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Asynchronous distributed systems

▶ Several processes running asynchronously

▶ Execution = sequence of local steps

▶ Constraint on scheduling: Shared memory,
locks, broadcast, rendez-vous,
token-passing, ...

▶ Specification: avoid qerr
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Local runs of writer and reader can be combined whenever the sequence read by Reader is a
subword of the sequence written by Writer.
Ex: bab is a subword of abbaba.
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Distributed synthesis

▶ Each process has Controller and
Environment states.

▶ One local strategy for each process:
σw , σr

▶ Local strategy = function
σw : Pathsw → Transitionsw that chooses
the next transition from controllable
states based on past transitions.
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Invariants

Lemma

Local strategies (σw , σr ) successfully avoid qerr

⇔

there exists an invariant I ⊆ Σ∗ such that

1. Every local σw -run of the writer writes a sequence in I
2. Every local σr -run of the reader reaching qerr reads a sequence /∈ I
3. I is subword-closed

▶ I a priori arbitrarily large

▶ If we were given I → reduces to regular two-player safety game
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Objective-independent memory

Arena =

a b

c

bc

a

Safety objective = W ⊆ {a, b, c}∗
Strategy is winning if all runs stay in W

Theorem

Let W be a subword-closed objective and G an arena.
If Controller has a winning strategy for W in G, then she has one with memory ≤ |G|!.

a, b b, c

c

For all W subword-closed,
we need memory ≤ 5!

C ⊆ 2Σ
∗
has objective-independent memory if

∃f : N → N, ∀ arena G and W ∈ C,
if Controller has a winning strategy for W in
G, then she has one with memory ≤ f (|G|).

5 / 8



Objective-independent memory

Arena =

a b

c

bc

a

Safety objective = W ⊆ {a, b, c}∗
Strategy is winning if all runs stay in W

Theorem

Let W be a subword-closed objective and G an arena.
If Controller has a winning strategy for W in G, then she has one with memory ≤ |G|!.

a, b b, c

c

For all W subword-closed,
we need memory ≤ 5!

C ⊆ 2Σ
∗
has objective-independent memory if

∃f : N → N, ∀ arena G and W ∈ C,
if Controller has a winning strategy for W in
G, then she has one with memory ≤ f (|G|).

5 / 8



Objective-independent memory

Arena =

a b

c

bc

a

Safety objective = W ⊆ {a, b, c}∗
Strategy is winning if all runs stay in W

Theorem

Let W be a subword-closed objective and G an arena.
If Controller has a winning strategy for W in G, then she has one with memory ≤ |G|!.

a, b b, c

c

For all W subword-closed,
we need memory ≤ 5!

C ⊆ 2Σ
∗
has objective-independent memory if

∃f : N → N, ∀ arena G and W ∈ C,
if Controller has a winning strategy for W in
G, then she has one with memory ≤ f (|G|).

5 / 8



Objective-independent memory

Arena =

a b

c

bc

a

Safety objective = W ⊆ {a, b, c}∗
Strategy is winning if all runs stay in W

Theorem

Let W be a subword-closed objective and G an arena.
If Controller has a winning strategy for W in G, then she has one with memory ≤ |G|!.

a, b b, c

c

For all W subword-closed,
we need memory ≤ 5!

C ⊆ 2Σ
∗
has objective-independent memory if

∃f : N → N, ∀ arena G and W ∈ C,
if Controller has a winning strategy for W in
G, then she has one with memory ≤ f (|G|).

5 / 8



Bounding strategies

Lemma

There are local strategies (σw , σr ) to avoid qerr iff
there exists an invariant I ⊆ Σ∗ such that

1. I is subword-closed

2. Every local σw -run of the writer writes a sequence in I
3. Every local σr -run of the reader reaching qerr reads a sequence /∈ I

Winning strategy ⇒ Subword-closed I

⇒ Bound Writer’s strat.
⇒ Bound I
⇒ Bound Reader’s strat.
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Bounding strategies

Theorem

The distributed synthesis problem is NEXPTIME-complete for reader-writer systems.

”Easy” extension: everyone can read and write, but the process writing can change ≤ K times.

Theorem

The distributed synthesis problem is NEXPTIME-complete for shared-memory systems with
bounded writer switches.
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Burning questions

Which classes of
languages have

objective-independent
memory?

Which communication
primitives yield

a well quasi-order
on local executions?

Many thanks to Antonio Casares, Pierre Ohlmann, Isa Vialard and people from Autobóz ’25.

Thank you for your attention!
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