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Matrix mortality

A =

(
0 1
0 1

)
B =

(
0 1
2 0

)

C =

(
2 −1
2 −1

)

No product of As and Bs can be zero, but

CBA = C (BA) =

(
2 −1
2 −1

)(
0 1
0 2

)
=

(
0 0
0 0

)
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Matrix mortality

Given a finite set of matrices S = {M1, ...,Mp} ⊆ Mn×n(Z), the problem
of deciding if the monoid generated by S contains 0 is

Undecidable in the general case (Paterson, 1970).

PSPACE-complete when all entries are non-negative (Kao,
Rampersad, Shallit, 2009).

Polynomial-time when all entries are non-negative and the monoid
generated by S is finite :
One can compute the average matrix, and check if its spectral radius
is less than 1, but this does not provide a witness.
→ Can one compute a ’short’ sequence of matrices M1, ...,Mp such
that M1...Mp = 0 ?
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Matrix mortality

We can switch from a problem on matrices to a problem on automata :

0

1 2

a

a

a

b

b

b

b

a

⇔

M(a) =

0 1 0
1 0 1
0 0 1


M(b) =

1 0 1
0 1 0
1 0 0


M(ab) = M(a)M(b) =

0 1 0
2 0 1
1 0 0



The rank of a word w in A is the rank of M(w).
A killing word is a word of rank 0.
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Unambiguous automata

Unambiguous automaton → Nondeterministic finite automaton in which
for all states s, t, for all word w there is at most one path from s to t
labelled by w .
Equivalently, all entries of the matrix monoid associated to this automaton
are 0 or 1.

s

q

q′

t

u

u

v

v

The monoid associated to an unambiguous automaton is finite. The
converse is true for strongly connected automata.

9 / 36



Unambiguous automata

Unambiguous automaton → Nondeterministic finite automaton in which
for all states s, t, for all word w there is at most one path from s to t
labelled by w .
Equivalently, all entries of the matrix monoid associated to this automaton
are 0 or 1.

s

q

q′

t

u

u

v

v

The monoid associated to an unambiguous automaton is finite. The
converse is true for strongly connected automata.

9 / 36



Unambiguous automata

0

1

2

3

a

b

a

b
a

b

a

M(a) =


1 1 0 0
0 0 0 1
0 0 0 0
0 0 1 0

 M(b) =


0 0 0 1
0 1 1 0
0 0 0 0
0 0 0 0

 M(baab) = 0
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Result

Result

Given an unambiguous automaton with n states one can compute a
killing word (when there is one) of length at most 1

16n
5 + 15

16n
4 in

polynomial time.

Main result

Given a set of matrices S ⊆Mn×n(N) generating a finite monoid, if this
monoid contains 0,then one can compute a sequence of matrices
M1, ...,MK ∈ S such that M1...MK = 0 in polynomial time, with
K ≤ 1

16n
5 + 15

16n
4.

When the automaton does not have any killing word, the procedure
returns a word of minimal rank.
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Result

Main result (generalized version)

Given a set of matrices S ⊆Mn×n(N) generating a finite monoid, one can
compute in polynomial time a sequence of matrices M1, ...,MK ∈ S such
that M1...MK has minimal rank, with K ≤ 1

16n
5 + 15

16n
4.

12 / 36



Remarks

In 1988, Carpi gave a polynomial-time algorithm to compute
minimal-rank words for strongly connected unambiguous automata
with positive minimal rank.

The main contribution here is the extension of Carpi’s result to
unambiguous automata with minimal rank 0.
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Restivo’s conjecture

S = {w1, ...,wp} ⊆ Σ∗

0
w1

w3w2

. . .

S = {aa, ab, bab}

0

a

a

b

a

b

a

b

Let A(S) be the automaton associated to the set of words S .
A(S) is non-deterministic in general.
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Restivo’s conjecture

Restivo’s conjecture (1981)

kw(A(S)) is bounded by 2m2 where m = maxw∈S |w |

Here A(S) is not necessarily unambiguous.

0

a

a

b

a

b

a

b

S = {aa, ab, bab}

The word bbb is a killing word
for this automaton.
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History

1981 → Restivo’s conjecture (2m2 upper bound)

2010 → Numerical counterexample by Fici, Pribavnika and Sakarovitch

2011 → Family of counterexamples by Gusev and Pribavnika
(5m2 lower bound)

2017 → Computations hinting at an exponential growth in m
by Julia, Malapert and Provillard

2019 → Superpolynomial lower bound by Mika and Szyku la (2
m
4 )
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Final disproval

Theorem (Maksymilian Mika, Marek Szyku la)

The following problem is PSPACE-complete:
Input: A finite set S of words
Output: Σ∗ = S∗?

While proving this result the authors constructed a family of sets of words
whose minimal uncompletable word is of superpolynomial size in the
maximal length of their elements.
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A particular case

Rather than any finite set of words, we can restrict ourselves to finite
codes.

Definition

A code is a set of words S such that for all u1, . . . , un, v1, . . . , vp ∈ S , if
u1 · · · un = v1 · · · vp then n = p and ui = vi for all i .

S = {aa, aba} is a code.

19 / 36



A particular case
When S is a finite code, A(S) is unambiguous (the converse is true).

A version of Restivo’s conjecture in codes

When S is a code, kw(A(S)) is polynomially bounded in terms of
m = maxw∈S |w |

This has been shown for some particular cases such as prefix codes
(Néraud, Selmi, 1988).

Weaker version of the conjecture

When S is a code, kw(A(S)) is polynomially bounded in terms of the
number of states n in A(S)

0
w1

w3w2

. . .
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Is there always a killing word of length polynomial in ...

... in the sum
of the lengths

for codes?

... in the sum
of the lengths?

... in the
maximal length

for codes?

... in the
maximal
length?
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Proof for strongly connected UFA

q

q′

qw

q′w

u

u

w

w

qw and q′w are disjoint because of unambiguity.

v exists as we assumed strong connectedness.

qw t q′w ⊆ q(vuw)

24 / 36



Proof for strongly connected UFA

q

q′

qw

q′w

v

u

u

w

w

qw and q′w are disjoint because of unambiguity.

v exists as we assumed strong connectedness.

qw t q′w ⊆ q(vuw)

24 / 36



Proof for strongly connected UFA

q

q′

qw

q′w

v

u

u

w

w

qw and q′w are disjoint because of unambiguity.

v exists as we assumed strong connectedness.

qw t q′w ⊆ q(vuw)

24 / 36



Proof for strongly connected UFA

Lemma

For all state q we can compute a word wq such that for all states q′ 6= q,
if q and q′ are coaccessible then either qw = ∅ or q′w = ∅.

For all q there exists wq such that

qu

u
wq

wq
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Proof for strongly connected UFA

q qwq
wq
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q qwq

s swq

t twq

wq

wq

wq

u

u
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Proof for strongly connected UFA

Lemma

We can compute a word w such that for all states q 6= q′, if q and q′ are
coaccessible then either δ(q,w) = ∅ or δ(q′,w) = ∅.

There exists w such that

u

u
w

w
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Proof

Lemma

We can compute a word w such that for all states q 6= q′, if q and q′ are
coaccessible then either δ(q,w) = ∅ or δ(q′,w) = ∅.

There exists w such that

u

u
w

w
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Idea of the proof

q1

q2

qk

yq1

yq2

yqk

q1z

q2z

qkz

y

y

y

z

z

z

u

u

u′

u′
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Proof for strongly connected UFA

Lemma

Given a non universal automaton A with n states such that any word has
at most one accepting run, one can compute in polynomial time a word
w /∈ L(A), with |w | ≤ n.
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Idea of the proof
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A counter-example

Main result (again)

Given an unambiguous automaton A, one can compute a killing word w in
polynomial time, if it exists, with |w | ≤ 1

16n
5 + 15

16n
4

We now know there exists a minimal-rank matrix which is a product of
polynomially many matrices of S .

Are all minimal-rank matrices products of polynomially many matrices of
S ?
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A counter-example

0

(1, 0)

(1, 1)

(2, 0)

(2, 1)

(2, 2)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

b1, b2, b3

a a

a

a

a

a

a

a

a

a

b1

b2

b3

a

35 / 36



Conclusion

Applications in the theory of codes

Some work to improve the degree of the bound

Possible extensions to finite monoids of integer matrices for instance.
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