Minimisation of (history-)deterministic generalised (co-)Büchi automata

joint work with Antonio Casares, Denis Kuperberg, Olivier Idir and Aditya Prakash

Minimisation of (history-)deterministic generalised (co-)Büchi automata

joint work with Antonio Casares, Denis Kuperberg, Olivier Idir and Aditya Prakash

Minimisation of (history-)deterministic generalised (co-)Büchi automata

joint work with Antonio Casares, Denis Kuperberg, Olivier Idir and Aditya Prakash

Büchi automaton

Büchi automaton

 $L(\mathcal{A}) = \{$ words that contain infinitely many $aab \} = (\Sigma^* aab)^{\omega}$

Büchi automaton

 $L(\mathcal{A}) = \{ \text{words that contain infinitely many } aab \} = (\Sigma^* aab)^{\omega}$

Deterministic Büchi automata recognise Büchi languages.

Co-Büchi automaton

Co-Büchi automaton

 $L(\mathcal{A}) = \{$ words that contain finitely many $aab \} = \Sigma^* a^\omega \cup \Sigma^* (ab^+)^\omega$

Co-Büchi automaton

 $L(\mathcal{A}) = \{$ words that contain finitely many $aab \} = \Sigma^* a^\omega \cup \Sigma^* (ab^+)^\omega$

Deterministic co-Büchi automata recognise *co-Büchi languages*. = complements of Büchi languages.

 \mathcal{A} is history-deterministic if there is a *resolver* $\sigma : \Delta^* \times \Sigma \to \Delta$ such that for all $w \in L(\mathcal{A})$, applying σ while reading w yields an accepting run.

 \mathcal{A} is history-deterministic if there is a *resolver* $\sigma : \Delta^* \times \Sigma \to \Delta$ such that for all $w \in L(\mathcal{A})$, applying σ while reading w yields an accepting run.

History-deterministic co-Büchi automaton.

Finitely many b or finitely many c.

 \mathcal{A} is history-deterministic if there is a *resolver* $\sigma : \Delta^* \times \Sigma \to \Delta$ such that for all $w \in L(\mathcal{A})$, applying σ while reading w yields an accepting run.

History-deterministic co-Büchi automaton.

Finitely many b or finitely many c.

Büchi automaton, NOT history-deterministic.

Infinitely many b or infinitely many c.

 \mathcal{A} is history-deterministic if there is a *resolver* $\sigma : \Delta^* \times \Sigma \to \Delta$ such that for all $w \in L(\mathcal{A})$, applying σ while reading w yields an accepting run.

History-deterministic co-Büchi automaton.

Finitely many b or finitely many c.

Büchi automaton, NOT history-deterministic.

Infinitely many b or infinitely many c.

[Kuperberg, Skrzypczak 2015]

History-deterministism can be tested in PTIME for Büchi and co-Büchi automata.

Minimisation

Minimise A = find B of the same type, the same language and with as few states as possible.

Minimisation

Minimise A = find B of the same type, the same language and with as few states as possible.

Remark : Minimising deterministic Büchi and co-Büchi automata is the same problem.

Minimisation

Minimise A = find B of the same type, the same language and with as few states as possible.

Remark : Minimising deterministic Büchi and co-Büchi automata is the same problem.

But history-deterministic Büchi and co-Büchi are very different!

[Kuperberg, Skrzypczak 2015]

- History-deterministic co-Büchi automata can be exponentially smaller than deterministic ones,
- Every history-deterministic Büchi automata has an equivalent deterministic one of size O(n²).

It is NP-complete to minimise deterministic (co-)Büchi automata.

It is NP-complete to minimise deterministic (co-)Büchi automata when the acceptance condition is on the states.

It is NP-complete to minimise deterministic (co-)Büchi automata when the acceptance condition is on the states.

[Abu Radi, Kupferman 2019]

We can minimise history-deterministic co-Büchi automata in polynomial time when the acceptance condition is on the transitions.

It is NP-complete to minimise deterministic (co-)Büchi automata when the acceptance condition is on the states.

[Schewe 2020]

It is NP-complete to minimise history-deterministic (co-)Büchi automata when the acceptance condition is on the states.

[Abu Radi, Kupferman 2019]

We can minimise history-deterministic co-Büchi automata in polynomial time when the acceptance condition is on the transitions.

State-based

[Schewe 2010]

It is NP-complete to minimise deterministic (co-)Büchi automata when the acceptance condition is on the states.

[Schewe 2020]

It is NP-complete to minimise history-deterministic (co-)Büchi automata when the acceptance condition is on the states.

Transition-based

[Abu Radi, Kupferman 2019]

We can minimise history-deterministic co-Büchi automata in polynomial time when the acceptance condition is on the transitions.

State-based

[Schewe 2010]

It is NP-complete to minimise deterministic (co-)Büchi automata when the acceptance condition is on the states.

[Schewe 2020]

It is NP-complete to minimise history-deterministic (co-)Büchi automata when the acceptance condition is on the states.

Transition-based

[Abu Radi, Kupferman 2019]

We can minimise history-deterministic co-Büchi automata in polynomial time when the acceptance condition is on the transitions.

Can we minimise (history-)deterministic (co-)Büchi automata in polynomial time?

	Büchi	Co-Büchi
Deterministic	???	???
History-deterministic	???	PTIME

	Büchi	Co-Büchi
Deterministic	???	???
History-deterministic	???	PTIME

When you encounter a difficult problem, switch to a different (related) problem.

-George Pólya (sort of)

	Büchi	Co-Büchi
Deterministic	???	???
History-deterministic	???	PTIME

When you encounter a difficult problem, switch to a different (related) problem.

-George Pólya (sort of)

This work: We study generalised (co-)Büchi automata:

	Büchi	Co-Büchi
Deterministic	???	???
History-deterministic	???	PTIME

When you encounter a difficult problem, switch to a different (related) problem.

-George Pólya (sort of)

This work: We study generalised (co-)Büchi automata:

	Generalised Büchi	Generalised co-Büchi
Deterministic	NP-complete	NP-complete
History-deterministic	NP-complete	PTIME

Generalised Büchi automaton

Set of colours $C = \{\bullet, \bullet, \bullet, \dots\}$, colouring function $col : \Delta \to 2^C$

Generalised Büchi automaton

Set of colours $C = \{\bullet, \bullet, \bullet, \ldots\}$, colouring function $col : \Delta \to 2^C$

Generalised Büchi: See every colour infinitely many times.

Infinitely many aab or infinitely many ab and b^2

Generalised Büchi automaton

Set of colours $C = \{\bullet, \bullet, \bullet, \dots\}$, colouring function $col : \Delta \to 2^C$

Generalised Büchi: See every colour infinitely many times.

Infinitely many aab or infinitely many ab and b^2

Generalised co-Büchi: avoid some colour indefinitely after sone point.

Finitely many *aab* and finitely many *ab* or b^2

From GBA to BA

Generalised Büchi with n states and k colours.

Büchi with nk states.

From GBA to BA

Generalised Büchi with n states and k colours.

Büchi with nk states.

Preserves history-determinism!

Minimisation of gen. HD co-Büchi in polynomial time

Step 1: Apply Abu Radi-Kupferman

Given a generalised history-deterministic co-Büchi recognising L,

Compute an equivalent history-deterministic co-Büchi

Step 1: Apply Abu Radi-Kupferman

Given a generalised history-deterministic co-Büchi recognising L,

- Compute an equivalent history-deterministic co-Büchi
- \blacktriangleright We can minimise it $\rightarrow \mathcal{A}^{L}_{min}$ using Abu Radi and Kupferman's algorithm

Step 2: Merge safe components

Suppose the language is *prefix-independent*, i.e., all states have the same residual. (= the language is stable under prefix modification)

Accepted = stay in a safe component eventually

 \bigcirc \bigcirc

С

+ all other transitions, with $X \times X$

[Abu Radi, Kupferman 2019]

For all equivalent HD co-Büchi automaton C there is an injection $\eta : SafeComp(\mathcal{A}_{min}^{L}) \rightarrow SafeComp(C)$ such that $|\eta(S)| \ge |S|$ for all $S \in SafeComp(C)$.

[Abu Radi, Kupferman 2019]

For all equivalent HD co-Büchi automaton C there is an injection $\eta : SafeComp(\mathcal{A}_{min}^{L}) \rightarrow SafeComp(C)$ such that $|\eta(S)| \ge |S|$ for all $S \in SafeComp(C)$.

▶ We have an HD gen. co-Büchi of size m = size of the largest safe component of \mathcal{A}_{min}^{L}

[Abu Radi, Kupferman 2019]

For all equivalent HD co-Büchi automaton C there is an injection $\eta : SafeComp(\mathcal{A}_{min}^{L}) \rightarrow SafeComp(C)$ such that $|\eta(S)| \ge |S|$ for all $S \in SafeComp(C)$.

- ▶ We have an HD gen. co-Büchi of size m = size of the largest safe component of \mathcal{A}_{min}^{L}
- Every equivalent HD co-Büchi has a safe component of size $\geq m$

[Abu Radi, Kupferman 2019]

For all equivalent HD co-Büchi automaton C there is an injection $\eta : SafeComp(\mathcal{A}_{min}^{L}) \rightarrow SafeComp(C)$ such that $|\eta(S)| \ge |S|$ for all $S \in SafeComp(C)$.

- ▶ We have an HD gen. co-Büchi of size m = size of the largest safe component of \mathcal{A}_{min}^{L}
- Every equivalent HD co-Büchi has a safe component of size $\geq m$

If we had a smaller HD gen. co-Büchi we could unfold it to get an HD co-Büchi where all components have size < m.

This work

We can minimize generalised HD co-Büchi automata in polynomial time.

[Abu Radi, Kupferman 2019]

For all equivalent HD co-Büchi automaton C there is an injection $\eta : SafeComp(\mathcal{A}_{min}^{L}) \rightarrow SafeComp(C)$ such that $|\eta(S)| \ge |S|$ for all $S \in SafeComp(C)$.

- ▶ We have an HD gen. co-Büchi of size m = size of the largest safe component of \mathcal{A}_{min}^{L}
- Every equivalent HD co-Büchi has a safe component of size $\geq m$

If we had a smaller HD gen. co-Büchi we could unfold it to get an HD co-Büchi where all components have size < m.

This work

We can minimize generalised HD co-Büchi automata in polynomial time.

If not prefix-independent $\rightarrow \sim$ apply the procedure for each residual.

A sketch of NP-completeness

 \mathcal{A} a (history-)deterministic gen. (co-)Büchi automaton with *n* states and *k* colours. Is there an automaton of the same type with $\leq m$ states equivalent to \mathcal{A} ?

 \mathcal{A} a (history-)deterministic gen. (co-)Büchi automaton with *n* states and *k* colours. Is there an automaton of the same type with $\leq m$ states equivalent to \mathcal{A} ?

- Guess an automaton \mathcal{B} with $\leq m$ states
- \blacktriangleright Check equivalence between ${\cal A}$ and ${\cal B}$

 \mathcal{A} a (history-)deterministic gen. (co-)Büchi automaton with *n* states and *k* colours. Is there an automaton of the same type with $\leq m$ states equivalent to \mathcal{A} ?

- Guess an automaton \mathcal{B} with $\leq m$ states
- \blacktriangleright Check equivalence between ${\cal A}$ and ${\cal B}$

Folklore

Equivalence is decidable in PTIME between all those kinds of automata.

 \mathcal{A} a (history-)deterministic gen. (co-)Büchi automaton with n states and k colours. Is there an automaton of the same type with $\leq m$ states equivalent to \mathcal{A} ?

- Guess an automaton \mathcal{B} with $\leq m$ states
- \blacktriangleright Check equivalence between ${\cal A}$ and ${\cal B}$

Folklore

Equivalence is decidable in PTIME between all those kinds of automata.

But \mathcal{B} could have exponentially many colours!

 \mathcal{A} a (history-)deterministic gen. (co-)Büchi automaton with n states and k colours. Is there an automaton of the same type with $\leq m$ states equivalent to \mathcal{A} ?

- Guess an automaton \mathcal{B} with $\leq m$ states \checkmark
- \blacktriangleright Check equivalence between ${\cal A}$ and ${\cal B}$

Folklore

Equivalence is decidable in PTIME between all those kinds of automata.

But ${\mathcal B}$ could have exponentially many colours!

This work

If \mathcal{B} exists then it can be recoloured to use $\leq \mathcal{O}(|\mathcal{A}|km)$ colours.

From graph 3-colouring. Suitable language: $L_G = \bigcap_{v \in V} (V^* vv)^{\omega} \cup V^* (V \setminus N(v))^{\omega}$.

- Every k-colouring of G induces a det. gen. Büchi automaton with k states for L_G .
- A 3-state gen. Büchi automaton for L_G induces a 3-colouring of G.

- Every k-colouring of G induces a det. gen. Büchi automaton with k states for L_G .
- A 3-state gen. Büchi automaton for L_G induces a 3-colouring of G.

This work

This problem is NP-complete: Given a (history-)deterministic Büchi automaton \mathcal{A} and $k \in \mathbb{N}$, is there an equivalent one with $\leq k$ states?

- Every k-colouring of G induces a det. gen. Büchi automaton with k states for L_G .
- A 3-state gen. Büchi automaton for L_G induces a 3-colouring of G.

This work

This problem is NP-complete: Given a (history-)deterministic Büchi automaton \mathcal{A} with $\frac{4}{4}$ states, is there an equivalent one with $\leq \frac{3}{4}$ states?

This work

It is NP-complete to minimise both the number of states and colours for (history-)deterministic gen. (co-)Büchi automata.

Minimising colours

This work

It is NP-complete to minimise both the number of states and colours for (history-)deterministic gen. (co-)Büchi automata.

Proof idea:

This work

It is NP-complete to minimise both the number of states and colours for (history-)deterministic gen. (co-)Büchi automata.

[Casares, M. 2024] \rightarrow study of the complexity of simplifying conditions on ω -automata.

What is left to do

- Minimisation of Büchi, parity automata
- Are HD gen. Büchi automata more succinct than deterministic ones?
- (In-)approximability of minimisation?

What is left to do

- Minimisation of Büchi, parity automata
- ▶ Are HD gen. Büchi automata more succinct than deterministic ones?
- (In-)approximability of minimisation?

Thanks!