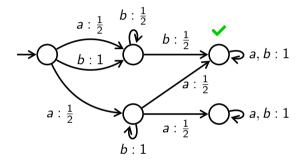
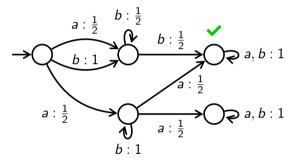
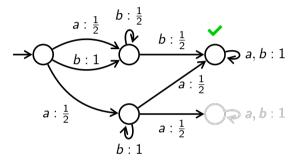
The Short-Ends Factorisation Theorem and applications

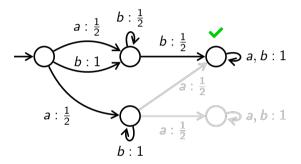
Corto Mascle MPI-SWS Kaiserslautern

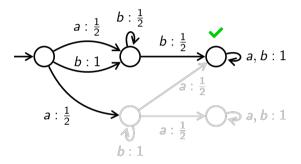
```
Based on joint work with
```

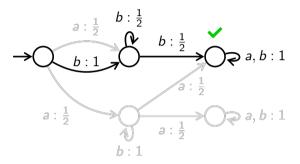


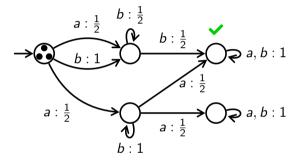




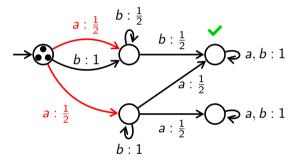




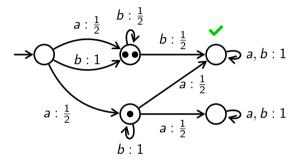




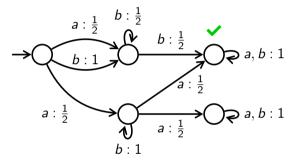
Given N identical Markov decision process, make them all reach \checkmark with probability 1.



Given N identical Markov decision process, make them all reach \checkmark with probability 1.

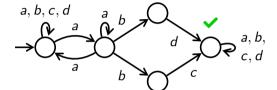


Given N identical Markov decision process, make them all reach \checkmark with probability 1.

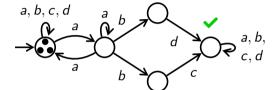


Given N identical Markov decision process, make them all reach \checkmark with probability 1.

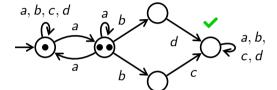
 \Rightarrow Product of *N* MDPs.



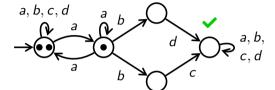
Random population control problem



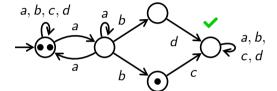
Random population control problem



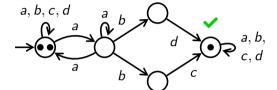
Random population control problem



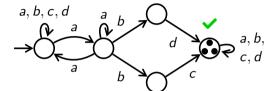
Random population control problem



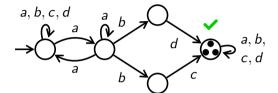
Random population control problem



Random population control problem



Random population control problem



Random population control problem

Given an MDP \mathcal{M} , is there a winning strategy against N tokens, for all N?

Adapted from [Bertrand Dewaskar Genest Gimbert '15]

There are MDPs of size k for which we can win against 2^{2^k} tokens and not more.

▶ Less tokens is always better → The set of winning configurations is *downward-closed*.

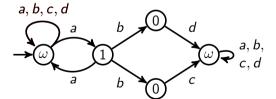
- ▶ Less tokens is always better → The set of winning configurations is *downward-closed*.
- ▶ The set of configurations from which action *a* is safe is *downward-closed*.

- ► Less tokens is always better ¬¬ The set of winning configurations is downward-closed.
- ▶ The set of configurations from which action a is safe is downward-closed.
- Downward-closed sets of configurations can be represented as finite unions of ideals.

$$(\omega, 5, \omega, 8) \downarrow \cup (4, \omega, \omega, 4) \downarrow \cup (9, 6, 1, 4) \downarrow$$

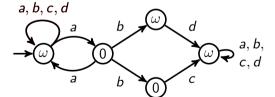
- ► Less tokens is always better ¬¬ The set of winning configurations is downward-closed.
- ▶ The set of configurations from which action a is safe is downward-closed.
- Downward-closed sets of configurations can be represented as finite unions of ideals.

$$(\omega, 5, \omega, 8) \downarrow \cup (4, \omega, \omega, 4) \downarrow \cup (9, 6, 1, 4) \downarrow$$



- ► Less tokens is always better ¬¬ The set of winning configurations is downward-closed.
- ▶ The set of configurations from which action a is safe is downward-closed.
- Downward-closed sets of configurations can be represented as finite unions of ideals.

$$(\omega, 5, \omega, 8) \downarrow \cup (4, \omega, \omega, 4) \downarrow \cup (9, 6, 1, 4) \downarrow$$



Given N identical Markov decision processes, make them all reach \checkmark with probability 1.

$$\begin{array}{ll} S \leftarrow \mathbb{N}^Q & \rightarrow \text{ configurations} \\ C \leftarrow \mathbb{N}^Q \times \Sigma & \rightarrow \text{ commits} \\ \textbf{while not fixpoint do} \\ \textbf{if } \exists (s,a) \in C, \ s \xrightarrow{a} s', \ s' \notin S \ \textbf{then} \\ C \leftarrow C \setminus \{(s,a)\} \uparrow \\ \textbf{if } \exists s \in S, \ \text{no path from } s \ \text{to } F \ \text{in } C \ \textbf{then} \\ S \leftarrow S \setminus \{s\} \uparrow, \ C \leftarrow C \cap S \times \Sigma \\ \textbf{return } I \subseteq S \end{array}$$

Given N identical Markov decision processes, make them all reach \checkmark with probability 1.

$$S \leftarrow \mathbb{N}^Q \qquad \qquad \rightarrow \text{configurations} \\ C \leftarrow \mathbb{N}^Q \times \Sigma \qquad \rightarrow \text{commits} \\ \\ \text{While not fixpoint do} \\ \text{if } \exists (s,a) \in C, \ s \xrightarrow{a} s', \ s' \notin S \text{ then} \\ C \leftarrow C \setminus \{(s,a)\} \uparrow \\ \\ \text{if } \exists s \in S, \text{ no path from } s \text{ to } F \text{ in } C \text{ then} \\ S \leftarrow S \setminus \{s\} \uparrow, \ C \leftarrow C \cap S \times \Sigma \\ \\ \text{return } I \subseteq S \\ \\ \end{aligned}$$

6 / 29

Given N identical Markov decision processes, make them all reach \checkmark with probability 1.

$$S \leftarrow \mathbb{N}^Q \qquad \rightarrow \text{configurations} \\ C \leftarrow \mathbb{N}^Q \times \Sigma \qquad \rightarrow \text{commits} \\ \begin{cases} \textbf{while not fixpoint do} \\ \textbf{if } \exists (s,a) \in C, \ s \xrightarrow{a} s', \ s' \notin S \textbf{ then} \\ C \leftarrow C \setminus \{(s,a)\} \uparrow \end{cases} \\ \textbf{if } \exists s \in S, \text{ no path from } s \text{ to } F \text{ in } C \textbf{ then} \\ S \leftarrow S \setminus \{s\} \uparrow, \ C \leftarrow C \cap S \times \Sigma \\ \textbf{return } I \subseteq S \end{cases}$$

Given N identical Markov decision processes, make them all reach \checkmark with probability 1.

$$S \leftarrow \mathbb{N}^Q \qquad \rightarrow \text{configurations} \\ C \leftarrow \mathbb{N}^Q \times \Sigma \qquad \rightarrow \text{commits} \\ \\ \text{while not fixpoint do} \\ \text{if } \exists (s,a) \in C, \ s \xrightarrow{a} s', \ s' \notin S \ \text{then} \\ C \leftarrow C \setminus \{(s,a)\} \uparrow \\ \text{if } \exists s \in S, \text{ no path from } s \text{ to } F \text{ in } C \ \text{then} \\ S \leftarrow S \setminus \{s\} \uparrow, \ C \leftarrow C \cap S \times \Sigma \\ \text{return } I \subseteq S \\ \\ \end{aligned}$$

Given N identical Markov decision processes, make them all reach \checkmark with probability 1.

 $S \leftarrow \mathbb{N}^Q \qquad \rightarrow \text{configurations} \\ C \leftarrow \mathbb{N}^Q \times \Sigma \qquad \rightarrow \text{commits} \\ \text{ while not fixpoint do} \\ \text{if } \exists (s,a) \in C, \ s \xrightarrow{a} s', \ s' \notin S \text{ then } \\ C \leftarrow C \setminus \{(s,a)\} \uparrow \\ \text{if } \exists s \in S, \text{ no path from } s \text{ to } F \text{ in } C \text{ then} \\ S \leftarrow S \setminus \{s\} \uparrow, \ C \leftarrow C \cap S \times \Sigma \\ \text{return } I \subseteq S \\ \end{cases}$

The remaining problem

$$C = ((\omega, 5, \omega, 8), a) \downarrow \cup ((4, \omega, \omega, 4), a) \downarrow \cup ((9, 6, 1, 4), b) \downarrow$$

Is there a path in C from every configuration in $(\omega, 5, \omega, 8) \downarrow \text{to } (0, 0, 0, \omega) \downarrow$?

The remaining problem

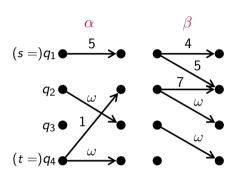
$$C = ((\omega, 5, \omega, 8), a) \downarrow \cup ((4, \omega, \omega, 4), a) \downarrow \cup ((9, 6, 1, 4), b) \downarrow$$

Is there a path in C from every configuration in $(\omega, 0, 0, 0) \downarrow$ to $(0, 0, 0, \omega) \downarrow$?

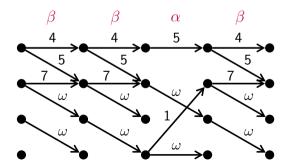
Put constraints on transitions instead of states!

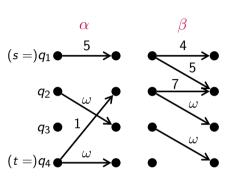
A *tile* is a function $Q \times Q \to \mathbb{N} \cup \{\omega\}$ describing *capacities*.

A *tile* is a function $Q \times Q \to \mathbb{N} \cup \{\omega\}$ describing *capacities*.



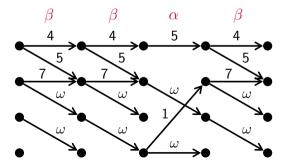
A *tile* is a function $Q \times Q \to \mathbb{N} \cup \{\omega\}$ describing *capacities*.

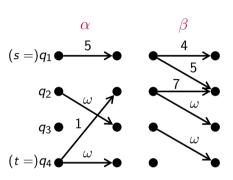




A *tile* is a function $Q \times Q \to \mathbb{N} \cup \{\omega\}$ describing *capacities*.

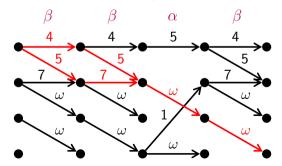
 $\texttt{MaxFlow}: \mathbf{Tiles}^* \to \mathbb{N} \cup \{\omega\}$

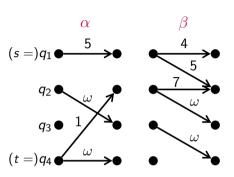




A *tile* is a function $Q \times Q \to \mathbb{N} \cup \{\omega\}$ describing *capacities*.

 $\texttt{MaxFlow}: \mathbf{Tiles}^* \to \mathbb{N} \cup \{\omega\}$

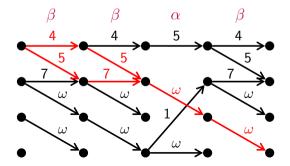


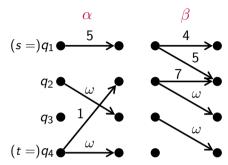


Sequential Flow Problem

A *tile* is a function $Q \times Q \to \mathbb{N} \cup \{\omega\}$ describing *capacities*.

 $\texttt{MaxFlow}: \mathbf{Tiles}^* \to \mathbb{N} \cup \{\omega\}$





Problem

Input: A set of tiles **Tiles**

Output: $ls \{ MaxFlow(w) \mid w \in Tiles^* \}$

unbounded?

[Blumensath Colcombet Parys '16]

Satisfiability in some extension of MSO reduces to SFP

[Blumensath Colcombet Parys '16]

SFP is decidable.

[Blumensath Colcombet Parys '16]

Satisfiability in some extension of MSO reduces to SFP

[Colcombet Fijalkow Ohlmann '20]

The Randomised Population Control Problem reduces to SFP.

[Blumensath Colcombet Parys '16]

SFP is decidable.

[Colcombet Fijalkow Ohlmann '20]

SFP is PSPACE-hard and in EXPSPACE.

[Blumensath Colcombet Parys '16]

Satisfiability in some extension of MSO reduces to SFP

[Colcombet Fijalkow Ohlmann '20]

The Randomised Population Control Problem reduces to SFP.

[Gimbert Mascle Totzke '25]

The Randomised Population Control Problem reduces to SFP in exponential time.

[Blumensath Colcombet Parys '16]

SFP is decidable.

[Colcombet Fijalkow Ohlmann '20]

SFP is PSPACE-hard and in EXPSPACE.

[Gimbert Mascle Totzke '25]

SFP is PSPACE-complete.

[Blumensath Colcombet Parys '16]

Satisfiability in some extension of MSO reduces to SFP

[Blumensath Colcombet Parys '16]

SFP is decidable.

[Colcombet Fijalkow Ohlmann '20]

The Randomised Population Control Problem reduces to SFP.

[Colcombet Fijalkow Ohlmann '20]

SFP is PSPACE-hard and in EXPSPACE.

[Gimbert Mascle Totzke '25]

The Randomised Population Control Problem reduces to SFP in exponential time.

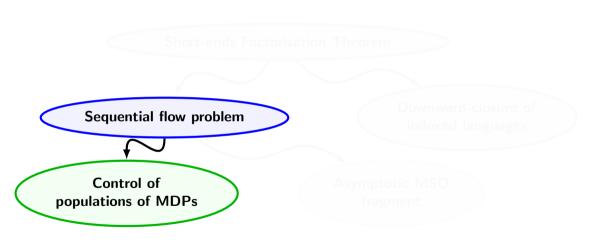
[Gimbert Mascle Totzke '25]

SFP is PSPACE-complete.

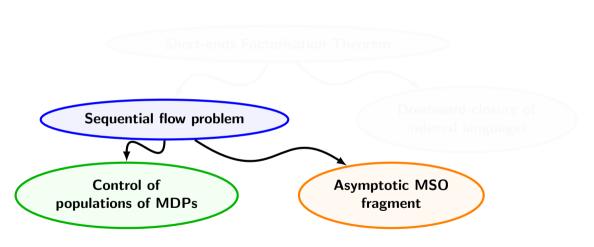
Theorem ([GMT '25])

The Randomised Population Control Problem is EXPTIME-complete.

Summary



Summary



Sequential Flow Problem

Problem

Input: A set of tiles **Tiles**

Output: Is $\{MaxFlow(w) \mid w \in Tiles^*\}$ unbounded?

Sequential Flow Problem

Problem

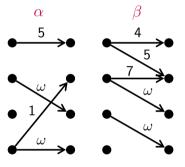
Input: A set of tiles **Tiles**

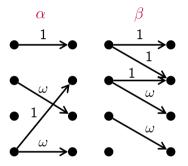
Output: *Is* $\{MaxFlow(w) \mid w \in Tiles^*\}$ *unbounded?*

Problem

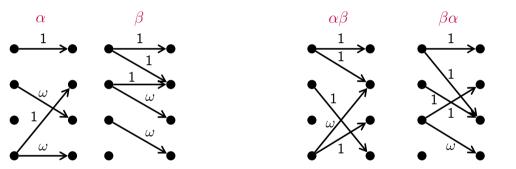
Input: A set of tiles **Tiles**

Output: Compute $\sup\{\text{MaxFlow}(w) \mid w \in \text{Tiles}^*\}$.



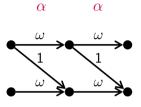


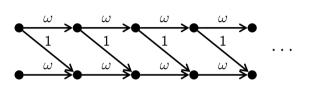
Morphism $\varphi: \mathbf{Tiles}^* \to \{0,1,\omega\}^{Q \times Q}$ with max-min product.



Morphism $\varphi: \mathbf{Tiles}^* \to \{0,1,\omega\}^{Q \times Q}$ with max-min product.

 α

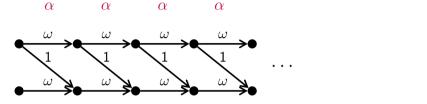




 α

 α

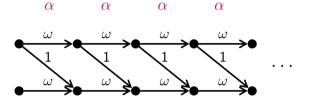
 $\alpha^{\it N}=\alpha$ (α is idempotent) but $\alpha^{\it N}$ has flow $\it N$.



 $\alpha^{N} = \alpha$ (α is idempotent) but α^{N} has flow N.

Define a new operator # on idempotents:

$$lpha^\sharp(s,t) = \left\{egin{array}{ll} \omega & ext{if } \exists s_0, t_0, s \xrightarrow{\omega} s_0 \xrightarrow{1} t_0 \xrightarrow{\omega} t & ext{in } lpha \\ lpha(s,t) & ext{otherwise} \end{array}
ight.$$



$$\alpha^{N} = \alpha$$
 (α is idempotent) but α^{N} has flow N .

Define a new operator # on idempotents:

$$lpha^\sharp(s,t) = \left\{egin{array}{ll} \omega & ext{if } \exists s_0, t_0, s \xrightarrow{\omega} s_0 \xrightarrow{1} t_0 \xrightarrow{\omega} t & ext{in } lpha \\ lpha(s,t) & ext{otherwise} \end{array}
ight.$$

If $\alpha^{\sharp}(s,t) = \omega$ then we have unbounded flows between s and t.

 \mathcal{F}_{\sharp} the closure of $\varphi(\mathsf{Tiles})$ under product and \sharp .

Lemma

 \mathcal{F}_{\sharp} contains some α with $\alpha(s,t)=\omega$ if and only if there are unbounded flows between s and t.

 \mathcal{F}_{\sharp} the closure of $\varphi(\mathsf{Tiles})$ under product and \sharp .

Lemma

 \mathcal{F}_{\sharp} contains some α with $\alpha(s,t)=\omega$ if and only if there are unbounded flows between s and t.

Checkable in PSPACE!

 \mathcal{F}_{\sharp} the closure of $\varphi(\mathsf{Tiles})$ under product and \sharp .

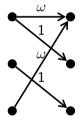
Lemma

 \mathcal{F}_{\sharp} contains some α with $\alpha(s,t)=\omega$ if and only if there are unbounded flows between s and t.

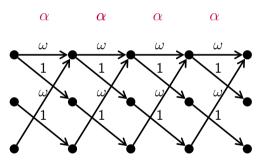
Checkable in PSPACE!
How large can a bounded flow be?

Iteration dichotomy

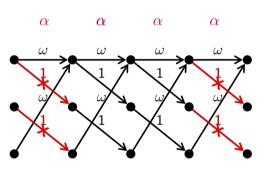
 α



Iteration dichotomy



Iteration dichotomy



For all idempotent α and $s,t\in \mathit{Q}$,

- ightharpoonup either $\alpha^{\sharp}(s,t)=\omega$
- or there is a cut between s and t in the first and last α .

Short-ends factorisation theorem (based on work by [Simon '90], [Colcombet '11])

 Σ finite alphabet, (\mathbf{M}, \cdot) finite monoid, $\varphi : \Sigma^* \to \mathbf{M}$ morphism.

Short-ends factorisation theorem (based on work by [Simon '90], [Colcombet '11])

 Σ finite alphabet, (\mathbf{M}, \cdot) finite monoid, $\varphi : \Sigma^* \to \mathbf{M}$ morphism.

Factorisation tree: Node labels in $\Sigma^* \times M$.

3 types of nodes:

Leaves	Product nodes
	$(uv, x \cdot y)$
$(a, \varphi(a))$	/ \
	(u,x) (v,y)

Idempotent nodes

$$(u_1u_2\cdots u_n, e)$$

$$/ \setminus$$

$$(u_1, e) (u_n, e)$$

$$\varphi(u_i) = e \text{ for all } i.$$

Short-ends factorisation theorem (based on work by [Simon '90], [Colcombet '11])

 Σ finite alphabet, (\mathbf{M}, \cdot) finite monoid, $\varphi : \Sigma^* \to \mathbf{M}$ morphism.

Factorisation tree: Node labels in $\Sigma^* \times M$.

3 types of nodes:

Leaves

 $(a, \varphi(a))$

Product nodes

$$(uv, x \cdot y)$$

$$(u,x)$$
 (v,y)

Idempotent nodes

$$(u_1u_2\cdots u_n,e)$$

$$(u_1,e)$$
 (u_n,e)

$$\varphi(u_i) = e$$
 for all i .

Example on the board —

Ramsey bounds

 $R_{\mathbf{M}}(k) = \text{minimal } n \text{ such that every word } w \text{ of length } n \text{ has a factor } u_1 \dots u_k \text{ with } \varphi(u_1) = \dots = \varphi(u_k) = e \text{ an idempotent of } \mathbf{M}.$

Ramsey bounds

 $R_{\mathbf{M}}(k) = \text{minimal } n \text{ such that every word } w \text{ of length } n \text{ has a factor } u_1 \dots u_k \text{ with } \varphi(u_1) = \dots = \varphi(u_k) = e \text{ an idempotent of } \mathbf{M}.$

Theorem

For all $w \in \Sigma^*$, there is a factorization tree of height $poly(log(\mathbf{M}), log(R_{\mathbf{M}}(3)))$.

Corollary

In a transition monoid of dimension n, every word has a factorization tree of height poly(n).

Based on bounds by [Jecker '21].

Exponential bound

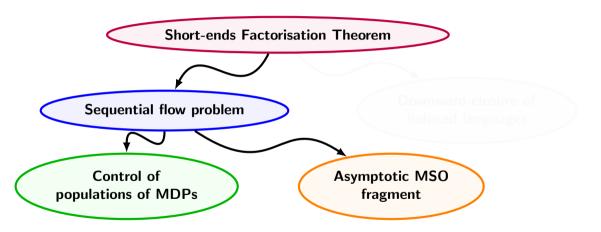
We can show:

- Every word has a factorisation of polynomial height in the flow monoid.
- ▶ If there is a bounded cut between s and t in all w, then there is one that lives within the factorisation.

Theorem

If the flow between s and t is bounded then it is at most exponential in |Q|.

Summary



Another application: Indexed grammars

Indexed grammar = Context-free grammar where each non-terminal carries a stack. N set of *non-terminals*, T set of *terminals*, Γ set of *stack symbols*.

Another application: Indexed grammars

Indexed grammar = Context-free grammar where each non-terminal carries a stack. N set of *non-terminals*, T set of *terminals*, Γ set of *stack symbols*.

$$A \to w \in T^*$$

$$A \to BC$$

$$A \xrightarrow{push(\gamma)} B\gamma$$

$$A\gamma \xrightarrow{pop(\gamma)} B$$

$$\begin{array}{c} S \xrightarrow{push(\gamma_{\perp})} S\gamma_{\perp} \\ S \xrightarrow{push(\gamma_{a})} S\gamma_{a} \\ S \xrightarrow{push(\gamma_{b})} S\gamma_{b} \\ S \xrightarrow{} WW \\ W\gamma_{a} \xrightarrow{pop(\gamma_{a})} Wa \\ W\gamma_{b} \xrightarrow{pop(\gamma_{b})} Wb \\ W\gamma_{\perp} \xrightarrow{pop(\gamma_{\perp})} \varepsilon \end{array}$$

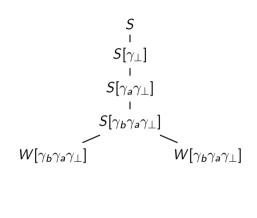
$$\begin{array}{c} S \xrightarrow{push(\gamma_{\perp})} S\gamma_{\perp} \\ S \xrightarrow{push(\gamma_{a})} S\gamma_{a} \\ S \xrightarrow{push(\gamma_{b})} S\gamma_{b} \\ S \xrightarrow{} WW \\ W\gamma_{a} \xrightarrow{pop(\gamma_{a})} Wa \\ W\gamma_{b} \xrightarrow{pop(\gamma_{b})} Wb \\ W\gamma_{\perp} \xrightarrow{pop(\gamma_{\perp})} \varepsilon \end{array}$$

3

$$\begin{array}{c} S \xrightarrow{push(\gamma_{\perp})} S\gamma_{\perp} \\ S \xrightarrow{push(\gamma_{a})} S\gamma_{a} \\ S \xrightarrow{push(\gamma_{b})} S\gamma_{b} \\ S \xrightarrow{} WW \\ W\gamma_{a} \xrightarrow{pop(\gamma_{a})} Wa \\ W\gamma_{b} \xrightarrow{pop(\gamma_{b})} Wb \\ W\gamma_{\perp} \xrightarrow{pop(\gamma_{\perp})} \varepsilon \end{array}$$

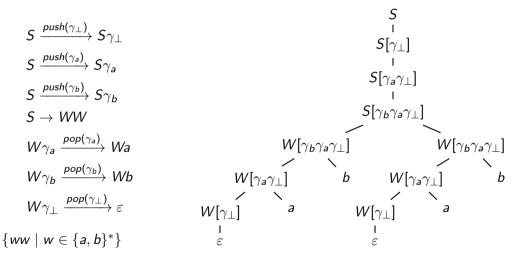
$$\begin{array}{c} S \\ | \\ S[\gamma_{\perp}] \\ | \\ S[\gamma_a \gamma_{\perp}] \\ | \\ S[\gamma_b \gamma_a \gamma_{\perp}] \end{array}$$

$$\begin{array}{c} S \xrightarrow{push(\gamma_{\perp})} S\gamma_{\perp} \\ S \xrightarrow{push(\gamma_{a})} S\gamma_{a} \\ S \xrightarrow{push(\gamma_{b})} S\gamma_{b} \\ S \xrightarrow{} WW \\ W\gamma_{a} \xrightarrow{pop(\gamma_{a})} Wa \\ W\gamma_{b} \xrightarrow{pop(\gamma_{b})} Wb \\ W\gamma_{\perp} \xrightarrow{pop(\gamma_{\perp})} \varepsilon \end{array}$$



Indexed grammars: Examples

Indexed grammars: Examples



Subword

w is a **subword** of w' ($w \leq w'$) if we can remove letters of w' to get w.

Ex: bab is a subword of abbaba.

Subword

w is a **subword** of w' ($w \leq w'$) if we can remove letters of w' to get w.

Ex: bab is a subword of abbaba.

Theorem (Corollary of [Higman '52])

The subword-closure of a language $L \subseteq \Sigma^*$ is always a regular language.

Subword

w is a **subword** of w' ($w \leq w'$) if we can remove letters of w' to get w.

Ex: bab is a subword of abbaba.

The subword-closure of a language $L\subseteq \Sigma^*$ is always a regular lap effective!

Subword

w is a **subword** of w' ($w \prec w'$) if we can remove letters of w' to get w.

Ex: bab is a subword of abbaba.

The subword-closure of a language $L\subseteq \Sigma^*$ is always a regular lapt effective!

Given a class of languages C, is the subword-closure *computable* for these languages? How large is the resulting automaton?

Subword

w is a **subword** of w' ($w \prec w'$) if we can remove letters of w' to get w.

Ex: bab is a subword of abbaba.

The subword-closure of a language $L\subseteq \Sigma^*$ is always a regular lapt effective!

Given a class of languages C, is the subword-closure *computable* for these languages? How large is the resulting automaton?

- Verification of thread pools with bounded context switching
- Separation by piecewise-testable languages
- Lossy channel machines

[Courcelles '91]

The subword-closure of a context-free grammar is computable and accepted by an automaton of exponential size.

[Courcelles '91]

The subword-closure of a context-free grammar is computable and accepted by an automaton of exponential size.

[Zetzsche '15]

The subword-closure of an indexed grammar is computable.

[Courcelles '91]

The subword-closure of a context-free grammar is computable and accepted by an automaton of exponential size.

[Zetzsche '15]

The subword-closure of an indexed grammar is computable.

Subword-closure for indexed grammars

Given an indexed grammar \mathcal{I} of size k, how large can an automaton recognising $L(\mathcal{I}) \downarrow$ be?

Production monoid

A stack content $z \in \Gamma^*$ is mapped to a boolean matrix $M(z) \in \{\top, \bot\}^{N \times N}$.

Production monoid

A stack content $z \in \Gamma^*$ is mapped to a boolean matrix $M(z) \in \{\top, \bot\}^{N \times N}$.

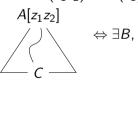
 $M(z)(A,B) = \top$ if and only if we can obtain a B from A[z].

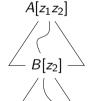
Production monoid

A stack content $z \in \Gamma^*$ is mapped to a boolean matrix $M(z) \in \{\top, \bot\}^{N \times N}$.

 $M(z)(A,B) = \top$ if and only if we can obtain a B from A[z].

M is a morphism: $M(z_1z_2) = M(z_1)M(z_2)$ because





Abstraction

Replace stacks with their short-ends factorization in the production monoid!

Lemma

The short-ends factorization of γz is determined by the one of z.

Abstraction

Replace stacks with their short-ends factorization in the production monoid!

Lemma

The short-ends factorization of γz is determined by the one of z.

For each γ define $\operatorname{push}_{\gamma}$ the function mapping the factorization of z to the factorization of γz and $\operatorname{pop}_{\gamma} = \operatorname{push}_{\gamma}^{-1}$.

Abstraction

Define a context-free grammar with non-terminals $A[\sigma]$,

- $\rightarrow A \in N$
- $\triangleright \sigma$ short-ends factorisation

$$egin{aligned} A &
ightarrow w \in T^* & A[\sigma]
ightarrow w \in T^* \ A &
ightarrow BC &
ightarrow A[\sigma]
ightarrow B[\sigma]C[\sigma] \ A &
ightarrow B[\sigma]C[\sigma]
ightarrow A[\sigma]
ightarrow B[\operatorname{push}_{\gamma}(\sigma)] \ A[\sigma]
ightarrow B[\operatorname{pop}_{\gamma}(\sigma)] \end{aligned}$$

Theorem

This CFG has the same subword-closure as the indexed grammar.

Theorem

The subword-closure of $L(\mathcal{G})$ is recognised by a context-free grammar of 2-exponential size.

Theorem

The subword-closure of L(G) is recognised by a context-free grammar of 2-exponential size.

Theorem

The subword-closure of L(G) is recognised by an automaton of 3-exponential size, and this bound is tight.

Theorem

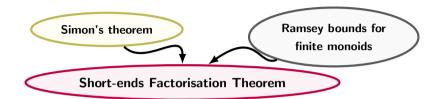
The subword-closure of L(G) is recognised by a context-free grammar of 2-exponential size.

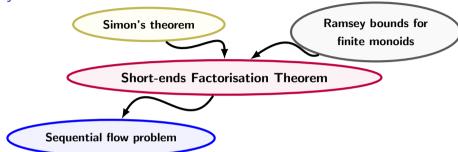
Theorem

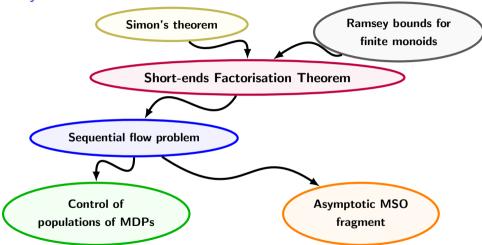
The subword-closure of $L(\mathcal{G})$ is recognised by an automaton of 3-exponential size, and this bound is tight.

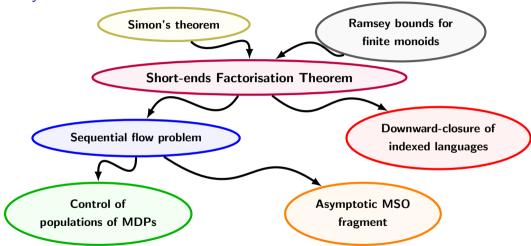
Extensions to higher-order pushdown automata...

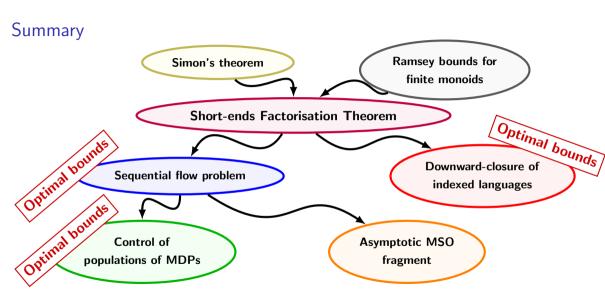
Short-ends Factorisation Theorem

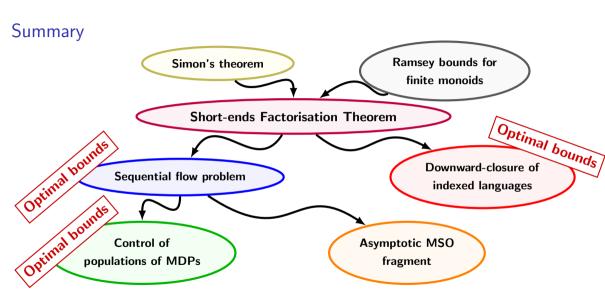












Thanks!