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Malfunctioning keyboard

We try to write the word bip.

1. We press the b key: it writes “bis”.

2. We press the i key: it erases two letters, writes “lo” and

moves the cursor to the left.

3. We press the p key: it moves the cursor to the right and

writes “op”.
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Malfunctioning keyboard

We try to write the word bip.

1. We press the b key: it writes “bis”.

2. We press the i key: it erases two letters, writes “lo” and

moves the cursor to the left.

3. We press the p key: it moves the cursor to the right and

writes “op”.

“bloop|”

Instead of “bip”, the keyboard wrote “bloop”!
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What do we do?

We could try to fix the keyboard...

...or we could try to see what we can do with it! Can we write

any word? If not, which words can we write?
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Modelling

Atomic operations

• a for a ∈ Σ: writes “a” to the left of the cursor.

• ←: erases the letter to the left of the cursor.

• J and I: moves the cursor to the left and to the right

respectively.

Keyboard

• A key is a sequence of atomic operations.

• A keyboard is a finite set of keys.

Our broken keyboard
We wrote “bloop” by pressing three keys:

{bis,←←loJ,Iop}.
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Modelling

• If the current word is uv with the cursor between u and v,

the configuration is denoted 〈u|v〉.

• Keys induce actions on the configurations.

〈u|v〉 · a = 〈ua|v〉 if a is a letter.

〈ε|v〉 · ← = 〈ε|v〉 and

〈
u′a
∣∣v〉 · ← =

〈
u′
∣∣v〉

〈ε|v〉 ·J = 〈ε|v〉 and

〈
u′a
∣∣v〉 ·J =

〈
u′
∣∣av〉

〈u|ε〉 ·I = 〈u|ε〉 and

〈
u
∣∣av′〉 ·I =

〈
ua
∣∣v′〉
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Modelling

Applying a key to a configuration
We apply t =←aI to 〈c|d〉.

〈c|d〉 ←−→ 〈ε|d〉
a−→ 〈a|d〉
I−→ 〈ad|ε〉.

Hence 〈c|d〉 t−→ 〈ad|ε〉.
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Language

The language of a keyboardK is the set of words we can obtain

from configuration 〈ε|ε〉 by applying a sequence of keys fromK,

L(K) =
{
uv
∣∣∣ ∃t1, . . . , tn ∈ K, 〈ε|ε〉 t1...tn−−−→ 〈u|v〉

}
.

Let t1 = bis, t2 =←←loJ, t3 = Iop andK = {t1, t2, t3}.

〈ε|ε〉 t1−→ 〈bis|ε〉
t2−→ 〈bl|o〉
t3−→ 〈bloop|ε〉

The word “bloop” is in the language ofK.

8



Language

The language of a keyboardK is the set of words we can obtain

from configuration 〈ε|ε〉 by applying a sequence of keys fromK,

L(K) =
{
uv
∣∣∣ ∃t1, . . . , tn ∈ K, 〈ε|ε〉 t1...tn−−−→ 〈u|v〉

}
.

Let t1 = bis, t2 =←←loJ, t3 = Iop andK = {t1, t2, t3}.

〈ε|ε〉 t1−→ 〈bis|ε〉
t2−→ 〈bl|o〉
t3−→ 〈bloop|ε〉

The word “bloop” is in the language ofK.

8



Some examples

• The language ofK = {ab, a}?

(ab+ a)+.

• The language ofK = {a, bJ, ε}?

a∗b∗.

• The language ofK = {(),J,I}?

The Dyck language (correctly nested sequences of brackets)!
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Some examples

• A keyboard for {w ∈ {a, b}∗ | |w|a ≡ 0[3]}?

K = {aaa,J, b}.

• A keyboard for {w ∈ {a, b}∗ | |w|a = |w|b}?

K = {ab, ba,J}.

• A keyboard for ab+?

K = {←abJ}
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Keyboards expressivity

Keyboard languages are recursive, but which languages can

keyboards represent?

Are those keyboard languages?

• Finite languages?

• {a2n+1
∣∣ n ∈ N

}
?

Add an “Entry”!
An “Entry” symbol �which validates the word!
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Final keys

• Some keys, called final keys, validate the current word.

They end with an “Entry” �.

• The current word is accepted when the entry is applied.

L(K) =

{
uv

∣∣∣∣ ∃t1, . . . , tn and tf final such that 〈ε|ε〉
t1...tntf−−−−−→ 〈u|v〉

}

� is useful!
The language

{
a2n+1

∣∣ n ∈ N
}
is recognized by {aa, a�}.
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Two types of keyboards

• Keyboards with entry are calledmanual.
• Keyboards without entry are called automatic.

Theorem (Simulation)
The language of an automatic keyboardKA is also recognized by the
(manual) keyboard

KM = {t | t ∈ KA} ∪ {t� | t ∈ KA}.
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Edge effects

The action of a key may differ when the cursor is close to an end

of the word!

An automatic keyboard for
{
a2n+1

∣∣ n ∈ N
}

This language is recognized by the keyboard

{t1 =←a, t2 =←aaa}.

〈ε|ε〉 t1−→ 〈a|ε〉
〈
a2n+1

∣∣ε〉 t1−→
〈
a2n+1

∣∣ε〉
〈ε|ε〉 t2−→ 〈aaa|ε〉

〈
a2n+1

∣∣ε〉 t2−→
〈
a2n+3

∣∣ε〉
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The language anbcn

L = anbcn is recognized byK = {bIJ←,I←abcJJ}.

〈ε|ε〉

〈ε|b〉

〈an|bcn〉

〈ε|ε〉 t2−→ 〈a|bc〉
t2−→ 〈aa|bcc〉
t1−→ 〈aa|bcc〉
t2−→ 〈aaa|bccc〉

Starting from 〈ε|ε〉, bIJ←writes a b, and from 〈an|bcn〉 it
doesn’t do anything.

Invariant: we are always in a configuration of the form 〈an|bcn〉.
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The language a∗ + b

L = a∗ + b is recognized byK = {bIJ←, aIJ←,I←aaJ}.

〈ε|ε〉

〈ε|b〉 〈ε|a〉

〈a+|a〉

From a configuration of the form 〈an|a〉, bIJ← and aIJ←
have no effect, but I←aaJ adds an a and leads to

〈
an+1

∣∣a〉.
16



Classes of languages

• B: with←
• E: with �

• L: with J

• A: with I and J

MK : {} LK : {J} AK : {J,I}
EK : {�} LEK : {J,�} AEK : {J,I,�}
BK : {←} BLK : {J,←} BAK : {J,I,←}

BEK : {←,�} BLEK : {J,←,�} BAEK : {J,I,←,�}
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Visiting the zoo



BEK{←,�}: A gentle animal

Lemma
For all c ∈ A, c← is equivalent to ε.

Simplification

←abb←ba←3 ⇐⇒ ←abb←ba←3

⇐⇒ ←abba←←2

⇐⇒ ←abb←←
⇐⇒ ←ab←
⇐⇒ ←a
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BEK{←,�}: A gentle animal

Lemma (BEK normal form)
Every key of BEK is equivalent to a key of the form←∗A∗.

Further, as we start on the empty configuration and never apply

any J, the cursor is always on the right end of the word.

Lemma
Applying a sequence of keys of BEK from a configuration 〈w|ε〉
yields a configuration of the form 〈w′|ε〉.
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BEK{←,�}: A gentle animal

Applying a key of BEK comes down to erasing a few letters at

the end of the word, then writing a few others.

Theorem
For all keyboardK of BEK there exists a pushdown automaton
recognising L(K).

Theorem
For all keyboardK of BEK there exists an NFA of polynomial size
recognising L(K).
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BEK{←,�}: Proof of rationality

Theorem
For all keyboardK of BEK there exists an NFA of polynomial size
recognising L(K).

We can see a run of a BEK keyboard like this:

Each key erases some letters,

writes some letters that will never

be erased, then some letters that will eventually be erased .

←ma1 · · · anb1 · · · bp

21
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BEK{←,�}: Proof of rationality

Say we want to write abcwith the keyboard

K =
{
←2aba,←4bc

}
:

ε
←2aba−−−−→ aba︸ ︷︷ ︸
writing

←2aba−−−−→ aaba
←2aba−−−−→ aaaba︸ ︷︷ ︸

adjusting extra letters

←4bc−−−→ abc︸ ︷︷ ︸
writing

→ We only care about the number of letters that will be

erased, not about the word they form!
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BEK{←,�}: Proof of rationality

To each key we can associate its numerical trace, which is the

number of letters it writes minus its number of←.

←2aba 7−→ +1

←4bc 7−→ −2

Let p be the gcd of all the traces of keys ofK.

Proposition
We can turn i extra letters into j extra letters if and only if p divides
|i− j| (up to some minor conditions).

23
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BEK{←,�}: Proof of rationality

We construct an NFA with states {0, . . . , n}, n being the

maximal length of a key ofK.

States count the number of extra letters.

It has two types of transitions:

→ i
u−→ j simulates the application of a key of the form←iuv

with |v| = j.

→ i
ε−→ j simulates the application of a series of keys not

affecting the permanent letters but switching the number

of extra letters from i to j.
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BEK{←,�}: Proof of rationality

Theorem
For all keyboardK of BEK there exists an NFA of polynomial size
recognising L(K).

For the keyboardK =
{
←2aba,←4bc

}
, we get:

I

0

2 3

4

a, ε

ε

aba, bc

a

ε

aba

ε
ε

bc

L(K) = a∗(aba+ bc)
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BLEK{J,←,�}: A ferocious creature?

The problem with BLEK

The left arrow allows for modifications anywhere in the word!

For instance, J3← allows one to erase letters inside the word.

Not so fast!
The letters to the right of the word are “fixed”.

〈u|v〉 a−→ 〈ua|v〉

〈ua|v〉 J−→ 〈u|av〉
〈ua|v〉 ←−→ 〈u|v〉
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BLEK{J,←,�}: A tamed creature

The problem with BLEK

The left arrow allows for modifications anywhere in the word!

For instance, J3← allows one to erase letters inside the word.

Not so fast!
The letters to the right of the word are “fixed”.

〈u|v〉 a−→ 〈ua|v〉
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BLEK{J,←,�}: A tamed creature

Lemma (A property of BLEK)
Any sequence of keys of BLEK applied from a configuration 〈u|v〉
leads to a configuration of the following form: 〈u′|wv〉.

The left arrow can be interpreted as a way to record the letter to

the left of the cursor.

Theorem
For all keyboardK of BLEK there exists a pushdown automaton of
polynomial size recognising L(K).
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AEK{J,I,�}: A wild being

No more erasing, we only add letters!

Lemma (Monotony)
Applying any sequence of keys of AEK to a configuration 〈u|v〉
yields a configuration 〈u′|v′〉 with |u′|+ |v′| ≥ |u|+ |v|.

Theorem
For all keyboardK of AEK there exists a linear bounded automaton
of polynomial size recognising L(K).
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AEK{J,I,�}: A wild being

No more erasing, we only add letters!

Lemma (Monotony)
Applying any sequence of keys of AEK to a configuration 〈u|v〉
yields a configuration 〈u′|v′〉 with |u′|+ |v′| ≥ |u|+ |v|.

Theorem
For all keyboardK of AEK there exists a linear bounded automaton
of polynomial size recognising L(K).
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BAEK{J,I,←,�}: The monster

BAEK does not have any of the previous properties.

Proposition
Since a key can only modify the size of a configuration in a bounded
way, if w is accepted, then some slightly smaller or longer word is
also accepted.

Application{
an

2
∣∣∣ n ∈ N

}
and {ap | p prime} are not recognised by any

keyboard.
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The keyboard hierarchy



Strict hierarchy theorem

Theorem

• All 12 keyboard language classes we considered are distinct.
In particular, not all keyboards are automatic!

• The only inclusions between classes are trivial ones
(except possibly for the inclusions of EK and BEK in BAK).

30



A strict hierarchy

CF

BLEKRat

BEK LEK BLK

EK BK LK

MK

AK

AEK BAK

BAEK CS

31



Membership Universality

MK P P

EK P P

BK P coNP

BEK P PSPACE

LK P ?

LEK P ?

BLK P ?

BLEK P ?

AK NP ?

AEK NP ?

BAK ? ?

BAEK ? ?

32



Complement Concatenation Intersection

MK a2n a∗c∗ (ab+ bb+ ba)∗ ∩ (ba+ b)∗

EK a2n+3 a∗c∗ (ab+ bb+ ba)∗ ∩ (ba+ b)∗

BK (a+ b)∗ with |A| = 3 a∗c∗ L(K1) ∩ L(K2)

BEK (a+ b)∗ with |A| = 3 a∗c∗ L(K1) ∩ L(K2)

LK a2n anbncmdm anbncn

LEK a2n+3 ancanamcam anbncn

BLK
{
w
∣∣ |w|a ≤ 1

}
(aa)∗(b+ b2) anbncn

BLEK
{
w
∣∣ |w|a ≤ 1

}
ancanamcam anbncn

AK a2n anbncmdm anbncn

AEK a2n+3 ancanamcam anbncn

BAK ? ancanamcam anbncn

BAEK ? ancanamcam anbncn
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Mirror Morphism Union

MK X X a∗ + b∗

EK b∗a X a∗ + b∗

BK b∗a (a2)∗(b+ c) a∗ + b∗

BEK b∗a ? a∗ + b∗

LK bnc(ca)n−1a ? a∗ + b∗

LEK c+ cb(ba)∗a ? a∗ + b∗

BLK (b+ b2)a∗ (a2)∗(b+ c) a∗ + b∗

BLEK c+ cb(ba)∗a ? a∗ + b∗

AK X ? a∗ + b∗

AEK X ? a∗ + b∗

BAK ? w(c+ d)w̃ ancan ∪ bncbn

BAEK ? ? ancan ∪ bncbn
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EK 6⊂ BK

Lemma
L = (a2)∗(b+ b2) is recognized by {aa, b�, bb�} and is not in BK.

Proof.
If L(K) = L, there exists τ (of normal form←kb2) writing b2.

We distinguish cases according to the value of k.

Contradiction
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Lemma
L = (a2)∗(b+ b2) is recognized by {aa, b�, bb�} and is not in BK.

Proof.
If L(K) = L, there exists τ (of normal form←kb2) writing b2.

We distinguish cases according to the value of k.

If k = 0, then τ ∼ b2: we then have

ε · τ · τ = b2 · τ = b4 ∈ L.

Contradiction
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EK 6⊂ BK

Lemma
L = (a2)∗(b+ b2) is recognized by {aa, b�, bb�} and is not in BK.

Proof.
If L(K) = L, there exists τ (of normal form←kb2) writing b2.

We distinguish cases according to the value of k.

If k > 1 and k even: from a2kb ∈ Lwe obtain

a2kb · τ = ak+1b2 ∈ L.

Contradiction
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EK 6⊂ BK

Lemma
L = (a2)∗(b+ b2) is recognized by {aa, b�, bb�} and is not in BK.

Proof.
If L(K) = L, there exists τ (of normal form←kb2) writing b2.

We distinguish cases according to the value of k.

If k > 1 and k odd: from a2kb2 ∈ Lwe obtain

a2kb2 · τ = ak+2b2 ∈ L.

Contradiction
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Research goes on



Decision problems

The membership problem

Membership :

Input : K ∈ BAEK, w ∈ A∗

Output : w ∈ L(K)?

• BEK: ∈ PTIME.

• BLEK: ∈ PTIME.

• AEK: ∈ NP.

• BAEK?

Can we do better?
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Decision problems

Universality problem

Universality :

Input : K ∈ BAEK

Output : L(K) = A∗?

• BEK: ∈ PSPACE

• BLEK?

• AEK?

• BAEK?

37



Other questions?

• Do we have BEK ⊂ BAK? EK ⊂ BAK?

• Are all rational languages in BAEK?

• Is BAEK included in context-sensitive languages?

Context-free ones?

• Relations to other known models?
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Other questions?

• Do we have BEK ⊂ BAK? EK ⊂ BAK?

• Are all rational languages in BAEK?

• Is BAEK included in context-sensitive languages?

Context-free ones?

• Relations to other known models?

a∗ + b∗ seems to not be in BAEK!
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Other questions?

• Do we have BEK ⊂ BAK? EK ⊂ BAK?

• Are all rational languages in BAEK?

• Is BAEK included in context-sensitive languages?

Context-free ones?

• Relations to other known models?

Study the keyboard {aII, bJJ}.
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Thanks for your attention!

Questions?
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An example

Some as and bs separated by ♦ and �.

• Between two a: ♦.

• Between two b: ♦.

• Between an a and a b:

nothing.

• Between a b and an a:

♦�.

KC = {←a♦�,←←b♦��}.

(b(♦b)∗♦�+(a+b(♦b)∗♦�a)((♦+b(♦b)∗♦�)a)∗(♦+b(♦b)∗♦�))�

0

1

2

3

6 4

5 a−→
b−→
♦−→
�−→
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Class inclusions

Lemma (LK 6⊂ BEK)
The language of even palindromes is in LK via {aaJ, bbJ}, and is
not rational.

Lemma (BK 6⊂ AK and EK 6⊂ AK)
Finite languages are in EK and BK, but not AK.



BAK 6⊂ AEK

Lemma
L = a∗ + b∗ 6∈ AEK.

Proof.

• There is a (non-final) key writing an a.

• There is a (non-final) key writing a b.

We can write a word with a and b!



Rat 6⊂ BEK

Lemma
a∗b∗ 6∈ BEK

Proof.

• There exists τ writing a and applying entry (τ is of the

form←ka�).

• There exists τ ′ writing arbitrarily many bwithout entry (for

instance k + 1).

τ ′τ writes ba and ends the execution.
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