Verification of population protocols with unordered data

Steffen van Bergerem
Roland Guttenberg
Sandra Kiefer
Corto Mascle
Nicolas Waldburger
Chana Weil-Kennedy

?!		?!
?! ?! ?! ?! ?!	?! ?! ?!	?! ?! ?! ?! ?!

MPs want to know whether a majority of them are in favour of a law proposal.

MPs want to know whether a majority of them are in favour of a law proposal.

MPs want to know whether a majority of them are in favour of a law proposal.

$$AY + AN \rightarrow PY + PN$$

 $AY + PN \rightarrow AY + PY$
 $AN + PY \rightarrow AN + PN$
 $PN + PY \rightarrow PN + PN$

MPs want to know whether a majority of them are in favour of a law proposal.

$$AY$$
 $AY + AN \rightarrow PY + PN$
 $AY + PN \rightarrow AY + PY$
 $AN + PY \rightarrow AN + PN$
 $AY + PN \rightarrow PN + PN$

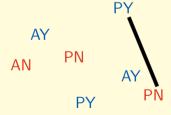
MPs want to know whether a majority of them are in favour of a law proposal.

$$AY$$
 $AY + AN \rightarrow PY + PN$
 $AY + PN \rightarrow AY + PY$
 $AN + PY \rightarrow AN + PN$
 $AY + PN \rightarrow PN + PN$

MPs want to know whether a majority of them are in favour of a law proposal.

$$AY + AN \rightarrow PY + PN$$

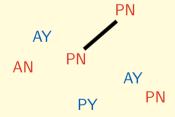
 $AY + PN \rightarrow AY + PY$
 $AN + PY \rightarrow AN + PN$
 $PN + PY \rightarrow PN + PN$



MPs want to know whether a majority of them are in favour of a law proposal.

$$AY + AN \rightarrow PY + PN$$

 $AY + PN \rightarrow AY + PY$
 $AN + PY \rightarrow AN + PN$
 $PN + PY \rightarrow PN + PN$



MPs want to know whether a majority of them are in favour of a law proposal.

$$AY + AN \rightarrow PY + PN$$
 $AY + PN \rightarrow AY + PY$
 $AN + PY \rightarrow AN + PN$
 $PN + PY \rightarrow PN + PN$

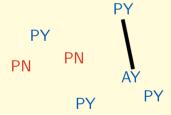
MPs want to know whether a majority of them are in favour of a law proposal.

$$AY + AN \rightarrow PY + PN$$
 $AY + PN \rightarrow AY + PY$
 $AN + PY \rightarrow AN + PN$
 $PN + PY \rightarrow PN + PN$
 $PY \rightarrow PN + PN$
 $PY \rightarrow PN + PN$
 $PY \rightarrow PN + PN$

MPs want to know whether a majority of them are in favour of a law proposal.

$$AY + AN \rightarrow PY + PN$$

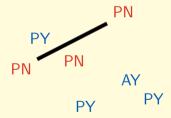
 $AY + PN \rightarrow AY + PY$
 $AN + PY \rightarrow AN + PN$
 $PN + PY \rightarrow PN + PN$



MPs want to know whether a majority of them are in favour of a law proposal.

$$AY + AN \rightarrow PY + PN$$

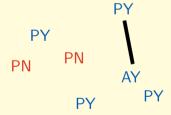
 $AY + PN \rightarrow AY + PY$
 $AN + PY \rightarrow AN + PN$
 $PN + PY \rightarrow PN + PN$



MPs want to know whether a majority of them are in favour of a law proposal.

$$AY + AN \rightarrow PY + PN$$

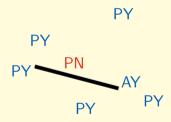
 $AY + PN \rightarrow AY + PY$
 $AN + PY \rightarrow AN + PN$
 $PN + PY \rightarrow PN + PN$



MPs want to know whether a majority of them are in favour of a law proposal.

$$AY + AN \rightarrow PY + PN$$

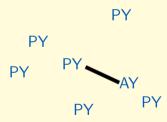
 $AY + PN \rightarrow AY + PY$
 $AN + PY \rightarrow AN + PN$
 $PN + PY \rightarrow PN + PN$



MPs want to know whether a majority of them are in favour of a law proposal.

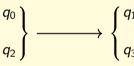
$$AY + AN \rightarrow PY + PN$$

 $AY + PN \rightarrow AY + PY$
 $AN + PY \rightarrow AN + PN$
 $PN + PY \rightarrow PN + PN$



Population Protocols [Angluin, Aspnes, Diamadi, Fischer, Peralta, PODS 2004]

Finite set of states Q, with set $I \subseteq Q$ of *initial states*. States are partitioned in two opinions $Q = Q_{Yes} \sqcup Q_{No}$ Interactions $\Delta \subseteq Q^2 \times Q^2$.



Population Protocols [Angluin, Aspnes, Diamadi, Fischer, Peralta, PODS 2004]

Finite set of states Q, with set $I \subseteq Q$ of *initial states*. States are partitioned in two opinions $Q = Q_{Yes} \sqcup Q_{No}$ Interactions $\Delta \subseteq Q^2 \times Q^2$.

$$\begin{pmatrix} q_0 \\ q_2 \end{pmatrix} \longrightarrow \begin{cases} q_1 \\ q_3 \end{cases}$$

- Random pairwise interactions
- Stable consensus is reached when everyone agrees on Yes or No and no one can ever change their mind

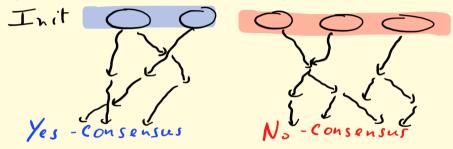
Population Protocols [Angluin, Aspnes, Diamadi, Fischer, Peralta, PODS 2004]

Finite set of states Q, with set $I \subseteq Q$ of *initial states*. States are partitioned in two opinions $Q = Q_{Yes} \sqcup Q_{No}$ Interactions $\Delta \subseteq Q^2 \times Q^2$.

- Random pairwise interactions
- ► Stable consensus is reached when everyone agrees on Yes or No and no one can ever change their mind

A protocol is **well-specified** if from all initial configuration, either a Yes-consensus is reach with proba 1, or a No-consensus is reached with proba 1.

A protocol is **well-specified** if from all initial configuration, either a Yes-consensus is reach with proba 1, or a No-consensus is reached with proba 1.



The **predicate** computed by the protocol is then the set of initial configurations from which we reach a Yes-consensus.

Which predicates can be computed by population protocols?

Which predicates can be computed by population protocols? <

Theorem [Angluin, Aspnes, Eisenstat, Ruppert 2007]

A predicate is computable by a population protocol iff it is Presburger-definable.

Which predicates can be computed by population protocols? <

Theorem [Angluin, Aspnes, Eisenstat, Ruppert 2007]

A predicate is computable by a population protocol iff it is Presburger-definable.

Can we check if a population protocol is well-specified?

Which predicates can be computed by population protocols? <

Theorem [Angluin, Aspnes, Eisenstat, Ruppert 2007]

A predicate is computable by a population protocol iff it is Presburger-definable.

Can we check if a population protocol is well-specified? <

Theorem [Esparza, Ganty, Leroux, Majumdar 2017]

Checking if a population protocol is well-specified is **decidable** but as hard as Petri net reachability (Ackermann-complete).

Population Protocols with Unordered Data

Each agent carries a datum taken from an infinite set \mathbb{D} .

Interactions: $\Delta \subseteq Q^2 \times \{=, \neq\} \rightarrow Q^2$

Interactions take into account whether the two agents have = or \neq data.

$$\begin{array}{c} q_0, x \\ q_2, y \end{array} \right\} \xrightarrow{x \neq y} \left\{ \begin{array}{c} q_1, x \\ q_3, y \end{array} \right.$$

Majority predicate

Does some datum have more agents than all other combined?

Theorem [Blondin, Ladouceur ICALP 2023]

There is a PPUD deciding the majority predicate.

Majority predicate

Does some datum have more agents than all other combined?

Theorem [Blondin, Ladouceur ICALP 2023]

There is a PPUD deciding the majority predicate.

- ▶ Pair agents until a candidate majority colour emerges
- ▶ Inform everyone whether they are part of the candidate colour or not
- Apply binary majority protocol

Majority predicate

Does some datum have more agents than all other combined?

Theorem [Blondin, Ladouceur ICALP 2023]

There is a PPUD deciding the majority predicate.

- ▶ Pair agents until a candidate majority colour emerges
- Inform everyone whether they are part of the candidate colour or not
- Apply binary majority protocol

Open problem

What are the predicates computed by PPUD?

Given a PPUD, is it well-specified?

Given a PPUD, is it well-specified?

Theorem

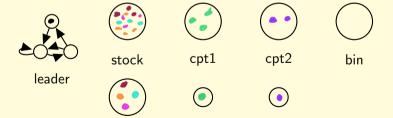
It is **undecidable** to check whether a PPUD is well-specified.

Given a PPUD, is it well-specified?

Theorem

It is undecidable to check whether a PPUD is well-specified.

▶ Simulate a 2-counter machine with zero-tests.

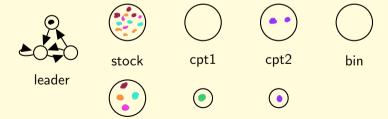


Given a PPUD, is it well-specified?

Theorem

It is undecidable to check whether a PPUD is well-specified.

▶ Simulate a 2-counter machine with zero-tests.

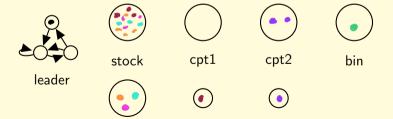


Given a PPUD, is it well-specified?

Theorem

It is undecidable to check whether a PPUD is well-specified.

► Simulate a 2-counter machine with zero-tests.

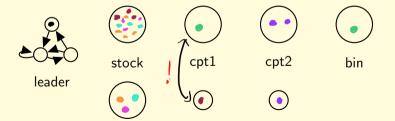


Given a PPUD, is it well-specified?

Theorem

It is undecidable to check whether a PPUD is well-specified.

► Simulate a 2-counter machine with zero-tests.



Immediate Observation

A population protocol has the **Immediate Observation** property if in every interaction one of the two agents keeps the same state.

$$\begin{array}{c} q_0, x \\ q_1, y \end{array} \right\} \xrightarrow{x \neq y} \begin{cases} q_0, x \\ q_2, y \end{cases}$$

Immediate Observation

A population protocol has the **Immediate Observation** property if in every interaction one of the two agents keeps the same state.

$$q_1, y \xrightarrow{q_0, \neq y} q_2, y$$

Immediate Observation

A population protocol has the **Immediate Observation** property if in every interaction one of the two agents keeps the same state.

$$q_1, y \xrightarrow{q_0, \neq y} q_2, y$$

Theorem (Esparza, Ganty, Majumdar, Weil-Kennedy 2018)

Well-specification is PSPACE-complete for Immediate-Observation population protocols without data.

Interval predicate = Boolean combination of

"At least 3 distinct data with between 1 and 3 agents in state q and 4 agents in state q'".

$$\exists d_1, d_2, d_3, \bigwedge_{i=1}^3 (1 \leq \#(q, d_i) \leq 3) \land (4 \leq \#(q, d_i))$$

Theorem [Blondin, Ladouceur 2023]

The predicates computed by IOPPUD are exactly interval predicates.

Theorem

Well-specification is decidable for IOPPUD.

Theorem

Well-specification is decidable for IOPPUD.

Key lemma

Given a set of configurations C described by an interval predicate, we can compute interval predicates expressing $Pre^*(C)$ and $Post^*(C)$.

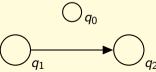
Theorem

Well-specification is decidable for IOPPUD.

Key lemma

Given a set of configurations C described by an interval predicate, we can compute interval predicates expressing $Pre^*(C)$ and $Post^*(C)$.

In an IOPPUD, if an agent goes from q_1 to q_2 then we can send as many agents as we want from q_1 to q_2 .



Generalised Reachability Expressions:

$$E ::= IP \mid E \cup E \mid E^c \mid Pre^*(E) \mid Post^*(E)$$

Theorem

Given a GRE E, we can compute an interval predicate for $[\![E]\!]_{\mathcal{P}}$.

Corollary

Given a GRE E, we can check if $[\![E]\!]_{\mathcal{P}} = \emptyset$.

- ▶ Well-specification
 - = The protocol computes something

- ► Well-specification
 - = The protocol computes something
- Correctness
 - = The protocol computes predicate P

- ▶ Well-specification
 - = The protocol computes something
- Correctness
 - = The protocol computes predicate P
- Visible termination
 - = If at some point all agents think True (False) then they will converge to True (False)

- ▶ Well-specification
 - = The protocol computes something
- Correctness
 - = The protocol computes predicate P
- Visible termination
 - = If at some point all agents think True (False) then they will converge to True (False)
- ► Home-space problem
 - = Every fair run eventually reaches set of configurations H

Complexity

Emptiness of Generalised Reachability Expressions is:

In EXPSPACE

 \rightarrow By controlling the growth of coefficients when translating GRE to Interval Predicates.

NEXPTIME-hard

 \rightarrow By encoding the tiling of an exponential grid.

► Characterise predicates computed by PPUD

- ► Characterise predicates computed by PPUD
- ► Close the complexity gap for IOPPUD

- ► Characterise predicates computed by PPUD
- ► Close the complexity gap for IOPPUD
- Other restrictions on transitions

- ► Characterise predicates computed by PPUD
- ► Close the complexity gap for IOPPUD
- Other restrictions on transitions

Thanks!