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What is responsibility?

Consider a system with some agents, each performing actions
resulting in events.

Chockler, Halpern and Kupferman proposed a notion of responsibility
based on counterfactuality:
Agent A is responsible for event E if, had A acted differently, E
would not have happened.
How do we distribute responsibility fairly?
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Previous work

Their recurring example involves two characters, Suzy and Billy,
throwing stones at a glass bottle. We use three variables, BB (the bottle
is broken), ST (Suzy throws a stone) and BT (Billy throws a stone).

¬ BB ¬ BB, ST

¬ BB, BT

¬ BB

BB

BB



Previous work

A specification is given in CTL.

The responsibility is evaluated on states with respect to atomic
propositions:

The degree of responsibility of state s with respect to a is 1
m , where m

is the minimal size of a set of states containing s such that flipping the
value of a in those states makes the system fail the specification.
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An intuitive situation in which we assign responsibility in a "human"
way is after a vote.

Responsibility is often understood either in a binary way (responsible
or not), or in a weighted way (we distribute responsibility).
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Shapley values

We fix a set of players {1, . . . , N}, and we note P(N) the set of
partitions of {1, . . . , N}.

Definition
A coalition is a pair (T, P ) with P ∈ P(N) and T ∈ P . The set of
coalitions is denoted C(N).

Definition
A coalitional game is a function ν : C(N)→ R.

We focus on games such that ν(T, P ) only depends on T .
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Cooperative games and the Shapley value

A function:

ν : 2A → R
defines a cooperative game (we assume ν(∅) = 0).

The number ν(C), with C ⊆ A, describes the value of coalition C.

Given an ordering π of A, let π≥a = {i ∈ A | π(i) ≥ π(a)}.

The Shapley value is defined as:

Sh(a) =
1

n!

∑
π∈Πn

ν(π≥a)− ν(π≥a \ {a})
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Shapley values

The Shapley value function is the only one satisfying the following
conditions.

1 Efficiency
∑N

i=0 Shi(ν) = ν({1, . . . , N}, {{1, . . . , N}})

2 Symmetry Renaming players does not affect their rewards.

3 Additivity For all games µ, ν, and C ∈ R,
Shi(Cµ+ ν) = CShi(µ) + Shi(ν), i.e., Shi is a linear function.

4 Null-Player Axiom If for all (T, P ) ∈ C(N),
ν(T ∪ {i}, PT←i) = ν(T, P ) then Shi(ν) = 0.



Simple games

A (monotone) value function:

ν : 2A → {0, 1}
defines a simple cooperative game.

Given an ordering π of A, let π≥a = {i ∈ A | π(i) ≥ π(a)}.
Agent a ∈ A is decisive for ordering π ∈ Πn if:

ν(π≥a) = 1 and ν(π≥a \ {a}) = 0

Sh(a) =
1

n!
|{π ∈ Πn | a is decisive for π}|
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→ We start with a system with agents {1, . . . , n}.
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LTL model checking and importance of states

LTL is a logics designed to express properties of infinite words.

ϕ ::= a | ϕ ∧ ϕ | ¬ϕ | Xϕ | ϕUϕ | Gϕ | Fϕ

For instance, GFa expresses that at all positions of the word there is a
further position at which a is true.



LTL model checking and importance of states

Given a Kripke structure K and an LTL formula ϕ.

ϕ = GF

“infinitely often”

Which states of K are important for ϕ?

A state of K is (more) important for ϕ if
its nondeterminism matters (more).
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Formalizing importance for LTL
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and a set
of states C ⊆ S, define:

the LTL-game G(C) over K under partition C, S \ C and winning
objective ϕ.
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Example

i

q

p

ϕ = GF

Deterministic states have importance 0.

Controlling p or {q, i}wins.

I(p) =
1

|S|!
|{π ∈ ΠS | p is decisive for π}|

=
1

|S|!
|{π ∈ ΠS | p is after q or i in π}|

=
2

3

I(i) = I(q) = 1/6
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Comparison

A server is tested by sending requests. If the server fails to answer, it is
tested again, otherwise the system may wait before testing again.

ok

checkstart

S

fail ok

checkstart

S S′

fail

ϕ = GF check ∧ FG¬fail

We obtain an importance of 1
2 for S and ok in the first example, 1

2 for ok
and 1

6 for check, S and S′ in the other.
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Complexity of determining importance
Value problem. Given C ⊆ S:

Is C enough to make the system work?

→ this requires solving the game.

Usefulness problem. Given q ∈ S:

Decide I(q) > 0?

Importance threshold problem. Given q ∈ S, γ ∈ Q:

Decide I(q) > γ?

Importance computation problem. Given q ∈ S:

compute |S|! · I(q)
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Mitigating the complexity

We do not consider single states but sets of states corresponding
to parts of the system (less syntax-sensitive).

Probabilistic approximations are enough for our purpose: Just
draw orders at random and do a dichotomic search for the critical
state.
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An importance value for CTL

CTL combines path- and state-formulas. (e.g. EGa)

Semantics: infinite trees, corresponding to the unfolding of the
system.

→ The nondeterminism is captured by this infinite tree.

Let’s consider modal transition systems.

It is not clear how to design
a turn-based game.

We considered one-shot
games instead.
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CTL complexity

We consider two interpretations for CTL:

1) One player chooses all its transitions, then the other one does.

The game is asymmetric, one of the players has an advantage.

2) Both players choose their transitions concurrently.

Players may use randomized strategies to choose their transitions.
Computing the value of a set of states comes down to solving a
linear optimization problem with exponential input.
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Tree games

Definition
A tree arena is a pair (V,E) with V a finite set and E ⊆ V × 2V .

Definition
A tree game is played over a tree arena (V,E), with an initial vertex
init, a partition V = VSat t VUnsat and an objective (a tree language) Ω.

Definition
A linear strategy is a function σ : E∗ → E.

Sat (resp. Unsat) wins if they have a strategy to guarantee that the
resulting tree (un)satisfies the objective. The game is sometimes
undetermined.
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Game automata

Definition
A game automaton is an alternating tree automaton in which a pair (q, i)
appears at most once in each transition.

Proposition
Languages expressed by game automata yield determined tree games.

However there exist languages non expressible by game automata
which yield determined tree games.
It is the case with the language of trees having countably many
branches fully labelled with a.
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→ Fragment of CTL for which tree games are determined.

→ Probabilistic approximation methods for Shapley values in this
framework.

→ Extension to probabilistic systems.
→ Control point of view (make the adversary all-knowing)
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Thank you for your attention!


