
Verification and synthesis of dynamic systems with locks and variables

Corto Mascle
joint work with Anca Muscholl, Igor Walukiewicz

LaBRI, Bordeaux

Verification and synthesis of dynamic systems with locks and variables

Corto Mascle
joint work with Anca Muscholl, Igor Walukiewicz

LaBRI, Bordeaux

Part I

Verification

3 / 27

Lock-sharing systems1

acq1

acq2

rel2

rel1

acq1

rel2

acq2

acq1

acq2

rel2

acq2

P

1 2

1 2

2

Q

1Kahlon, Ivancic, Gupta CAV 2005
4 / 27

Lock-sharing systems1

acq1

acq2

rel2

rel1

acq1

rel2

acq2

acq1

acq2

rel2

acq2

P

1

2

1

2

2

Q

1Kahlon, Ivancic, Gupta CAV 2005
4 / 27

Lock-sharing systems1

acq1

acq2

rel2

rel1

acq1

rel2

acq2

acq1

acq2

rel2

acq2

P

1

2

1 2

2

Q

1Kahlon, Ivancic, Gupta CAV 2005
4 / 27

Lock-sharing systems1

acq1

acq2

rel2

rel1

acq1

rel2

acq2

acq1

acq2

rel2

acq2

P

1

2

1

2

2

Q

1Kahlon, Ivancic, Gupta CAV 2005
4 / 27

Lock-sharing systems1

acq1

acq2

rel2

rel1

acq1

rel2

acq2

acq1

acq2

rel2

acq2

P

1 2

1 2

2

Q

1Kahlon, Ivancic, Gupta CAV 2005
4 / 27

Restriction: Nested locking

All processes acquire and release locks in a stack-like order, i.e., a process can only release
the lock it acquired the latest.

ℓ1 ℓ1
ℓ2

ℓ1

acqℓ2acqℓ1

relℓ1relℓ2

This restricts communication between processes.

5 / 27

Restriction: Nested locking

All processes acquire and release locks in a stack-like order, i.e., a process can only release
the lock it acquired the latest.

ℓ1

ℓ1
ℓ2

ℓ1

acqℓ2acqℓ1

relℓ1relℓ2

This restricts communication between processes.

5 / 27

Restriction: Nested locking

All processes acquire and release locks in a stack-like order, i.e., a process can only release
the lock it acquired the latest.

ℓ1

ℓ1
ℓ2

ℓ1

acqℓ2acqℓ1

relℓ1relℓ2

This restricts communication between processes.

5 / 27

Restriction: Nested locking

All processes acquire and release locks in a stack-like order, i.e., a process can only release
the lock it acquired the latest.

ℓ1

ℓ1
ℓ2

ℓ1

acqℓ2acqℓ1 relℓ1

relℓ2

This restricts communication between processes.

5 / 27

Restriction: Nested locking

All processes acquire and release locks in a stack-like order, i.e., a process can only release
the lock it acquired the latest.

ℓ1

ℓ1
ℓ2

ℓ1

acqℓ2acqℓ1

relℓ1

relℓ2

This restricts communication between processes.

5 / 27

Restriction: Nested locking

All processes acquire and release locks in a stack-like order, i.e., a process can only release
the lock it acquired the latest.

ℓ1 ℓ1
ℓ2

ℓ1
acqℓ2acqℓ1

relℓ1

relℓ2

This restricts communication between processes.

5 / 27

Restriction: Nested locking

All processes acquire and release locks in a stack-like order, i.e., a process can only release
the lock it acquired the latest.

ℓ1 ℓ1
ℓ2

ℓ1
acqℓ2acqℓ1

relℓ1

relℓ2

This restricts communication between processes.

4 / 16

Dynamic LSS

▷ We want to allow an unbounded number of processes and locks.

▷ A process can spawn other processes

▷ A process takes parameters, represented by lock variables

Proc = {P(ℓ1, ℓ2),Q(ℓ1, ℓ2, ℓ3),R(), ...}

6 / 27

Dynamic LSS

▷ We want to allow an unbounded number of processes and locks.

▷ A process can spawn other processes

▷ A process takes parameters, represented by lock variables

Proc = {P(ℓ1, ℓ2),Q(ℓ1, ℓ2, ℓ3),R(), ...}

6 / 27

Dynamic LSS

▷ We want to allow an unbounded number of processes and locks.

▷ A process can spawn other processes

▷ A process takes parameters, represented by lock variables

Proc = {P(ℓ1, ℓ2),Q(ℓ1, ℓ2, ℓ3),R(), ...}

6 / 27

Dynamic LSS2

Locks :

P(ℓ1, ℓ2)

acqℓ2 acqℓ1

acqℓ1 relℓ1 wait

spawn : P(new, ℓ1)spawn : P(new, ℓ1)

P(ℓ1, ℓ2)

acqℓ2 acqℓ1

acqℓ1 relℓ2 wait

spawn : P(new, ℓ1)

2Bouajjani, Müller-Olm, Touili, CONCUR 2005 + Kenter’s thesis 2022
7 / 27

Dynamic LSS2

Locks :

P(ℓ1, ℓ2)

acqℓ2 acqℓ1

acqℓ1 relℓ1 wait

spawn : P(new, ℓ1)

spawn : P(new, ℓ1)

P(ℓ1, ℓ2)

acqℓ2 acqℓ1

acqℓ1 relℓ2 wait

spawn : P(new, ℓ1)

2Bouajjani, Müller-Olm, Touili, CONCUR 2005 + Kenter’s thesis 2022
7 / 27

Dynamic LSS2

Locks :

P(ℓ1, ℓ2)

acqℓ2 acqℓ1

acqℓ1 relℓ1 wait

spawn : P(new, ℓ1)

spawn : P(new, ℓ1)

P(ℓ1, ℓ2)

acqℓ2 acqℓ1

acqℓ1 relℓ2 wait

spawn : P(new, ℓ1)

2Bouajjani, Müller-Olm, Touili, CONCUR 2005 + Kenter’s thesis 2022
7 / 27

Dynamic LSS2

Locks :

P(ℓ1, ℓ2)

acqℓ2 acqℓ1

acqℓ1 relℓ1 wait

spawn : P(new, ℓ1)

spawn : P(new, ℓ1)

P(ℓ1, ℓ2)

acqℓ2 acqℓ1

acqℓ1 relℓ2 wait

spawn : P(new, ℓ1)

2Bouajjani, Müller-Olm, Touili, CONCUR 2005 + Kenter’s thesis 2022
7 / 27

Tree representation

P(ℓ1, ℓ2)

P(ℓ1, ℓ2)

acqℓ1

spawn : P(new, ℓ1)

relℓ1 acqℓ2

Specifications are ω-regular tree languages.

“Every process is blocked after some point”

“Finitely many processes are spawned”

“Infinitely many processes reach an error state qerr”

Deadlocks

8 / 27

Tree representation

P(ℓ1, ℓ2)

P(ℓ1, ℓ2)

acqℓ1

spawn : P(new, ℓ1)

relℓ1 acqℓ2

Specifications are ω-regular tree languages.

“Every process is blocked after some point”

“Finitely many processes are spawned”

“Infinitely many processes reach an error state qerr”

Deadlocks

8 / 27

Tree representation

P(ℓ1, ℓ2)

P(ℓ1, ℓ2)

acqℓ1

spawn : P(new, ℓ1)

relℓ1 acqℓ2

Specifications are ω-regular tree languages.

“Every process is blocked after some point”

“Finitely many processes are spawned”

“Infinitely many processes reach an error state qerr”

Deadlocks

8 / 27

Tree representation

P(ℓ1, ℓ2)

P(ℓ1, ℓ2)

acqℓ1

spawn : P(new, ℓ1)

relℓ1

acqℓ2

Specifications are ω-regular tree languages.

“Every process is blocked after some point”

“Finitely many processes are spawned”

“Infinitely many processes reach an error state qerr”

Deadlocks

8 / 27

Tree representation

P(ℓ1, ℓ2)

P(ℓ1, ℓ2)

acqℓ1

spawn : P(new, ℓ1)

relℓ1 acqℓ2

Specifications are ω-regular tree languages.

“Every process is blocked after some point”

“Finitely many processes are spawned”

“Infinitely many processes reach an error state qerr”

Deadlocks

8 / 27

Tree representation

P(ℓ1, ℓ2)

P(ℓ1, ℓ2)

acqℓ1

spawn : P(new, ℓ1)

relℓ1 acqℓ2

Specifications are ω-regular tree languages.

“Every process is blocked after some point”

“Finitely many processes are spawned”

“Infinitely many processes reach an error state qerr”

Deadlocks

8 / 27

Tree representation

P(ℓ1, ℓ2)

P(ℓ1, ℓ2)

acqℓ1

spawn : P(new, ℓ1)

relℓ1 acqℓ2

Specifications are ω-regular tree languages.

“Every process is blocked after some point”

“Finitely many processes are spawned”

“Infinitely many processes reach an error state qerr”

Deadlocks

8 / 27

Regular model-checking problem

Input: A DLSS D and a parity tree automaton A.
Output: Is there a run of D accepted by A?

Problem: characterise trees that represent actual executions.

9 / 27

Regular model-checking problem

Input: A DLSS D and a parity tree automaton A.
Output: Is there a run of D accepted by A?

Problem: characterise trees that represent actual executions.

9 / 27

Lemma

The set of execution trees of a DLSS is recognised by a Büchi tree automaton of exponential
size.

For each node we guess a label of the form

▶ “ℓ1 is taken and will never be released”,
“ℓ2 will be acquired infinitely many
times”, ...

▶

The automaton checks that:

▶ the labels are consistent

▶ There exists a well-founded linear ordering
on locks in which all local orders embed.
(Technical part, also see related work
[Demri Quaas, Concur ’23])

10 / 27

Lemma

The set of execution trees of a DLSS is recognised by a Büchi tree automaton of exponential
size.

For each node we guess a label of the form

▶ “ℓ1 is taken and will never be released”,
“ℓ2 will be acquired infinitely many
times”, ...

▶

The automaton checks that:

▶ the labels are consistent

▶ There exists a well-founded linear ordering
on locks in which all local orders embed.
(Technical part, also see related work
[Demri Quaas, Concur ’23])

9 / 16

Lemma

The set of execution trees of a DLSS is recognised by a Büchi tree automaton of exponential
size.

For each node we guess a label of the form

▶ “ℓ1 is taken and will never be released”,
“ℓ2 will be acquired infinitely many
times”, ...

▶

The automaton checks that:

▶ the labels are consistent

▶ There exists a well-founded linear ordering
on locks in which all local orders embed.
(Technical part, also see related work
[Demri Quaas, Concur ’23])

9 / 16

Theorem [M., Muscholl, Walukiewicz Concur 2023]

Regular model-checking of DLSS is EXPTIME-complete, and
PTIME for fixed number of locks per process and parity index.

What about pushdown processes?

11 / 27

Theorem [M., Muscholl, Walukiewicz Concur 2023]

Regular model-checking of DLSS is EXPTIME-complete, and
PTIME for fixed number of locks per process and parity index.

What about pushdown processes?

11 / 27

Right-resetting pushdown tree automata

Right-resetting = the stack is emptied every time we go to a right child.

Lemma

Emptiness is decidable in PTIME for right-resetting parity pushdown tree automata when the
parity index is fixed.

Theorem

Regular model-checking of nested pushdown DLSS is EXPTIME-complete,
and PTIME when the parity index and the number of locks per process are fixed.

What about shared variables?

12 / 27

Right-resetting pushdown tree automata

Right-resetting = the stack is emptied every time we go to a right child.

Lemma

Emptiness is decidable in PTIME for right-resetting parity pushdown tree automata when the
parity index is fixed.

Theorem

Regular model-checking of nested pushdown DLSS is EXPTIME-complete,
and PTIME when the parity index and the number of locks per process are fixed.

What about shared variables?

12 / 27

Right-resetting pushdown tree automata

Right-resetting = the stack is emptied every time we go to a right child.

Lemma

Emptiness is decidable in PTIME for right-resetting parity pushdown tree automata when the
parity index is fixed.

Theorem

Regular model-checking of nested pushdown DLSS is EXPTIME-complete,
and PTIME when the parity index and the number of locks per process are fixed.

What about shared variables?

12 / 27

DLSS with variables

P(ℓ1, ℓ2)

P(ℓ1, ℓ2)

acqℓ1

spawn : P(new, ℓ1)

wr(a) rd(a)

wr(b)

ab

We add a register and operations wr and
rd writing and reading letters from a finite
alphabet in the register.

Sets of runs are no longer regular.

Theorem

State reachability is undecidable for DLSS
with variables.

13 / 27

DLSS with variables

P(ℓ1, ℓ2)

P(ℓ1, ℓ2)

acqℓ1

spawn : P(new, ℓ1)

wr(a) rd(a)

wr(b)

ab

We add a register and operations wr and
rd writing and reading letters from a finite
alphabet in the register.

Sets of runs are no longer regular.

Theorem

State reachability is undecidable for DLSS
with variables.

13 / 27

DLSS with variables

P(ℓ1, ℓ2)

P(ℓ1, ℓ2)

acqℓ1

spawn : P(new, ℓ1)

wr(a) rd(a)

wr(b)

ab

We add a register and operations wr and
rd writing and reading letters from a finite
alphabet in the register.

Sets of runs are no longer regular.

Theorem

State reachability is undecidable for DLSS
with variables.

13 / 27

DLSS with variables

P(ℓ1, ℓ2)

P(ℓ1, ℓ2)

acqℓ1

spawn : P(new, ℓ1)

wr(a)

rd(a)

wr(b)

a

b

We add a register and operations wr and
rd writing and reading letters from a finite
alphabet in the register.

Sets of runs are no longer regular.

Theorem

State reachability is undecidable for DLSS
with variables.

13 / 27

DLSS with variables

P(ℓ1, ℓ2)

P(ℓ1, ℓ2)

acqℓ1

spawn : P(new, ℓ1)

wr(a) rd(a)

wr(b)

a

b

We add a register and operations wr and
rd writing and reading letters from a finite
alphabet in the register.

Sets of runs are no longer regular.

Theorem

State reachability is undecidable for DLSS
with variables.

13 / 27

DLSS with variables

P(ℓ1, ℓ2)

P(ℓ1, ℓ2)

acqℓ1

spawn : P(new, ℓ1)

wr(a) rd(a)

wr(b)

a

b We add a register and operations wr and
rd writing and reading letters from a finite
alphabet in the register.

Sets of runs are no longer regular.

Theorem

State reachability is undecidable for DLSS
with variables.

13 / 27

DLSS with variables

P(ℓ1, ℓ2)

P(ℓ1, ℓ2)

acqℓ1

spawn : P(new, ℓ1)

wr(a) rd(a)

wr(b)

a

b We add a register and operations wr and
rd writing and reading letters from a finite
alphabet in the register.

Sets of runs are no longer regular.

Theorem

State reachability is undecidable for DLSS
with variables.

13 / 27

DLSS with variables

P(ℓ1, ℓ2)

P(ℓ1, ℓ2)

acqℓ1

spawn : P(new, ℓ1)

wr(a) rd(a)

wr(b)

a

b We add a register and operations wr and
rd writing and reading letters from a finite
alphabet in the register.

Sets of runs are no longer regular.

Theorem

State reachability is undecidable for DLSS
with variables.

13 / 27

Bounded writer reversals

Writer reversal = the process writing in the shared register changes.

Theorem

State reachability is decidable for DLSSV with bounded writer reversals.

It is undecidable when the processes are pushdown systems3.

3Atig, Bouajjani, Kumar, Saivasan FSTTCS 2014
14 / 27

Bounded writer reversals

Writer reversal = the process writing in the shared register changes.

Theorem

State reachability is decidable for DLSSV with bounded writer reversals.

It is undecidable when the processes are pushdown systems3.

3Atig, Bouajjani, Kumar, Saivasan FSTTCS 2014
14 / 27

Bounded writer reversals

Writer reversal = the process writing in the shared register changes.

Theorem

State reachability is decidable for DLSSV with bounded writer reversals.

It is undecidable when the processes are pushdown systems3.

3Atig, Bouajjani, Kumar, Saivasan FSTTCS 2014
14 / 27

Proof sketch

Consider a run with one process writing and others reading.

Phase: run section where

▶ the writer is in the same state and has the same locks at the start and at the end,

▶ none of the locks used by the writers in the phase are held by another process at the start
or the end

Lemma

Every finite run with a single writer can be cut into 2O(|Q|) phases.

15 / 27

Proof sketch

Consider a run with one process writing and others reading.

Phase: run section where

▶ the writer is in the same state and has the same locks at the start and at the end,

▶ none of the locks used by the writers in the phase are held by another process at the start
or the end

Lemma

Every finite run with a single writer can be cut into 2O(|Q|) phases.

15 / 27

Proof sketch

Consider a run with one process writing and others reading.

Phase: run section where

▶ the writer is in the same state and has the same locks at the start and at the end,

▶ none of the locks used by the writers in the phase are held by another process at the start
or the end

Lemma

Every finite run with a single writer can be cut into 2O(|Q|) phases.

15 / 27

Proof sketch

Consider one phase.

Lemma

Every phase can be replaced by a sequence of phases where at most one reader moves.

Construct A that:

▶ guesses a partition of the tree in K2O(|Q|)

phases, each with a single writer.

▶ checks lock conditions

▶ checks compatibility of each reader with
the writer

16 / 27

Proof sketch

Consider one phase.

Lemma

Every phase can be replaced by a sequence of phases where at most one reader moves.

Construct A that:

▶ guesses a partition of the tree in K2O(|Q|)

phases, each with a single writer.

▶ checks lock conditions

▶ checks compatibility of each reader with
the writer

15 / 16

Proof sketch

Consider one phase.

Lemma

Every phase can be replaced by a sequence of phases where at most one reader moves.

Construct A that:

▶ guesses a partition of the tree in K2O(|Q|)

phases, each with a single writer.

▶ checks lock conditions

▶ checks compatibility of each reader with
the writer

15 / 16

Proof sketch

Consider one phase.

Lemma

Every phase can be replaced by a sequence of phases where at most one reader moves.

Construct A that:

▶ guesses a partition of the tree in K2O(|Q|)

phases, each with a single writer.

▶ checks lock conditions

▶ checks compatibility of each reader with
the writer

16 / 27

Proof sketch

Consider one phase.

Lemma

Every phase can be replaced by a sequence of phases where at most one reader moves.

Construct A that:

▶ guesses a partition of the tree in K2O(|Q|)

phases, each with a single writer.

▶ checks lock conditions

▶ checks compatibility of each reader with
the writer

15 / 16

To sum up

State reachability
nested LSS -¿ Decidable
+dynamic -¿ Decidable
+bounded wr. var -¿ Decidable
+ var -¿ undecidable

17 / 27

Part II

Controller synthesis

18 / 27

▶ 4 prisoners are waiting in their cells

▶ Everyday, one is picked at random and
taken to a room with a lightbulb and a
switch, then brought back to the cell.

▶ At any point a prisoner can claim that all
prisoners have been in the cell at least
once.
They win if it is true, otherwise they lose.

3 / 7

▶ 4 prisoners are waiting in their cells

▶ Everyday, one is picked at random and
taken to a room with a lightbulb and a
switch, then brought back to the cell.

▶ At any point a prisoner can claim that all
prisoners have been in the cell at least
once.
They win if it is true, otherwise they lose.

3 / 7

▶ 4 prisoners are waiting in their cells

▶ Everyday, one is picked at random and
taken to a room with a lightbulb and a
switch, then brought back to the cell.

▶ At any point a prisoner can claim that all
prisoners have been in the cell at least
once.
They win if it is true, otherwise they lose.

3 / 7

▶ 4 prisoners are waiting in their cells

▶ Everyday, one is picked at random and
taken to a room with a lightbulb and a
switch, then brought back to the cell.

▶ At any point a prisoner can claim that all
prisoners have been in the cell at least
once.
They win if it is true, otherwise they lose.

3 / 7

▶ 4 prisoners are waiting in their cells

▶ Everyday, one is picked at random and
taken to a room with a lightbulb and a
switch, then brought back to the cell.

▶ At any point a prisoner can claim that all
prisoners have been in the cell at least
once.
They win if it is true, otherwise they lose.

3 / 7

Formal problem

We have:

▶ A finite set of processes

▶ A finite set of variables

▶ A finite set of locks

Each process is a finite-state transition system with operations

4 / 7

Formal problem

Processes have controllable and uncontrollable states.

A strategy σp for process p is a function choosing the next action of p from controllable
states with as input the local run seen so far.

Specifications = boolean combinations of local regular conditions.

5 / 8

Formal problem

Processes have controllable and uncontrollable states.

A strategy σp for process p is a function choosing the next action of p from controllable
states with as input the local run seen so far.

Specifications = boolean combinations of local regular conditions.

5 / 8

Formal problem

Processes have controllable and uncontrollable states.

A strategy σp for process p is a function choosing the next action of p from controllable
states with as input the local run seen so far.

Specifications = boolean combinations of local regular conditions.

5 / 8

▶ Processes have controllable and uncontrollable states

▶ Strategies are local, ie, only use the sequence of local actions of the process as input.

▶ Every copy of each process uses the same strategy

Problem

Is there a strategy σ = (σp)p∈Proc ensuring that there is no execution accepted by A?

20 / 27

▶ Processes have controllable and uncontrollable states

▶ Strategies are local, ie, only use the sequence of local actions of the process as input.

▶ Every copy of each process uses the same strategy

Problem

Is there a strategy σ = (σp)p∈Proc ensuring that there is no execution accepted by A?

20 / 27

Example

Pinit(ℓ1, ℓ2) :

P(ℓ1, ℓ2, ℓ3) :

Q(ℓ1, ℓ2) :

spawn(P(ℓ2, new , ℓ1))

acqℓ1

acqℓ2

acqℓ2

acqℓ1

spawn(P(ℓ2, new , ℓ3))

spawn(Q(ℓ1, ℓ3))

acqℓ1

acqℓ2

acqℓ2

acqℓ1

acqℓ1

acqℓ2

acqℓ2

acqℓ1
21 / 27

With locks only (DLSS)

Problem

Is there a strategy σ = (σp)p∈Proc ensuring that there is no execution accepted by A?

Lemma

The set of execution trees of a DLSS is recognised by a Büchi tree automaton of exponential
size.

Corollary

There is a tree automaton T recognising executions of D that are accepted by A.

Strategy (σp)p∈Proc → set of local runs
Is there a strategy such that we cannot form a tree accepted by T whose left branches are
those local runs?

22 / 27

With locks only (DLSS)

Problem

Is there a strategy σ = (σp)p∈Proc ensuring that there is no execution accepted by A?

Lemma

The set of execution trees of a DLSS is recognised by a Büchi tree automaton of exponential
size.

Corollary

There is a tree automaton T recognising executions of D that are accepted by A.

Strategy (σp)p∈Proc → set of local runs
Is there a strategy such that we cannot form a tree accepted by T whose left branches are
those local runs?

22 / 27

With locks only (DLSS)

Problem

Is there a strategy σ = (σp)p∈Proc ensuring that there is no execution accepted by A?

Lemma

The set of execution trees of a DLSS is recognised by a Büchi tree automaton of exponential
size.

Corollary

There is a tree automaton T recognising executions of D that are accepted by A.

Strategy (σp)p∈Proc → set of local runs
Is there a strategy such that we cannot form a tree accepted by T whose left branches are
those local runs?

22 / 27

With locks only (DLSS)

Problem

Is there a strategy σ = (σp)p∈Proc ensuring that there is no execution accepted by A?

Lemma

The set of execution trees of a DLSS is recognised by a Büchi tree automaton of exponential
size.

Corollary

There is a tree automaton T recognising executions of D that are accepted by A.

Strategy (σp)p∈Proc → set of local runs
Is there a strategy such that we cannot form a tree accepted by T whose left branches are
those local runs?

22 / 27

With locks only (DLSS)

Corollary

There is a parity tree automaton T recognising executions of D that are accepted by A.

A strategy σ defines a set of local runs, i.e., left branches of execution trees.
A labelled left branch is a left branch annotated with states of T .

Definition

The profile of a labelled left branch is a tuple (p, s, π) with:

▶ p is the process executing in this branch

▶ s is the state labelling the first node of the branch

▶ π : Prio → 2Proc×ST is a function mapping each priority i to the set of (p′, s ′) such that
p′ is spawned at a node labelled by s ′ while the highest priority seen before is i .

23 / 27

With locks only (DLSS)

Corollary

There is a parity tree automaton T recognising executions of D that are accepted by A.

A strategy σ defines a set of local runs, i.e., left branches of execution trees.
A labelled left branch is a left branch annotated with states of T .

Definition

The profile of a labelled left branch is a tuple (p, s, π) with:

▶ p is the process executing in this branch

▶ s is the state labelling the first node of the branch

▶ π : Prio → 2Proc×ST is a function mapping each priority i to the set of (p′, s ′) such that
p′ is spawned at a node labelled by s ′ while the highest priority seen before is i .

23 / 27

With locks only (DLSS)

Corollary

There is a parity tree automaton T recognising executions of D that are accepted by A.

A strategy σ defines a set of local runs, i.e., left branches of execution trees.
A labelled left branch is a left branch annotated with states of T .

Definition

The profile of a labelled left branch is a tuple (p, s, π) with:

▶ p is the process executing in this branch

▶ s is the state labelling the first node of the branch

▶ π : Prio → 2Proc×ST is a function mapping each priority i to the set of (p′, s ′) such that
p′ is spawned at a node labelled by s ′ while the highest priority seen before is i .

23 / 27

With locks only (DLSS)

Corollary

There is a parity tree automaton T recognising executions of D that are accepted by A.

A strategy σ defines a set of local runs, i.e., left branches of execution trees.
A labelled left branch is a left branch annotated with states of T .

Definition

The profile of a labelled left branch is a tuple (p, s, π) with:

▶ p is the process executing in this branch

▶ s is the state labelling the first node of the branch

▶ π : Prio → 2Proc×ST is a function mapping each priority i to the set of (p′, s ′) such that
p′ is spawned at a node labelled by s ′ while the highest priority seen before is i .

23 / 27

With locks only (DLSS)

The behaviour of a strategy σ = (σp)p∈Proc is the set of profiles of accepting labelled left
branches (= local runs) compatible with it.

Lemma

Whether (σp)p∈Proc is winning only depends on its behaviour.

24 / 28

With locks only (DLSS)

The behaviour of a strategy σ = (σp)p∈Proc is the set of profiles of accepting labelled left
branches (= local runs) compatible with it.

Lemma

Whether (σp)p∈Proc is winning only depends on its behaviour.

24 / 28

With locks only (DLSS)

Theorem

The controller synthesis problem is decidable over DLSS.

Algorithm:

▶ Enumerate sets of profiles

▶ For each one, test whether there is a strategy yielding that set of profiles

▶ If there is one, there is one with bounded memory: check whether it is winning.

25 / 27

With locks only (DLSS)

Theorem

The controller synthesis problem is decidable over DLSS.

Algorithm:

▶ Enumerate sets of profiles

▶ For each one, test whether there is a strategy yielding that set of profiles

▶ If there is one, there is one with bounded memory: check whether it is winning.

25 / 27

With locks and variables

With variables, none of this works!
▶ Sets of execution trees are not regular

▶ “Pumping argument” used for verification does not extend to adversarial setting.

26 / 27

What is left to do

Conjecture

Verification of nested DLSS with variables and bounded writer reversals against ω-regular tree
specifications is decidable.

Conjecture

Controller synthesis of nested DLSS with variables and bounded writer reversals against
ω-regular tree specifications is decidable.

27 / 27

What is left to do

Conjecture

Verification of nested DLSS with variables and bounded writer reversals against ω-regular tree
specifications is decidable.

Conjecture

Controller synthesis of nested DLSS with variables and bounded writer reversals against
ω-regular tree specifications is decidable.

27 / 27

Formal problem

Problem

Given a system with processes, locks and variables and a specification φ, can we find a family
of strategies (σp)p∈Proc guaranteeing φ?

Undecidable in general.

Conjecture

This problem is decidable with bounded writer reversal and nested locks.

6 / 7

Problem 1

I: A system S, K ∈ N and a specification φ
O:Is there a family of strategies (σp)p∈Proc guaranteeing φ over runs with ≤ K writer
reversals?

Problem 2

I: A system S, K ∈ N and a specification φ
O:Is there a family of strategies (σp)p∈Proc guaranteeing φ and that all runs have ≤ K writer
reversals?

Algorithm:
For K = 0 to +∞ do

If ∃(σp) such that ϕ∧ ≤ K → return YES

If ̸ ∃(σp) such that ≤ K ⇒ ϕ → return NO

7 / 7

Problem 1

I: A system S, K ∈ N and a specification φ
O:Is there a family of strategies (σp)p∈Proc guaranteeing φ over runs with ≤ K writer
reversals?

Problem 2

I: A system S, K ∈ N and a specification φ
O:Is there a family of strategies (σp)p∈Proc guaranteeing φ and that all runs have ≤ K writer
reversals?

Algorithm:
For K = 0 to +∞ do

If ∃(σp) such that ϕ∧ ≤ K → return YES

If ̸ ∃(σp) such that ≤ K ⇒ ϕ → return NO

7 / 7

Problem 1

I: A system S, K ∈ N and a specification φ
O:Is there a family of strategies (σp)p∈Proc guaranteeing φ over runs with ≤ K writer
reversals?

Problem 2

I: A system S, K ∈ N and a specification φ
O:Is there a family of strategies (σp)p∈Proc guaranteeing φ and that all runs have ≤ K writer
reversals?

Algorithm:
For K = 0 to +∞ do

If ∃(σp) such that ϕ∧ ≤ K → return YES

If ̸ ∃(σp) such that ≤ K ⇒ ϕ → return NO

7 / 7

Other directions

▶ General approach to local controller synthesis

▶ Parameterised complexity

▶ Strategies using more information

Thanks!

28 / 27

Other directions

▶ General approach to local controller synthesis

▶ Parameterised complexity

▶ Strategies using more information

Thanks!

28 / 27

