
Distributed synthesis, well-quasi-orders,
and memory for games

Corto Mascle
MPI-SWS Kaiserslautern

Joint work with Anca Muscholl and Igor Walukiewicz

Highlights 2025

1 / 8

Asynchronous distributed systems

▶ Several processes running asynchronously

▶ Execution = sequence of local steps

▶ Constraint on scheduling: Shared memory,
locks, broadcast, rendez-vous,
token-passing, ...

▶ Specification: avoid qerr

Writer

wr(a)

wr(a)

wr(c)

wr(c)

wr(b)

wr(a)

wr(a)

wr(b)

aca

qerr

Reader

rd(c)

rd(a)

rd(c)

rd(b)

rd(a)

rd(b)

Local runs of writer and reader can be combined whenever the sequence read by Reader is a
subword of the sequence written by Writer.
Ex: bab is a subword of abbaba.

2 / 8

Asynchronous distributed systems

▶ Several processes running asynchronously

▶ Execution = sequence of local steps

▶ Constraint on scheduling: Shared memory,
locks, broadcast, rendez-vous,
token-passing, ...

▶ Specification: avoid qerr

Writer

wr(a)

wr(a)

wr(c)

wr(c)

wr(b)

wr(a)

wr(a)

wr(b)

aca

qerr

Reader

rd(c)

rd(a)

rd(c)

rd(b)

rd(a)

rd(b)

Local runs of writer and reader can be combined whenever the sequence read by Reader is a
subword of the sequence written by Writer.
Ex: bab is a subword of abbaba.

2 / 8

Asynchronous distributed systems

▶ Several processes running asynchronously

▶ Execution = sequence of local steps

▶ Constraint on scheduling: Shared memory,
locks, broadcast, rendez-vous,
token-passing, ...

▶ Specification: avoid qerr

Writer

wr(a)

wr(a)

wr(c)

wr(c)

wr(b)

wr(a)

wr(a)

wr(b)

aca

qerr

Reader

rd(c)

rd(a)

rd(c)

rd(b)

rd(a)

rd(b)

Local runs of writer and reader can be combined whenever the sequence read by Reader is a
subword of the sequence written by Writer.
Ex: bab is a subword of abbaba.

2 / 8

Asynchronous distributed systems

▶ Several processes running asynchronously

▶ Execution = sequence of local steps

▶ Constraint on scheduling: Shared memory,
locks, broadcast, rendez-vous,
token-passing, ...

▶ Specification: avoid qerr

Writer

wr(a)

wr(a)

wr(c)

wr(c)

wr(b)

wr(a)

wr(a)

wr(b)

aca

qerr

Reader

rd(c)

rd(a)

rd(c)

rd(b)

rd(a)

rd(b)

Local runs of writer and reader can be combined whenever the sequence read by Reader is a
subword of the sequence written by Writer.
Ex: bab is a subword of abbaba.

2 / 8

Asynchronous distributed systems

▶ Several processes running asynchronously

▶ Execution = sequence of local steps

▶ Constraint on scheduling: Shared memory,
locks, broadcast, rendez-vous,
token-passing, ...

▶ Specification: avoid qerr

Writer

wr(a)

wr(a)

wr(c)

wr(c)

wr(b)

wr(a)

wr(a)

wr(b)

aca

qerr

Reader

rd(c)

rd(a)

rd(c)

rd(b)

rd(a)

rd(b)

Local runs of writer and reader can be combined whenever the sequence read by Reader is a
subword of the sequence written by Writer.
Ex: bab is a subword of abbaba.

2 / 8

Asynchronous distributed systems

▶ Several processes running asynchronously

▶ Execution = sequence of local steps

▶ Constraint on scheduling: Shared memory,
locks, broadcast, rendez-vous,
token-passing, ...

▶ Specification: avoid qerr

Writer

wr(a)wr(a)

wr(c)

wr(c)

wr(b)

wr(a)

wr(a)

wr(b)

a

ca

qerr

Reader

rd(c)

rd(a)

rd(c)

rd(b)

rd(a)

rd(b)

Local runs of writer and reader can be combined whenever the sequence read by Reader is a
subword of the sequence written by Writer.
Ex: bab is a subword of abbaba.

2 / 8

Asynchronous distributed systems

▶ Several processes running asynchronously

▶ Execution = sequence of local steps

▶ Constraint on scheduling: Shared memory,
locks, broadcast, rendez-vous,
token-passing, ...

▶ Specification: avoid qerr

Writer

wr(a)

wr(a)

wr(c)wr(c)

wr(b)

wr(a)

wr(a)

wr(b)

a

c

a

qerr

Reader

rd(c)

rd(a)

rd(c)

rd(b)

rd(a)

rd(b)

Local runs of writer and reader can be combined whenever the sequence read by Reader is a
subword of the sequence written by Writer.
Ex: bab is a subword of abbaba.

2 / 8

Asynchronous distributed systems

▶ Several processes running asynchronously

▶ Execution = sequence of local steps

▶ Constraint on scheduling: Shared memory,
locks, broadcast, rendez-vous,
token-passing, ...

▶ Specification: avoid qerr

Writer

wr(a)

wr(a)

wr(c)

wr(c)

wr(b)

wr(a)

wr(a)

wr(b)

a

c

a

qerr

Reader

rd(c)

rd(a)

rd(c)

rd(b)

rd(a)

rd(b)

Local runs of writer and reader can be combined whenever the sequence read by Reader is a
subword of the sequence written by Writer.
Ex: bab is a subword of abbaba.

2 / 8

Asynchronous distributed systems

▶ Several processes running asynchronously

▶ Execution = sequence of local steps

▶ Constraint on scheduling: Shared memory,
locks, broadcast, rendez-vous,
token-passing, ...

▶ Specification: avoid qerr

Writer

wr(a)

wr(a)

wr(c)

wr(c)

wr(b)

wr(a)wr(a)

wr(b)

ac

a

qerr

Reader

rd(c)

rd(a)

rd(c)

rd(b)

rd(a)

rd(b)

Local runs of writer and reader can be combined whenever the sequence read by Reader is a
subword of the sequence written by Writer.
Ex: bab is a subword of abbaba.

2 / 8

Asynchronous distributed systems

▶ Several processes running asynchronously

▶ Execution = sequence of local steps

▶ Constraint on scheduling: Shared memory,
locks, broadcast, rendez-vous,
token-passing, ...

▶ Specification: avoid qerr

Writer

wr(a)

wr(a)

wr(c)

wr(c)

wr(b)

wr(a)

wr(a)

wr(b)

ac

a

qerr

Reader

rd(c)

rd(a)

rd(c)

rd(b) rd(a)

rd(b)

Local runs of writer and reader can be combined whenever the sequence read by Reader is a
subword of the sequence written by Writer.
Ex: bab is a subword of abbaba.

2 / 8

Asynchronous distributed systems

▶ Several processes running asynchronously

▶ Execution = sequence of local steps

▶ Constraint on scheduling: Shared memory,
locks, broadcast, rendez-vous,
token-passing, ...

▶ Specification: avoid qerr

Writer

wr(a)

wr(a)

wr(c)

wr(c)

wr(b)

wr(a)

wr(a)

wr(b)

aca

qerr

Reader

rd(c)

rd(a)

rd(c)

rd(b)

rd(a)

rd(b)

Local runs of writer and reader can be combined whenever the sequence read by Reader is a
subword of the sequence written by Writer.
Ex: bab is a subword of abbaba.

2 / 8

Distributed synthesis

▶ Each process has Controller and
Environment states.

▶ One local strategy for each process:
σw , σr

▶ Local strategy = function
σw : Pathsw → Transitionsw that chooses
the next transition from controllable
states based on past transitions.

Writer

wr(a) wr(b)

wr(b) wr(a)

qerr

Reader

rd(a)rd(b)

rd(a)rd(b)

3 / 8

Distributed synthesis

▶ Each process has Controller and
Environment states.

▶ One local strategy for each process:
σw , σr

▶ Local strategy = function
σw : Pathsw → Transitionsw that chooses
the next transition from controllable
states based on past transitions.

Writer

wr(a) wr(b)

wr(b) wr(a)

qerr

Reader

rd(a)rd(b)

rd(a)rd(b)

3 / 8

Distributed synthesis

▶ Each process has Controller and
Environment states.

▶ One local strategy for each process:
σw , σr

▶ Local strategy = function
σw : Pathsw → Transitionsw that chooses
the next transition from controllable
states based on past transitions.

Writer

wr(a) wr(b)

wr(b) wr(a)

qerr

Reader

rd(a)rd(b)

rd(a)rd(b)

3 / 8

Invariants

Lemma

Local strategies (σw , σr) successfully avoid qerr

⇔

there exists an invariant I ⊆ Σ∗ such that

1. Every local σw -run of the writer writes a sequence in I
2. Every local σr -run of the reader reaching qerr reads a sequence /∈ I
3. I is subword-closed

▶ I a priori arbitrarily large

▶ If we were given I → reduces to regular two-player safety game

4 / 8

Invariants

Lemma

Local strategies (σw , σr) successfully avoid qerr

⇔
there exists an invariant I ⊆ Σ∗ such that

1. Every local σw -run of the writer writes a sequence in I
2. Every local σr -run of the reader reaching qerr reads a sequence /∈ I
3. I is subword-closed

▶ I a priori arbitrarily large

▶ If we were given I → reduces to regular two-player safety game

4 / 8

Invariants

Lemma

Local strategies (σw , σr) successfully avoid qerr

⇔
there exists an invariant I ⊆ Σ∗ such that

1. Every local σw -run of the writer writes a sequence in I
2. Every local σr -run of the reader reaching qerr reads a sequence /∈ I
3. I is subword-closed

▶ I a priori arbitrarily large

▶ If we were given I → reduces to regular two-player safety game

4 / 8

Objective-independent memory

Arena =

a b

c

bc

a

Safety objective = W ⊆ {a, b, c}∗
Strategy is winning if all runs stay in W

Theorem

Let W be a subword-closed objective and G an arena.
If Controller has a winning strategy for W in G, then she has one with memory ≤ |G|!.

a, b b, c

c

For all W subword-closed,
we need memory ≤ 5!

C ⊆ 2Σ
∗
has objective-independent memory if

∃f : N → N, ∀ arena G and W ∈ C,
if Controller has a winning strategy for W in
G, then she has one with memory ≤ f (|G|).

5 / 8

Objective-independent memory

Arena =

a b

c

bc

a

Safety objective = W ⊆ {a, b, c}∗
Strategy is winning if all runs stay in W

Theorem

Let W be a subword-closed objective and G an arena.
If Controller has a winning strategy for W in G, then she has one with memory ≤ |G|!.

a, b b, c

c

For all W subword-closed,
we need memory ≤ 5!

C ⊆ 2Σ
∗
has objective-independent memory if

∃f : N → N, ∀ arena G and W ∈ C,
if Controller has a winning strategy for W in
G, then she has one with memory ≤ f (|G|).

5 / 8

Objective-independent memory

Arena =

a b

c

bc

a

Safety objective = W ⊆ {a, b, c}∗
Strategy is winning if all runs stay in W

Theorem

Let W be a subword-closed objective and G an arena.
If Controller has a winning strategy for W in G, then she has one with memory ≤ |G|!.

a, b b, c

c

For all W subword-closed,
we need memory ≤ 5!

C ⊆ 2Σ
∗
has objective-independent memory if

∃f : N → N, ∀ arena G and W ∈ C,
if Controller has a winning strategy for W in
G, then she has one with memory ≤ f (|G|).

5 / 8

Objective-independent memory

Arena =

a b

c

bc

a

Safety objective = W ⊆ {a, b, c}∗
Strategy is winning if all runs stay in W

Theorem

Let W be a subword-closed objective and G an arena.
If Controller has a winning strategy for W in G, then she has one with memory ≤ |G|!.

a, b b, c

c

For all W subword-closed,
we need memory ≤ 5!

C ⊆ 2Σ
∗
has objective-independent memory if

∃f : N → N, ∀ arena G and W ∈ C,
if Controller has a winning strategy for W in
G, then she has one with memory ≤ f (|G|).

5 / 8

Bounding strategies

Lemma

There are local strategies (σw , σr) to avoid qerr iff
there exists an invariant I ⊆ Σ∗ such that

1. I is subword-closed

2. Every local σw -run of the writer writes a sequence in I
3. Every local σr -run of the reader reaching qerr reads a sequence /∈ I

Winning strategy ⇒ Subword-closed I

⇒ Bound Writer’s strat.
⇒ Bound I
⇒ Bound Reader’s strat.

6 / 8

Bounding strategies

Lemma

There are local strategies (σw , σr) to avoid qerr iff
there exists an invariant I ⊆ Σ∗ such that

1. I is subword-closed

2. Every local σw -run of the writer writes a sequence in I
3. Every local σr -run of the reader reaching qerr reads a sequence /∈ I

Winning strategy ⇒ Subword-closed I
⇒ Bound Writer’s strat.

⇒ Bound I
⇒ Bound Reader’s strat.

6 / 8

Bounding strategies

Lemma

There are local strategies (σw , σr) to avoid qerr iff
there exists an invariant I ⊆ Σ∗ such that

1. I is subword-closed

2. Every local σw -run of the writer writes a sequence in I
3. Every local σr -run of the reader reaching qerr reads a sequence /∈ I

Winning strategy ⇒ Subword-closed I
⇒ Bound Writer’s strat.
⇒ Bound I

⇒ Bound Reader’s strat.

6 / 8

Bounding strategies

Lemma

There are local strategies (σw , σr) to avoid qerr iff
there exists an invariant I ⊆ Σ∗ such that

1. I is subword-closed

2. Every local σw -run of the writer writes a sequence in I
3. Every local σr -run of the reader reaching qerr reads a sequence /∈ I

Winning strategy ⇒ Subword-closed I
⇒ Bound Writer’s strat.
⇒ Bound I
⇒ Bound Reader’s strat.

6 / 8

Bounding strategies

Theorem

The distributed synthesis problem is NEXPTIME-complete for reader-writer systems.

”Easy” extension: everyone can read and write, but the process writing can change ≤ K times.

Theorem

The distributed synthesis problem is NEXPTIME-complete for shared-memory systems with
bounded writer switches.

7 / 8

Bounding strategies

Theorem

The distributed synthesis problem is NEXPTIME-complete for reader-writer systems.

”Easy” extension: everyone can read and write, but the process writing can change ≤ K times.

Theorem

The distributed synthesis problem is NEXPTIME-complete for shared-memory systems with
bounded writer switches.

7 / 8

Burning questions

Which classes of
languages have

objective-independent
memory?

Which communication
primitives yield

a well quasi-order
on local executions?

Many thanks to Antonio Casares, Pierre Ohlmann, Isa Vialard and people from Autobóz ’25.

Thank you for your attention!

8 / 8

Burning questions

Which classes of
languages have

objective-independent
memory?

Which communication
primitives yield

a well quasi-order
on local executions?

Many thanks to Antonio Casares, Pierre Ohlmann, Isa Vialard and people from Autobóz ’25.

Thank you for your attention!

8 / 8

Burning questions

Which classes of
languages have

objective-independent
memory?

Which communication
primitives yield

a well quasi-order
on local executions?

Many thanks to Antonio Casares, Pierre Ohlmann, Isa Vialard and people from Autobóz ’25.

Thank you for your attention!

8 / 8

