Distributed synthesis, well-quasi-orders,
and memory for games

Corto Mascle
MPI-SWS Kaiserslautern

Joint work with Anca Muscholl and Igor Walukiewicz

Highlights 2025

Asynchronous distributed systems

> Several processes running asynchronously

2/8

Asynchronous distributed systems

> Several processes running asynchronously

» Execution = sequence of local steps

Writer

rd(b)

rd(a)

rd(b)
qerr

Reader

2/8

Asynchronous distributed systems

> Several processes running asynchronously
» Execution = sequence of local steps

» Constraint on scheduling: Shared memory,
locks, broadcast, rendez-vous,
token-passing, ...

Writer

rd(b)

rd(a)

rd(b)
qerr

Reader

2/8

Asynchronous distributed systems

> Several processes running asynchronously
» Execution = sequence of local steps

» Constraint on scheduling: Shared memory,
locks, broadcast, rendez-vous,
token-passing, ...

> Specification: avoid g,

Writer

rd(b)

rd(a)

rd(b)
qerr

Reader

2/8

Asynchronous distributed systems

> Several processes running asynchronously
» Execution = sequence of local steps

» Constraint on scheduling: Shared memory,
locks, broadcast, rendez-vous,
token-passing, ...

> Specification: avoid g,

Writer

rd(b)

rd(a)

rd(b)
qerr

Reader

2/8

Asynchronous distributed systems

> Several processes running asynchronously
» Execution = sequence of local steps

» Constraint on scheduling: Shared memory,
locks, broadcast, rendez-vous,
token-passing, ...

> Specification: avoid g,

Writer

rd(b)

rd(a)

rd(b)
qerr

Reader

2/8

Asynchronous distributed systems

> Several processes running asynchronously
» Execution = sequence of local steps

» Constraint on scheduling: Shared memory,
locks, broadcast, rendez-vous,
token-passing, ...

> Specification: avoid g,

2/8

Asynchronous distributed systems

> Several processes running asynchronously
» Execution = sequence of local steps

» Constraint on scheduling: Shared memory,
locks, broadcast, rendez-vous,
token-passing, ...

> Specification: avoid g,

Writer

rd(b)

rd(a)

rd(b)
qerr

Reader

2/8

Asynchronous distributed systems

> Several processes running asynchronously
» Execution = sequence of local steps

» Constraint on scheduling: Shared memory,
locks, broadcast, rendez-vous,
token-passing, ...

> Specification: avoid g,

Writer

rd(b)

rd(a)

rd(b)
qerr

Reader

2/8

Asynchronous distributed systems

> Several processes running asynchronously
» Execution = sequence of local steps

» Constraint on scheduling: Shared memory,
locks, broadcast, rendez-vous,
token-passing, ...

> Specification: avoid g,

Writer

rd(b)

rd(c)

rd(a)

rd(b)
qerr

Reader

2/8

Asynchronous distributed systems

> Several processes running asynchronously
» Execution = sequence of local steps

» Constraint on scheduling: Shared memory,
locks, broadcast, rendez-vous,
token-passing, ... rd(b) rd(a)

rd(b)

> Specification: avoid g,
qerr

Writer Reader
Local runs of writer and reader can be combined whenever the sequence read by Reader is a
subword of the sequence written by Writer.
Ex: bab is a subword of abbaba.

2/8

Distributed synthesis

» Each process has Controller and

Environment states.

qerr

Writer Reader

3/8

Distributed synthesis

» Each process has Controller and
Environment states.

» One local strategy for each process:
Ow,0r

qerr

Writer Reader

Distributed synthesis

» Each process has Controller and
Environment states.

» One local strategy for each process:
Ow,0r

» Local strategy = function
ow : Paths, — Transitions,, that chooses
the next transition from controllable
states based on past transitions.

[]

wr(a) wr(b)

wr(b) wr(a)

Writer

rd(b)

rd(b)

rd(a)

rd(a)

qerr

Reader

3/8

Invariants

Local strategies (o, 0,) successfully avoid qerr

=

4/8

Invariants

Local strategies (o, 0,) successfully avoid qerr
<~

there exists an invariant Z C >* such that
1. Every local o,,-run of the writer writes a sequence in L

2. Every local o,-run of the reader reaching q., reads a sequence ¢ T

3. 7 is subword-closed

4/8

Invariants

Local strategies (o, 0,) successfully avoid qer
<~

there exists an invariant Z C >* such that
1. Every local o,,-run of the writer writes a sequence in L

2. Every local o,-run of the reader reaching q., reads a sequence ¢ T

3. 7 is subword-closed

» T a priori arbitrarily large
> If we were given Z — reduces to regular two-player safety game

4/8

Objective-independent memory

Arena =

Safety objective = W C {a, b, c}*
Strategy is winning if all runs stay in W

5/8

Objective-independent memory

Safety objective = W C {a, b, c}*

Arena = Strategy is winning if all runs stay in W

Let W be a subword-closed objective and G an arena.
If Controller has a winning strategy for W in G, then she has one with memory < |G|!.

5/8

Objective-independent memory

Safety objective = W C {a, b, c}*

Arena = Strategy is winning if all runs stay in W

Let W be a subword-closed objective and G an arena.
If Controller has a winning strategy for W in G, then she has one with memory < |G|!.

For all W subword-closed,
we need memory < 5!

5/8

Objective-independent memory

Safety objective = W C {a, b, c}*
Strategy is winning if all runs stay in W

Arena =

Let W be a subword-closed objective and G an arena.
If Controller has a winning strategy for W in G, then she has one with memory < |G|!.

a,b b, c ;
C C 2% has objective-independent memory if
M df : N — N, Varena G and W € C,
if Controller has a winning strategy for W in
For all W' subword-closed, G, then she has one with memory < f(|G]).
we need memory < 5!

5/8

Bounding strategies

There are local strategies (o, 0,) to avoid Qe iff
there exists an invariant Z C ¥~ * such that

1. Z is subword-closed

2. Every local o,-run of the writer writes a sequence in Z

3. Every local o,-run of the reader reaching q., reads a sequence ¢ T

Winning strategy = Subword-closed 7

6/8

Bounding strategies

There are local strategies (o, 0,) to avoid Qe iff
there exists an invariant Z C ¥~ * such that

1. Z is subword-closed

2. Every local o,-run of the writer writes a sequence in Z

3. Every local o,-run of the reader reaching q., reads a sequence ¢ T

Winning strategy = Subword-closed 7
= Bound Writer's strat.

6/8

Bounding strategies

There are local strategies (o, 0,) to avoid Qe iff
there exists an invariant Z C ¥~ * such that

1. 7 is subword-closed
2. Every local o,-run of the writer writes a sequence in Z

3. Every local o,-run of the reader reaching q., reads a sequence ¢ T

Winning strategy = Subword-closed 7
= Bound Writer's strat.
= Bound 7

6/8

Bounding strategies

There are local strategies (o, 0,) to avoid Qe iff
there exists an invariant Z C ¥~ * such that

1. Z is subword-closed

2. Every local o,-run of the writer writes a sequence in Z

3. Every local o,-run of the reader reaching q., reads a sequence ¢ T

Winning strategy = Subword-closed 7
= Bound Writer’s strat.

= Bound 7

= Bound Reader’s strat.

6/8

Bounding strategies

The distributed synthesis problem is NEXPTIME-complete for reader-writer systems.

7/8

Bounding strategies

The distributed synthesis problem is NEXPTIME-complete for reader-writer systems.

"Easy" extension: everyone can read and write, but the process writing can change < K times.

The distributed synthesis problem is NEXPTIME-complete for shared-memory systems with
bounded writer switches.

7/8

Burning questions

Which classes of
languages have

objective-independent
memory?

Which communication
primitives yield

a well quasi-order
on local executions?

8/8

Burning questions

Which classes of
languages have

Which communication
primitives yield
objective-independent
memory?

a well quasi-order
on local executions?

Many thanks to Antonio Casares, Pierre Ohlmann, Isa Vialard and people from Autobéz '25.

8/8

Burning questions

Which classes of
languages have

Which communication
primitives yield
objective-independent
memory?

a well quasi-order
on local executions?

Many thanks to Antonio Casares, Pierre Ohlmann, Isa Vialard and people from Autobéz '25.

Thank you for your attention!

8/8

