Introduction	LTL 0000	HyperLTL 00000000	Results 00000	Conclusion and open problems

The Keys to Decidable HyperLTL Satisfiability: Small Models or Very Simple Formulas

Corto Mascle

Martin Zimmermann

ENS Paris-Saclay

University of Liverpool

February 25th - July 26th

Introduction	LTL 0000	HyperLTL 00000000	Results 00000	Conclusion and open problems

2 LTL

Introduction	LTL	HyperLTL	Results	Conclusion and open problems
●○	0000	00000000	00000	

Hyperproperties

Properties characterize executions of a system:

ightarrow "The boolean variable *b* will eventually be true" is a property.

Hyperproperties [Clarkson & Schneider, '08] characterize the set of executions of a system:

 \rightarrow "For every execution in which *b* is eventually true, there exists an execution in which *b* is true later" is a hyperproperty.

A hyperproperty for security

We consider two boolean variables a and b.

"For all executions, there exists another execution with the same behaviour for a but a different one for b"

This hyperproperty expresses that someone having access to the values of a will not be able to infer the value of b from it.

Introduction	LTL ●000	HyperLTL 00000000	Results 00000	Conclusion and open problems

1 Introduction

2 LTL

5 Conclusion and open problems

Introduction	LTL 0●00	HyperLTL 00000000	Results 00000	Conclusion and open problems
LTL				

LTL is a logics on infinite *traces*, i.e., infinite sequences of sets of atomic propositions, like $\{a\}\emptyset\{a\}\{a\}\emptyset\emptyset\cdots$

Introduction	LTL 0●00	HyperLTL 00000000	Results 00000	Conclusion and open problems
1 TI				

LTL is a logics on infinite *traces*, i.e., infinite sequences of sets of atomic propositions, like $\{a\}\emptyset\{a\}\{a\}\emptyset\emptyset\cdots$

It combines:

- Boolean operators \land , \lor , \neg
- \blacksquare Temporal operators F , G , U , X

Introduction	LTL 00●0	HyperLTL 00000000	Results 00000	Conclusion and open problems
171				

LIL SEMANTICS

Given a formula φ ,

F φ means that φ is satisfied at some further position.

 $\emptyset \emptyset \{ a \} \emptyset \emptyset \cdots$ satisfies **F** a

G φ means that φ is satisfied on every further position.

• $\varphi \cup \psi$ means that ψ is satisfied at some further position and φ is satisfied at every position in-between.

 $\{b\}\{b\}\{a\}\emptyset\emptyset\cdots$ satisfies $b \cup a$

X φ means that φ is satisfied at the next position.

 $\emptyset\{a\}\emptyset\emptyset\cdots$ satifies **X** *a*.

Introduction	LTL	HyperLTL	Results	Conclusion and open problems
	0000			

Another example

 $FG(b \wedge \neg a)$

is satisfied by $\{a\}\{a\}\emptyset\{b\}\{b\}\{b\}\cdots$

but not by $\{a\}\{b\}\{a,b\}\{a,b\}\{a,b\}\cdots$

Introduction	LTL 0000	HyperLTL ●0000000	Results 00000	Conclusion and open problems

Introduction	LTL	HyperLTL	Results	Conclusion and open problems
		0000000		

What we want to express

LTL allows us to express properties about single executions of a system, but not about the set of executions of a system (hyperproperties).

Introduction	LTL 0000	HyperLTL ○○●○○○○○	Results 00000	Conclusion and open problems
HyperLTL				

Syntax:

$$\begin{split} \varphi &::= \exists \pi.\varphi \mid \forall \pi.\varphi \mid \psi \\ \psi &::= \mathbf{a}_{\pi} \mid \neg \psi \mid \psi \lor \psi \mid \mathbf{X} \psi \mid \psi \, \mathbf{U} \, \psi \end{split}$$

Formulas are evaluated over sets of infinite traces.

 τ

 $\forall \tau . \exists \tau' . \mathsf{F} (a_{\tau} \wedge b_{\tau'})$

For all τ in the model, there exists τ' in the model such that:

$$\rightarrow$$
 \emptyset $\{a\}$ \cdots $\{a\}$ \cdots

$$au' \rightarrow \{b\} \mid \emptyset \mid \cdots \mid \{b\} \mid \cdots$$

Introduction	LTL 0000	HyperLTL 000●0000	Results 00000	Conclusion and open problems
An example				

$$\forall \tau. \exists \tau'. \mathsf{G} \left(a_\tau \Leftrightarrow a_{\tau'} \right) \land \mathsf{F} \neg (b_\tau \Leftrightarrow b_{\tau'})$$

Introduction 00	LTL 0000	HyperLTL 000●0000	Results 00000	Conclusion and open problems	
An examp					

Introduction	LTL	HyperLTL	Results	Conclusion and open problems
00	0000	0000●000	00000	

Model-checking

Theorem (Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sánchez)

Model-checking HyperLTL formulas against Kripke structures is decidable, but TOWER-complete.

The complexity is a tower of exponentials of height the number of quantifier alternations.

For instance, checking that a Kripke structure satisfies a formula of the form $\forall^* \exists^* \forall^* \psi$ requires space $2^{2^{|\psi|}}$

Introduction	LTL	HyperLTL	Results	Conclusion and open problems
		00000000		

Satisfiability

Theorem (Finkbeiner & Hahn)

HyperLTL satisfiability is undecidable.

One can encode executions of Turing machines with formulas of the form $\forall \exists.$

This motivates the search for fragments of HyperLTL with decidable satisfiability.

We still want to use this convenient syntax, so we look for decidable syntactical fragments.

Introduction	LTL 0000	HyperLTL 000000●0	Results 00000	Conclusion and open problems

Previous results

Theorem (Finkbeiner & Hahn)

Satisfiability is

- PSPACE for formulas of the form \forall^* or \exists^*
- EXPSPACE for formulas of the form $\exists^* \forall^*$
- Undecidable for formulas of the form ∀∃

Theorem (Demri & Schnoebelen)

The complexity of LTL satisfiability decreases when some bounds are applied on the temporal depth, the set of operators and/or the number of atomic propositions.

Introduction	LTL 0000	HyperLTL 0000000●	Results 00000	Conclusion and open problems
Small form	ulac			

Some of the interesting restrictions are temporal depth and alternation depth.

•
$$\operatorname{td}(a_{\pi}) = 0$$

•
$$\operatorname{td}(\neg\psi) = \operatorname{td}(\psi)$$

- $\operatorname{td}(\psi_1 \lor \psi_2) = \max(\operatorname{td}(\psi_1), \operatorname{td}(\psi_2)),$
- $\operatorname{td}(\mathsf{X}\psi) = 1 + \operatorname{td}(\psi)$,

•
$$\operatorname{td}(\psi_1 \operatorname{\mathsf{U}} \psi_2) = 1 + \max(\operatorname{td}(\psi_1), \operatorname{td}(\psi_2)),$$

•
$$\operatorname{td}(\exists \pi.\varphi) = \operatorname{td}(\forall \pi.\varphi) = \operatorname{td}(\varphi)$$

Most examples of security policies expressible in HyperLTL have temporal depth one.

Introduction	LTL	HyperLTL	Results	Conclusion and open problems
00	0000	00000000	●0000	

5 Conclusion and open problems

Introduction	LTL	HyperLTL	Results	Conclusion and open problems
00	0000	0000000	00000	000

Simplifying formulas

We can reduce the general satisfiability problem to the one on "small" formulas:

For any HyperLTL formula one can compute in polynomial time an equisatisfiable formula with:

- One quantifier alternation,
- Temporal depth two,
- Two universal quantifiers or three atomic propositions.

Introduction	LTL 0000	HyperLTL 00000000	Results 00●00	Conclusion and open problems

The decidability border

We look at formulas with temporal depth one, one universal quantifier, and using only ${\bf F}\,$ and ${\bf G}\,.$ For example,

$$\forall \tau. \exists \tau'. \mathsf{G} \left(\mathsf{a}_\tau \Leftrightarrow \mathsf{a}_{\tau'} \right) \land \mathsf{F} \neg (b_\tau \Leftrightarrow b_{\tau'})$$

Satisfiability for this fragment is decidable!

Introduction	LTL	HyperLTL	Results	Conclusion and open problems
00	0000	00000000	000●0	

An overview

	temporal depth one	arbitrary temporal depth
∃* / ∀*	NP-complete	PSPACE-complete
$\exists^* \forall^*$	NEXPTIME-complete	EXPSPACE-complete
$\exists^* \forall \exists^*$	N2EXPTIME (without U)	undecidable
$\forall^2 \exists^*$	undecidable	undecidable

Introduction	LTL 0000	HyperLTL 00000000	Results 0000●	Conclusion and open problems
Small mod	lels			

Instead of restricting formulas, we can restrict models. Given a formula φ and an integer (in binary) k:

- Models with at most k elements
 - $\rightarrow \mathsf{EXPSPACE}\text{-complete}$

Introduction	LTL 0000	HyperLTL 00000000	Results 0000●	Conclusion and open problems
Small model	S			

Instead of restricting formulas, we can restrict models. Given a formula φ and an integer (in binary) k:

- Models with at most k elements
 - $\rightarrow \mathsf{EXPSPACE}\text{-complete}$
- Models in which all words are of the form uv^{ω} with
 - $|u|+|v|\leq k$
 - \rightarrow N2EXPTIME-complete

Introduction	LTL 0000	HyperLTL 00000000	Results 0000●	Conclusion and open problems
Small model	S			

Instead of restricting formulas, we can restrict models. Given a formula φ and an integer (in binary) k:

- Models with at most k elements
 - $\rightarrow \mathsf{EXPSPACE}\text{-complete}$
- Models in which all words are of the form uv^{ω} with $|u| + |v| \le k$
 - $\rightarrow \mathsf{N2EXPTIME}\text{-complete}$
- Models represented by a Kripke structure with *k* states → TOWER-complete

Introduction	LTL	HyperLTL	Results	Conclusion and open problems
00	0000	00000000	00000	●○○

1 Introduction

2 LTL

3 HyperLTL

4 Results

5 Conclusion and open problems

Introduction LTL HyperLTL Results Conclusion and open problems

Further work: Kripke structures

We only consider sets of traces generated by finite Kripke structures.

Satisfiability over Kripke structures is undecidable in general, but semi-decidable.

It is TOWER-hard even for formulas of the form $\forall^* \exists^*$ with temporal depth 1, but may be decidable with suitable restrictions on the formulas.

Introduction	LTL 0000	HyperLTL 00000000	Results 00000	Conclusion and open problems
Conclusion				

- \rightarrow Better understanding of the expressivity of HyperLTL
- \rightarrow More precise decidability border

 \rightarrow Many more fundamental problems to explore (other parameters on formulas and models)

ntrod	uction	

Thank you!