On Finite Monoids over Nonnegative Integer Matrices
and Short Killing Words

Stefan Kiefer Corto Mascle

University of Oxford ENS Paris-Saclay

February 17th 2020

école
normale
supérieure
paris—saclay

1/36

(@ A problem on matrices

(@ Unambiguous automata

(3 Restivo's conjecture

(@ The proof

(& A counter-example

2/36

(@ A problem on matrices

3/36

Matrix mortality

@) o)

4/36

Matrix mortality

-0 =G5 <G

4/36

Matrix mortality

01 01 2
A=(01) e=Ga) -G
No product of As and Bs can be zero, but

or-con=(3 3) ¢)~

4/36

Matrix mortality

Given a finite set of matrices S = {M, ..., Mp} € M;yn(Z), the problem
of deciding if the monoid generated by S contains 0 is

o Undecidable in the general case (Paterson, 1970).

5/36

Matrix mortality

Given a finite set of matrices S = {M, ..., Mp} € M;yn(Z), the problem
of deciding if the monoid generated by S contains 0 is

o Undecidable in the general case (Paterson, 1970).

o PSPACE-complete when all entries are non-negative (Kao,
Rampersad, Shallit, 2009).

5/36

Matrix mortality

Given a finite set of matrices S = {M, ..., Mp} € M;yn(Z), the problem
of deciding if the monoid generated by S contains 0 is

o Undecidable in the general case (Paterson, 1970).

o PSPACE-complete when all entries are non-negative (Kao,
Rampersad, Shallit, 2009).

o Polynomial-time when all entries are non-negative and the monoid
generated by S is finite :
One can compute the average matrix, and check if its spectral radius
is less than 1, but this does not provide a witness.

5/36

Matrix mortality

Given a finite set of matrices S = {My, ..., Mp} C Mpyn(Z), the problem
of deciding if the monoid generated by S contains 0 is
o Undecidable in the general case (Paterson, 1970).
o PSPACE-complete when all entries are non-negative (Kao,
Rampersad, Shallit, 2009).

o Polynomial-time when all entries are non-negative and the monoid
generated by S is finite :
One can compute the average matrix, and check if its spectral radius
is less than 1, but this does not provide a witness.

— Can one compute a 'short’ sequence of matrices M, ..., M, such that
Mi,..M; =07

6/36

Matrix mortality

We can switch from a problem on matrices to a problem on automata :

oL O O O+

OO ~r —H = O
N~

o = O
N——

7/36

Matrix mortality

We can switch from a problem on matrices to a problem on automata :

|

oL O O O+
OO~k B = O

o = O
N——

The rank of a word w in A is the rank of M(w).
A killing word is a word of rank 0.

7/36

(@ Unambiguous automata

8/36

Unambiguous automata

Unambiguous automaton — Nondeterministic finite automaton in which
for all states s, t, for all word w there is at most one path from s to t
labelled by w.

Equivalently, all entries of the matrix monoid associated to this automaton
are 0 or 1.

9/36

Unambiguous automata

Unambiguous automaton — Nondeterministic finite automaton in which
for all states s, t, for all word w there is at most one path from s to t

labelled by w.
Equivalently, all entries of the matrix monoid associated to this automaton

are 0 or 1.
u XX

o= >0

The monoid associated to an unambiguous automaton is finite. The
converse is true for strongly connected automata.

9/36

Unambiguous automata

0

10/36

Result

Given an unambiguous automaton with n states one can compute a

killing word (when there is one) of length at most &n® + 2n* i

polynomial time.

11/36

Result

Result

Given an unambiguous automaton with n states one can compute a
killing word (when there is one) of length at most &n® + 2n* i
polynomial time.

| \

Main result

Given a set of matrices S C M« »(N) generating a finite monoid, if this
monoid contains 0,then one can compute a sequence of matrices
My, ..., Mk € S such that M;...Mk = 0 in polynomial time, with

1,5, 15,4
K§16n + En”

When the automaton does not have any killing word, the procedure
returns a word of minimal rank.

11/36

Result

Main result (generalized version)

Given a set of matrices S C M, ,(N) generating a finite monoid, one can

compute in polynomial time a sequence of matrices My, ..., Mk € S such
that M...My has minimal rank, with K < &n®+ 2p%.

12/36

Remarks

o In 1988, Carpi gave a polynomial-time algorithm to compute
minimal-rank words for strongly connected unambiguous automata
with positive minimal rank.

13/36

Remarks

o In 1988, Carpi gave a polynomial-time algorithm to compute
minimal-rank words for strongly connected unambiguous automata

with positive minimal rank.
o The main contribution here is the extension of Carpi’'s result to
unambiguous automata with minimal rank O.

13/36

(3 Restivo's conjecture

14 /36

Restivo's conjecture

S={m, ..., wp} C T S = {aa, ab, bab}

wo W8

2.

Let LA(S) be the automaton associated to the set of words S.
A(S) is non-deterministic in general.

15/36

Restivo's conjecture

Restivo's conjecture (1981)
kw(A(S)) is bounded by 2m? where m = max,,cs|w|

Here A(S) is not necessarily unambiguous.

S ={aa, ab, bab}

The word bbb is a killing word
for this automaton.

16 /36

History

1981 — Restivo's conjecture (2m? upper bound)
2010 — Numerical counterexample by Fici, Pribavnika and Sakarovitch

2011 — Family of counterexamples by Gusev and Pribavnika
(5m? lower bound)

2017 — Computations hinting at an exponential growth in m
by Julia, Malapert and Provillard

2019 — Superpolynomial lower bound by Mika and Szykuta (2%)

17/36

Final disproval

Theorem (Maksymilian Mika, Marek Szykuta)

The following problem is PSPACE-complete:
Input: A finite set S of words
Output: X* = §*7

While proving this result the authors constructed a family of sets of words
whose minimal uncompletable word is of superpolynomial size in the
maximal length of their elements.

18/36

A particular case

Rather than any finite set of words, we can restrict ourselves to finite
codes.

Definition

A code is a set of words S such that for all ug,..., usv1,...,vp €5, if
Up---Up=vy---Vp then n=p and u; = v; for all /.

S = {aa, aba} is a code.

19/36

A particular case
When S is a finite code, \A(S) is unambiguous (the converse is true).
A version of Restivo's conjecture in codes

When S is a code, kw(.A(S)) is polynomially bounded in terms of
m = maxycs|w|

This has been shown for some particular cases such as prefix codes

(Néraud, Selmi, 1988).

20/36

A particular case

When S is a finite code, \A(S) is unambiguous (the converse is true).

A version of Restivo's conjecture in codes

When S is a code, kw(.A(S)) is polynomially bounded in terms of
m = maxycs|w|

This has been shown for some particular cases such as prefix codes
(Néraud, Selmi, 1988).

Weaker version of the conjecture

When S is a code, kw(.A(S)) is polynomially bounded in terms of the
number of states n in A(S)

20/36

Is there always a killing word of length polynomial in ...

. in the

maximal

length?
- '”l 'lfhe) ... in the sum
maximal lengt of the lengths?

for codes?
\ ... in the sum /
of the lengths
for codes?

21/36

Is there always a killing word of length polynomial in ...

. in the

maximal

length?
- m| The) ... in the sum
maximal lengt of the lengths?

for codes?
\ ... in the sum /
of the lengths
for codes?

22/36

(@ The proof

23/36

Proof for strongly connected UFA

w
u
u
(D—

gw and g'w are disjoint because of unambiguity.

24/36

Proof for strongly connected UFA

gw and g'w are disjoint because of unambiguity.

v exists as we assumed strong connectedness.

24/36

Proof for strongly connected UFA

gw and g'w are disjoint because of unambiguity.
v exists as we assumed strong connectedness.

gw U q'w C g(vuw)

24/36

Proof for strongly connected UFA

Lemma

For all state g we can compute a word wg such that for all states ¢’ # q,
if g and ¢’ are coaccessible then either qw =) or g'w = 0.

For all g there exists wy such that

25/36

Proof for strongly connected UFA

- @

26/36

Proof for strongly connected UFA

26/36

Proof for strongly connected UFA

26/36

Proof for strongly connected UFA

26/36

Proof for strongly connected UFA

26/36

Proof for strongly connected UFA

Lemma

We can compute a word w such that for all states g # ¢/, if g and ¢’ are
coaccessible then either §(q, w) =0 or §(q’, w) = 0.

There exists w such that

27/36

Proof

Lemma

We can compute a word w such that for all states g # ¢/, if g and ¢’ are
coaccessible then either §(q, w) =0 or §(q’, w) = 0.

There exists w such that

28/36

Idea of the proof

y (A z
a1 qi1z
N
y VPR z
2 2Z
\%2) 7

(o)
qk Ak qkZ
¥)

29/36

Idea of the proof

qkz

30/36

Proof for strongly connected UFA

Lemma
Given a non universal automaton 4 with n states such that any word has
at most one accepting run, one can compute in polynomial time a word

w ¢ L(A), with |w| < n.

31/36

Idea of the proof

qkz

32/36

(& A counter-example

33/36

A counter-example

Main result (again)

Given an unambiguous automaton 4, one can compute a killing word w in

polynomial time, if it exists, with |w| < %ns + %”4

We now know there exists a minimal-rank matrix which is a product of
polynomially many matrices of S.

34/36

A counter-example

Main result (again)

Given an unambiguous automaton 4, one can compute a killing word w in

polynomial time, if it exists, with [w| < {xn® + 22n*

We now know there exists a minimal-rank matrix which is a product of
polynomially many matrices of S.

Are all minimal-rank matrices products of polynomially many matrices of
57

34/36

A counter-example

b1,b2,b3®@> 2

N

&
0.0.6
DOOC

@

35/36

Conclusion

o Applications in the theory of codes
o Some work to improve the degree of the bound

o Possible extensions to finite monoids of integer matrices for instance.

36/36

	A problem on matrices
	Unambiguous automata
	Restivo's conjecture
	The proof
	A counter-example

