On Finite Monoids over Nonnegative Integer Matrices and Short Killing Words

Stefan Kiefer
University of Oxford
Corto Mascle
ENS Paris-Saclay

February 17th 2020

(1) A problem on matrices
(2) Unambiguous automata
(3) Restivo's conjecture
(4) The proof
(5) A counter-example
(1) A problem on matrices
(2) Unambiguous automata
(3) Restivo's conjecture
4) The proof
(5) A counter-example

Matrix mortality

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right) \quad B=\left(\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right)
$$

Matrix mortality

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right) \quad B=\left(\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right) \quad C=\left(\begin{array}{ll}
2 & -1 \\
2 & -1
\end{array}\right)
$$

Matrix mortality

$A=\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right) \quad B=\left(\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right) \quad C=\left(\begin{array}{ll}2 & -1 \\ 2 & -1\end{array}\right)$

No product of $A \mathrm{~s}$ and $B \mathrm{~s}$ can be zero, but
$C B A=C(B A)=\left(\begin{array}{ll}2 & -1 \\ 2 & -1\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 0 & 2\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$

Matrix mortality

Given a finite set of matrices $S=\left\{M_{1}, \ldots, M_{p}\right\} \subseteq \mathcal{M}_{n \times n}(\mathbb{Z})$, the problem of deciding if the monoid generated by S contains 0 is

- Undecidable in the general case (Paterson, 1970).

Matrix mortality

Given a finite set of matrices $S=\left\{M_{1}, \ldots, M_{p}\right\} \subseteq \mathcal{M}_{n \times n}(\mathbb{Z})$, the problem of deciding if the monoid generated by S contains 0 is

- Undecidable in the general case (Paterson, 1970).
- PSPACE-complete when all entries are non-negative (Kao, Rampersad, Shallit, 2009).

Matrix mortality

Given a finite set of matrices $S=\left\{M_{1}, \ldots, M_{p}\right\} \subseteq \mathcal{M}_{n \times n}(\mathbb{Z})$, the problem of deciding if the monoid generated by S contains 0 is

- Undecidable in the general case (Paterson, 1970).
- PSPACE-complete when all entries are non-negative (Kao, Rampersad, Shallit, 2009).
- Polynomial-time when all entries are non-negative and the monoid generated by S is finite :
One can compute the average matrix, and check if its spectral radius is less than 1 , but this does not provide a witness.

Matrix mortality

Given a finite set of matrices $S=\left\{M_{1}, \ldots, M_{p}\right\} \subseteq \mathcal{M}_{n \times n}(\mathbb{Z})$, the problem of deciding if the monoid generated by S contains 0 is

- Undecidable in the general case (Paterson, 1970).
- PSPACE-complete when all entries are non-negative (Kao, Rampersad, Shallit, 2009).
- Polynomial-time when all entries are non-negative and the monoid generated by S is finite :
One can compute the average matrix, and check if its spectral radius is less than 1 , but this does not provide a witness.
\rightarrow Can one compute a 'short' sequence of matrices $M_{i_{1}}, \ldots, M_{i_{k}}$ such that $M_{i_{1}} \ldots M_{i_{k}}=0$?

Matrix mortality

We can switch from a problem on matrices to a problem on automata :

$$
\begin{aligned}
& M(a)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right) \\
& M(b)=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \\
& M(a b)=M(a) M(b)=\left(\begin{array}{lll}
0 & 1 & 0 \\
2 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Matrix mortality

We can switch from a problem on matrices to a problem on automata :

$$
\begin{aligned}
& M(a)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right) \\
& M(b)=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \\
& M(a b)=M(a) M(b)=\left(\begin{array}{lll}
0 & 1 & 0 \\
2 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

The rank of a word w in \mathcal{A} is the rank of $M(w)$.
A killing word is a word of rank 0 .
(1) A problem on matrices
(2) Unambiguous automata

Unambiguous automata

Unambiguous automaton \rightarrow Nondeterministic finite automaton in which for all states s, t, for all word w there is at most one path from s to t labelled by w.
Equivalently, all entries of the matrix monoid associated to this automaton are 0 or 1 .

Unambiguous automata

Unambiguous automaton \rightarrow Nondeterministic finite automaton in which for all states s, t, for all word w there is at most one path from s to t labelled by w.
Equivalently, all entries of the matrix monoid associated to this automaton are 0 or 1 .

The monoid associated to an unambiguous automaton is finite. The converse is true for strongly connected automata.

Unambiguous automata

$$
M(a)=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \quad M(b)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad M(b a a b)=0
$$

Result

Result

Given an unambiguous automaton with n states one can compute a killing word (when there is one) of length at most $\frac{1}{16} n^{5}+\frac{15}{16} n^{4}$ in polynomial time.

Result

Result

Given an unambiguous automaton with n states one can compute a killing word (when there is one) of length at most $\frac{1}{16} n^{5}+\frac{15}{16} n^{4}$ in polynomial time.

Main result

Given a set of matrices $S \subseteq \mathcal{M}_{n \times n}(\mathbb{N})$ generating a finite monoid, if this monoid contains 0 , then one can compute a sequence of matrices $M_{1}, \ldots, M_{K} \in S$ such that $M_{1} \ldots M_{K}=0$ in polynomial time, with $K \leq \frac{1}{16} n^{5}+\frac{15}{16} n^{4}$.

When the automaton does not have any killing word, the procedure returns a word of minimal rank.

Result

Main result (generalized version)

Given a set of matrices $S \subseteq \mathcal{M}_{n \times n}(\mathbb{N})$ generating a finite monoid, one can compute in polynomial time a sequence of matrices $M_{1}, \ldots, M_{K} \in S$ such that $M_{1} \ldots M_{K}$ has minimal rank, with $K \leq \frac{1}{16} n^{5}+\frac{15}{16} n^{4}$.

Remarks

- In 1988, Carpi gave a polynomial-time algorithm to compute minimal-rank words for strongly connected unambiguous automata with positive minimal rank.

Remarks

- In 1988, Carpi gave a polynomial-time algorithm to compute minimal-rank words for strongly connected unambiguous automata with positive minimal rank.
- The main contribution here is the extension of Carpi's result to unambiguous automata with minimal rank 0 .
(1) A problem on matrices
(2) Unambiguous automata
(3) Restivo's conjecture

```
4) The proof
```

5) A counter-example

Restivo's conjecture

$$
S=\left\{w_{1}, \ldots, w_{p}\right\} \subseteq \Sigma^{*}
$$

$$
S=\{a a, a b, b a b\}
$$

Let $\mathcal{A}(S)$ be the automaton associated to the set of words S. $\mathcal{A}(S)$ is non-deterministic in general.

Restivo's conjecture

Restivo's conjecture (1981) $k w(\mathcal{A}(S))$ is bounded by $2 m^{2}$ where $m=\max _{w \in S}|w|$

Here $\mathcal{A}(S)$ is not necessarily unambiguous.

$$
S=\{a a, a b, b a b\}
$$

The word bbb is a killing word for this automaton.

History

$1981 \rightarrow$ Restivo's conjecture ($2 m^{2}$ upper bound)
$2010 \rightarrow$ Numerical counterexample by Fici, Pribavnika and Sakarovitch

2011 ד Family of counterexamples by Gusev and Pribavnika ($5 m^{2}$ lower bound)
$2017 \rightarrow$ Computations hinting at an exponential growth in m by Julia, Malapert and Provillard
$2019 \rightarrow$ Superpolynomial lower bound by Mika and Szykuła ($2^{\frac{m}{4}}$)

Final disproval

Theorem (Maksymilian Mika, Marek Szykuła)
The following problem is PSPACE-complete:
Input: A finite set S of words
Output: $\Sigma^{*}=S^{*}$?
While proving this result the authors constructed a family of sets of words whose minimal uncompletable word is of superpolynomial size in the maximal length of their elements.

A particular case

Rather than any finite set of words, we can restrict ourselves to finite codes.

Definition
A code is a set of words S such that for all $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{p} \in S$, if $u_{1} \cdots u_{n}=v_{1} \cdots v_{p}$ then $n=p$ and $u_{i}=v_{i}$ for all i.
$S=\{a a, a b a\}$ is a code.

A particular case

When S is a finite code, $\mathcal{A}(S)$ is unambiguous (the converse is true).
A version of Restivo's conjecture in codes
When S is a code, $k w(\mathcal{A}(S))$ is polynomially bounded in terms of $m=\max _{w \in S}|w|$

This has been shown for some particular cases such as prefix codes (Néraud, Selmi, 1988).

A particular case

When S is a finite code, $\mathcal{A}(S)$ is unambiguous (the converse is true).
A version of Restivo's conjecture in codes
When S is a code, $k w(\mathcal{A}(S))$ is polynomially bounded in terms of $m=\max _{w \in S}|w|$

This has been shown for some particular cases such as prefix codes (Néraud, Selmi, 1988).

Weaker version of the conjecture

When S is a code, $k w(\mathcal{A}(S))$ is polynomially bounded in terms of the number of states n in $\mathcal{A}(S)$

Is there always a killing word of length polynomial in ...

Is there always a killing word of length polynomial in ...

(1) A problem on matrices

2. Unambiguous automata

(3) Restivo's conjecture
(4) The proof
(5) A counter-example

Proof for strongly connected UFA

$q w$ and $q^{\prime} w$ are disjoint because of unambiguity.

Proof for strongly connected UFA

$q w$ and $q^{\prime} w$ are disjoint because of unambiguity.
v exists as we assumed strong connectedness.

Proof for strongly connected UFA

$q w$ and $q^{\prime} w$ are disjoint because of unambiguity.
v exists as we assumed strong connectedness.

$$
q w \sqcup q^{\prime} w \subseteq q(v u w)
$$

Proof for strongly connected UFA

Lemma
For all state q we can compute a word w_{q} such that for all states $q^{\prime} \neq q$, if q and q^{\prime} are coaccessible then either $q w=\emptyset$ or $q^{\prime} w=\emptyset$.

For all q there exists w_{q} such that

Proof for strongly connected UFA

Proof for strongly connected UFA

Lemma
We can compute a word w such that for all states $q \neq q^{\prime}$, if q and q^{\prime} are coaccessible then either $\delta(q, w)=\emptyset$ or $\delta\left(q^{\prime}, w\right)=\emptyset$.

There exists w such that

Proof

Lemma
We can compute a word w such that for all states $q \neq q^{\prime}$, if q and q^{\prime} are coaccessible then either $\delta(q, w)=\emptyset$ or $\delta\left(q^{\prime}, w\right)=\emptyset$.

There exists w such that

Idea of the proof

Idea of the proof

Proof for strongly connected UFA

Lemma
Given a non universal automaton \mathcal{A} with n states such that any word has at most one accepting run, one can compute in polynomial time a word $w \notin L(\mathcal{A})$, with $|w| \leq n$.

Idea of the proof

(1) A problem on matrices

2. Unambiguous automata

(3) Restivo's conjecture
4) The proof
(5) A counter-example

A counter-example

Main result (again)

Given an unambiguous automaton \mathcal{A}, one can compute a killing word w in polynomial time, if it exists, with $|w| \leq \frac{1}{16} n^{5}+\frac{15}{16} n^{4}$

We now know there exists a minimal-rank matrix which is a product of polynomially many matrices of S.

A counter-example

Main result (again)

Given an unambiguous automaton \mathcal{A}, one can compute a killing word w in polynomial time, if it exists, with $|w| \leq \frac{1}{16} n^{5}+\frac{15}{16} n^{4}$

We now know there exists a minimal-rank matrix which is a product of polynomially many matrices of S.

Are all minimal-rank matrices products of polynomially many matrices of S ?

A counter-example

Conclusion

- Applications in the theory of codes
- Some work to improve the degree of the bound
- Possible extensions to finite monoids of integer matrices for instance.

