) /∈ C. As a consequence, C ∩E must be a cut from s to Tgt, of value
< N . However, there is a flow of value N from s to Tgt, contradicting the max-flow min-cut
theorem. ◀

H Proof of Lemma 21

The proof of Lemma 21 is provided for the curious reader, this lemma is not used in the
proof of other results thus the rest of the paper is independent of Lemma 21.

Proof of Lemma 21. By definition of the extended tropical semiring, for every n ∈ N

Fn(S0, T ) = min
{ ∑

i∈0...n

F (Si, Si+1) | S0, S1, . . . , Sn+1 = T ∈ P(S)
}

. (9)

Assume (a) holds. Let K ∈ N and n ≥ K · 2|S| + 1. Let S0, S1, . . . , Sn = T ∈ P(S) which
minimizes xn = Fn(S0, T ) =

∑
i∈0...n−1 F (Si, Si+1). Since En(S0, T ) = E(S0, T ) = 1 then

xn ≤ n. Since n ≥ K · |S|, there is a state R appearing K times in the sequence at indices
k0 < k1 < . . . < kK . Let z = max{E(S0, R), E(R, T )} ∈ {0, 1, ω,∞}. Then

z = 1 (10)

because (E(S0, T ) = 1 implies z ≥ 1 and z < ω since xn ≤ n. Let y = E(R,R).

y = 0 ⇐⇒ E(R,R) = 0 ⇐⇒ ∀k, F k(R,R) = 0 . (11)
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By definition of unstability, y ≥ 1. Then (b) holds because xn ≥
∑

i=1...K F ki−ki−1(R,R) ≥
K, and, by choice, xn minimizes Fn(S0, T ).

Conversely assume (b) holds. Let R such that max{E(S0, R), E(R, T )} = 1. then
Fn(S0, T ) ≤ F (S0, R) + Fn−2(R,R) + F (R, T ). We conclude with (11) that E(R,R) ̸= 0.
Thus (a) holds. ◀

I Algebraic solution with flows: proof of Theorem 22

Proof of Theorem 22. There are two steps, starting with the equivalence between (i) and (ii),
followed by the equivalence between (ii) and (iii).

The equivalence between (i) and (ii) is proved using sequences of action flows, called
pipelines.

▶ Definition 47 (pipelines and pathes through them). A pipeline is a sequence (f1, . . . , fℓ) of
length ℓ ≥ 1 of action flows, i.e. a finite non-empty word in F+. A path w0, . . . , wℓ ∈ SX

of a finite set of tokens X is a path through (f1, . . . , fℓ) if the number of tokens travelling
along edges respect the flow constraints, i.e. for every states s, t ∈ S and index k ∈ 1 . . . ℓ

| {x ∈ X | (wk−1(x), wk(x)) = (s, t)} | ≤ fk(s, t) .

The next lemma establishes upper and lower bounds on the capacity of a pipeline. This
proof technique was introduced in [4] to show decidability of the Path problem.

▶ Lemma 48 (max-flow min-cut in a pipeline). Denote

ψ : F+ → CM

the morphism which computes the product of elements of a pipeline in the tropical cut
semigroup. Let P = (f1, . . . , fℓ) ∈ F+ a pipeline. For every subset S0 ⊆ S, denote

BP (S0, F ) = ψ(P )(S0, S \ F ) ∈ N ∪ {∞} .

Let n be an integer and Xn a finite set of tokens placed on the initial configuration w
(n)
0

such that there are w0[n](s) tokens on state s. A path of Xn through P is said to be final if
it carries all tokens to F , i.e. in the final configuration wℓ, ∀x ∈ Xn, wℓ(x) ∈ F . Define the
capacity of P , denoted CP (S0, F ), with value in N ∪ {∞}, as

CP (S0, F ) = sup
{
n ∈ N | there is a final path from w

(n)
0 through (f1, . . . , fℓ)

}
.

Then
1
|S|

min
s∈S0

BP ({s}, F ) ≤ CP (S0, F ) ≤ max
s∈S0

BP ({s}, F ) . (12)

Proof. Given a sequence 1 ≤ i1 < i2 < . . . < ik ≤ ℓ, denote Q(i1 < i2 < . . . < ik) the
pipeline obtained from P by erasing all 1-edges of flows at indices i1 < i2 < . . . < ik. Say
that this sequence disconnects a set of states S0 ∈ P(S) from F if there is no path through
the pipeline Q(i1 < i2 < . . . < ik) which can carry a single token from one of the states in S0
to F . The cost of the disconnection of S0 from F in P , denoted DP (S0, F ) is the minimal
length k of a disconnecting sequence, or ∞ if there is no such sequence.
▶ Remark 49. Note that DP (S0, F ) =∞ iff removing all 1-labelled edges will not disconnect
S0 from F , i.e. there exists s ∈ S0 and an {∞}-labelled path in P connecting s to F . In
that case, an easy induction shows that no sequence of cuts {s} = S0, S1, . . . , Sℓ = S \ F can
isolate {s} from F without cutting through an ∞ edge of the path, thus BP (S0, S \ F ) =∞.
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Let 1 ≤ i1 < i2 < . . . < ik ≤ ℓ be a disconnecting sequence of minimal length. The
difference between P and Q(i1 < i2 < . . . < ik) is that at least k and at most k · |S| edges
of capacity 1 have been deleted from P to obtain Q(i1 < i2 < . . . < ik). According to the
minflow/maxcut theorem for single source capacity graphs, for every state s ∈ S0,

DP ({s}, F ) ≤ CP ({s}, F ) ≤ DP ({s}, F ) · |S|

We show:
1
|S|

min
s∈S0

DP ({s}, F ) ≤ CP (S0, F ) ≤ max
s∈S0

DP ({s}, F ) . (13)

The right inequality in (13) is pretty obvious, because ∀s ∈ S,C(S0, F ) ≤ C({s}, F ), indeed
if for some n there is a final path from w

(n)
0 through (f1, . . . , fℓ) then for every state s ∈ S0,

we can delete from this path tokens which are not in s initially and get a final path through
(f1, . . . , fℓ) starting from the initial configuration s[n] where n tokens are in s.

The left inequality in (13) relies on the next lemma.

▶ Lemma 50 (maximum concurrent flow). Let N ∈ N. For every state s ∈ S0, denote s[N ]
the initial configuration where N tokens are placed on s. Assume that for every s ∈ S0, there
is a final path from s[N ] through P . Then there is a final path from w0[⌊N/|S0|⌋] through P .

Proof. This a direct application from Lemma 46. ◀

We prove the following relation between BP and the cost of disconnection, for every
pipeline P and sets S0, T ∈ SD,

DP (S0, T ) = BP (S0, T ) . (14)

The informal reason is that CM this is the semigroup associated to the distance automaton
used in [4] to compute the equivalent of disconnecting sequences.

We start the proof of (14) with the easiest direction:

DP (S0, F ) ≥ BP (S0, S \ F ) . (15)

If DP (S0, F ) = ℓ then there is a pipeline P = (f1, . . . , fℓ) in which deleting all 1-edges
disconnects S0 from F . Define by induction

Si = {t∃s ∈ Si−1, fi(s, t) =∞}, 1 ≤ i ≤ ℓ .

Then

BP (S0, F ) = (M(f1) · . . . ·M(fℓ))(S0, S \ F ) ≤
∑

i∈1...ℓ

M(fi)(Si−1, Si) ≤ ℓ = DP (S0, F ) ,

since every M(fi) has coefficients in {0, 1,∞} and Si is chosen so that M(fi)(Si−1, Si) <∞.
The base case is when the length of P is 1, i.e. P = (f1). Then DP (S0, T ) ∈ {0, 1}

and according to (15) also BP (S0, T ) ∈ {0, 1}. The case DP (S0, T ) = 0 happens when
deletion is not necessary for disconnecting S0 from F , i.e. when f1 is 0 on every edge
connecting S0 to F , in which case D(f1)(S0, T ) = 0 = maxs∈S0,t∈S\F f1(s, t) = BP (S0, F ).
The case DP (S0, T ) = 1 arises when deletion is necessary for disconnecting S0 from F , i.e.
∃(s, t) ∈ S0 × T, f1(s, t) ≥ 1, which is equivalent to BP (S0, F ) ≥ 1. For the induction step,
take Pℓ = (f1, . . . , fℓ) and Pℓ+1 = (f1, . . . , fℓ, fℓ+1). Assume we disconnect S0 from T in
Pℓ+1 with a sequence u = i1 < i2 < . . . < ik of minimal cost. Denote u′ the sequence with
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is equal to u if ℓ + 1 does not appear in the disconnecting sequence, i.e. ik < ℓ + 1 and
otherwise u′ is equal to u minus the last element ik = ℓ+ 1 removed. Denote R′ the set of
states not reachable from S0 in the pipeline Q(u′). Since u is optimal for disconnecting F
from S0 in Pℓ+1, then:

u′ is optimal for disconnecting S0 from S \R′ in Pℓ,
u erases ℓ+ 1, (i.e. ik = ℓ+ 1) iff R is not already disconnected from T in the pipeline
(fℓ+1).

Thus,

DPℓ+1(S0, T ) = DPℓ
(S0, S \R′) + max

r∈R′,t∈T
fℓ+1(r, t) ,

and by optimality again,

DPℓ+1(S0, T ) = min
R∈P(S)

(
DPℓ

(S0, S \R) + max
r∈R,t∈T

fℓ+1(r, t)
)

. (16)

By definition of the product in the tropical mincut semigroup,

BPℓ+1(S0, T ) = min
R∈P(S)

(BPℓ
(S0, S \R) +M(fℓ+1)(R,S \ T ))

= min
R∈P(S)

(
BPℓ

(S0, S \R) + max
r∈R,t∈T

fℓ+1(r, t)
)

. (17)

Combining (16), (17) and the induction hypothesis implies (14), and completes the proof of
the induction step.

Combining (14) and (13) provides (12), which terminates the proof of the lemma. ◀

The equivalence between (i) and (ii) is established on the basis of Lemma 48. Assume (i)
holds, let N be a large integers, X a set of N tokens and let w0, a1, w1, a2, . . . , aℓ, wℓ a path
in W from w0[N ] to a final configuration wℓ. Make use of the round-up function ϕ as defined
in (2). For i ∈ 1 . . . n, let fi ∈ {0, 1,∞}S2 which counts the number of tokens per edge, and
round it up using ϕ, defined by:

fi(s, t) = ϕ(|{x ∈ S | (wi−1(x), wi(x)) = (s, t)}|) .

Since the largest constant in W is 1 then dom(fi) ∈ W and the flow fi is an action flow
in W . Thus w0, w1, . . . , wℓ is a path through the pipeline P = (f1, . . . , fℓ). According to
Lemma 48, and since the image of ψ is in the tropical cut semigroup CM, the condition (ii)
is satisfied. Conversely, assume (ii) holds. Since action flows form the generator basis of CM,
then according to Lemma 48, the capacity of pipelines is unbounded, and according to the
max-flow min-cut theorem, then (i) holds.

The equivalence between (ii) and (iii). Elements of Z belong to the tropical semiring
M thus Z ⊆ N ∪ {∞}. There are two cases.

Assume first ∞ ∈ Z. Then by definition of the tropical mincut semigroup, there
exists a sequence of action flows f1, f2, . . . , fn ∈ F such that the product M0 = M(f1) ·
M(f2) · . . . ·M(fn) in CM satisfies ∀s ∈ S0,M0({s0}, S \ F ) = ∞. Then by duality, ∀s ∈
S0,∃f ∈ F, (f1 · f2 · . . . · fn)(s0, f) = ∞. Denote M = M(f1) · M(f2) · . . . · M(fn) ∈
CR. Then mins∈S0 M({s0}, S \ F ) = ∞. Conversely, if there exists M ∈ CR such that

mins∈S0 M({s0}, S \ F ) = ∞, then the corresponding sequence of generators produce an
element in CM and ∞ ∈ Z.

Apply the main result in [16] to our semigroups.
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▶ Theorem 51. [16, Theorem 12] Let S0, T ∈ P(S). The following statements are equivalent:
(a) the integer-valued coefficients of cuts at coordinates (S0, T ) are unbounded, i.e., {M(S0, T ) |

M ∈ CM} is infinite;
(b) there is a cut M ∈ CR whose coefficient at the coordinate (S0, T ) is ω, i.e., ∃M ∈

CR,M(S0, T ) = ω.
This shows the equivalence between (ii) and (iii) in case Z does not contain ∞. ◀

J Duality: proof of Lemma 25

The core of the proof is as follows.

▶ Lemma 52 (dual pairs and their properties). For every flow f ∈ R̄S2 and cut M ∈ RP(S)2 ,

fM(f) = f (18)
M(fM ) = M (19)

A pair (f,M) which satisfy f = fM and M = M(f) is called a dual pair. Every dual pair
(f,M) satisfies several properties.

monotonicity: for S0, S1, T0, T1 ∈ P(S),

(S0 ⊆ S1 ∧ T0 ⊆ T1) =⇒ (M(S0, T1) ≤M(S1, T0)) . (20)

atomicity: for S0, T ∈ P(S),

M(S0, T ) = max
s∈S0

M({s}, T ) = max
t∈S\T

M(S0, S \ {t}) = max
s∈S0

t∈S\T

M({s}, S \ {t}) . (21)

compatibility with semigroup operations: for every dual pairs (f1,M1), (f2,M2), e, E),
such that E = E2 and e = e2,

M(f1 · f2) = M1 ·M2 (22)
fM1·M2 = f1 · f2 (23)
M

(
e♯

)
= M(e)♯ (24)

fE♯ = f ♯
E . (25)

Proof. Equality (18) holds because for every f ∈ RS2 and s, t ∈ S, fMf
(s, t) = M(f)({s}, S\

{t}) = f(s, t). Equality (19) holds because for every M ∈ RP(S)2 and S0, T ∈ P(S),

M(fM )(S0, T ) = max
s∈S0

t∈S\T

fM (s, t) = max
s∈S0

t∈S\T

M({s}, S \ {t}))

= max
s∈S0

t∈S\T

M({s}, S \ {t})) = M(S0, T )

Monotonicity follows from the definition of M(f) (Definition 3). Atomicity (21) holds since
M(S0, T ) = maxs∈S0,t∈S\T f(s, t) = maxs∈S0,t∈S\T M(s, t).

Compatibility with operations, starting with (22). Let s0, s2 ∈ S. Denote x = (f1 ·
f2)(s0, s2) and let r ∈ S such that x = min(f1(s0, r), f2(r, s2)). For every S1 ∈ P(S), either
r ̸∈ S1, in which case M1({s0}, S1) ≥ x or r ∈ S1, in which case M2(S1, S \ {s2}) ≥ x. Thus

(M1 ·M2)({s0}, {s2}) ≥ x . (26)
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Let S1 = {s1 ∈ S | f1(s0, s1) > x}. Then

M1({s0}, S1) = max
s∈S\S1

f1(s0, s) ≤ x . (27)

For every s1 ∈ S1, f1(s0, s1) ≤ x because x = (f1 · f2)(s0, s2) ≥ min(f1(s0, s1), f2(s1, s2)).
Thus

M2(S1, S \ {s2}) ≤ x . (28)

Combining (27) and (28) gives

(M1 ·M2)({s0}, S \ {s2}) ≤ x . (29)

hence according to (26),

(M1 ·M2)({s0}, S \ {s2}) = x = (f1 · f2)(s0, s2) .

This proves (22) for atomic coordinates, and the general case of (22) follows by atomicity.
Combined with (18), this gives (23).

Towards (24), let (e, E) be a dual pair. According to the compatibility with multiplication,
e = e2 ⇐⇒ E = E2. Let S0, T ∈ P(S)2. We show

E♯(S0, T ) = M(e♯(S0, T )) . (30)

Start with the (easy) case E(S0, T ) ̸= 1. Then by definition of the iteration E♯(S0, T ) =
E(S0, T ). By atomicity of E, E(S0, T ) = maxs∈S0,t∈S\T e(s, t). There are two subcases.
The first subcase is E(S0, T ) = 0 in which case (30) holds because ∀s ∈ S0, t ∈ S \
T, e(s, t) = 0 thus ∀s ∈ S0, t ∈ S \T, e♯(s, t) = 0 and M(e♯(S0, T )) = maxs∈S0,t∈S\T e

♯(s, t) ≤
maxs∈S0,t∈S\T e

♯(s, t) = 0. The second subcase is E(S0, T ) = ω in which case (30) holds
as well because E(S0, T ) = maxs∈S0,t∈S\T,e(s,t)≥ω e(s, t) = maxs∈S0,t∈S\T,e♯(s,t)≥ω e

♯(s, t) =
E♯(S0, T ).

The proof of (30) in case E(S0, T ) = 1 is the following lemma.

▶ Lemma 53. Let S0, T ∈ P(S) such that E(S0, T ) = 1. The following properties are
equivalent.
a) E♯(S0, T ) = 1;
b) all edges (s, t), s ∈ S0, t ∈ S \ T such that e(s, t) = 1 are stable in e.

Proof. Assume that (a) holds. Let R ∈ P(S) which witnesses the stability of R i.e. E(R,R) =
0 and max(E(S0, R), E(R, T )) = 1. Let s ∈ S0, t ∈ S \ T such that e(s, t) = 1. We show by
case analysis that

e♯(s, t) = 1 , (31)

i.e. (s, t) is stable in e. By contradiction, assume (s, t) is unstable in e i.e. there exists s0, t0
such that e(s, s0) ≥ ω∧ e(s0, t0) = 1∧ e(t0, t) ≥ ω. Since s ∈ S0 ∧ e(s, s0) ≥ ω∧E(S0, R) ≤ 1
then s0 ∈ R. Since s0 ∈ R∧e(s0, t0) = 1∧E(R,R) = 0 then t0 ∈ R. Since t0 ∈ R∧e(t0, t) ≥
ω ∧ E(R, T ) ≤ 1 then t ∈ T , a contradiction with the initial choice of t ∈ S \ T . That
shows (31). Hence (b) holds.

Conversely, assume that (b) holds. We show that

R = {t0 ∈ S, ∃s0 ∈ S, e(s, s0) ≥ ω ∧ (s0 = t0 ∨ e(s0, t0) ≥ 1)}
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witnesses the stability of (S0, T ) in E.
We prove first that

E(R,R) = 0 . (32)

The reason is R is closed by successors through nonzero edges of E. Let t0 ∈ R and t1 ∈ S
such that e(t0, t1) ≥ 1. By definition of R, there exists s0 ∈ S such that e(s, s0) ≥ ω and
(s0 = t0 ∨ e(s0, t0) ≥ 1). In the subcase s0 = t0 then e(s0, t1) = e(t0, t1) ≥ 1. In the subcase
e(s0, t0) ≥ 1 then e(s0, t1) ≥ min(e(s0, t0), e(t0, t1)) ≥ 1 In both subcases s0 witnesses that
t1 ∈ R. This completes the proof of (32).

Moreover

E(S0, R) ≤ 1 (33)

because R contains all ω-successors and ∞-successors of S0 through e.
Finally show by contradiction

E(R, T ) ≤ 1 . (34)

A contrario, assume E(R, T ) ≥ ω. By atomicity, there exists t0 ∈ R and t ∈ S \ T such
that e(t0, t) ≥ ω. By definition of R, there exists s0 ∈ S such that e(s, s0) ≥ ω and
s0 = t0 ∨ e(s0, t0) ≥ 1. A step towards the contradiction is to show that

e(s, t) = 1 ∧ s0 ̸= t0 ∧ e(s0, t0) = 1 . (35)

First, e(s, t) ≤ E(S0, T ) ≤ 1, by atomicity of E. There are two subcases, depending
on which clause does hold in the disjunction (s0 = t0 ∨ e(s0, t0) ≥ 1). The subcase
s0 = t0 cannot hold because we would have e(s, t) ≥ min(e(s, s0), e(s0 = t0, t)) ≥ ω,
a contradiction with e(s, t) ≤ 1, supra. So the other subcase e(s0, t0) ≥ 1 holds, and
1 ≥ e(s, t) ≥ min(e(s, s0), e(s0, t0), e(t0, t)) ≥ min(ω, e(s0, t0), ω) ≥ 1. That completes the
proof of (35).

Finally, we have e(s, s0) ≥ ω and e(s0, t0) = 1 and e(t0, t) ≥ ω, which contradicts the
stability of (s, t) in e. This completes the proof of (34) by contradiction.

Combining (34) with (32) gives max(E(S0, R), E(R, T )) ≤ 1, and this is actually an
equality since max(E(S0, R), E(R, T )) ≥ E(S0, T ) ≥ e(s, t) = 1. Combined with (32), this
witnesses the stability of (S0, T ) in E. ◀

Now we get to complete the proof of (30), remember we have already processed the easy
case E(S0, T ) ̸= 1 thus we can assume E(S0, T ) = 1. By definition of the iteration,
E♯(S0, T ) ∈ {1, ω}. The first case is E♯(S0, T ) = 1. According to Lemma 53, M(e♯)(S0, T ) =
maxs∈S0,t∈S\T e

♯(s0, t) = maxs∈S0,t∈S\T e(s0, t) = E(S0, T ) = E♯(S0, T ). The second case is
E♯(S0, T ) = ω. According to Lemma 53, there is s ∈ S0 and t ∈ S \ T such that e♯(s, t) = ω.
Thus M(e♯)(S0, T ) ≥ ω. Since M(e♯)(S0, T ) ≤ max{ω,M(e)(S0, T )} then M(e♯)(S0, T ) = ω.
We have processes both possible cases.

Finally, (30) has been proved in all cases, hence (24) holds. To get (25), set e = fE , so
that E = M(e) and apply (24) to get fE♯ = fM(e)♯ = fM(e♯) = e♯ = f ♯

E . ◀

Proof of Lemma 25. The generators of FR and CR are duals of other. Both the inclusions
FR ⊆ CR and CR ⊆ FR follow from the compatibility with respect to product and itera-
tion (22)–(25), and the inductive definition of both semigroups with respect to those two
operations. ◀
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