The Short-Ends Factorisation Theorem
and applications

Corto Mascle
MPI-SWS Kaiserslautern

Based on joint work with

Hugo Gimbert + Patrick Totzke and Richard Mandel + Georg Zetzsche
LaBRI, Bordeaux University of Liverpool MPI-SWS Kaiserslautern

1/29

Controlling a random population

2/29

Controlling a random population

Given a Markov decision process, make it reach v with probability 1.

2/29

Controlling a random population

b:1

Given a Markov decision process, make it reach v with probability 1.

2/29

Controlling a random population

Given a Markov decision process, make it reach v with probability 1.

2/29

Controlling a random population

Given a Markov decision process, make it reach v with probability 1.

2/29

Controlling a random population

Given a Markov decision process, make it reach v with probability 1.

2/29

Controlling a random population

Given N identical Markov decision process, make them all reach v with probability 1.

3/29

Controlling a random population

Given N identical Markov decision process, make them all reach v with probability 1.

3/29

Controlling a random population

Given N identical Markov decision process, make them all reach v with probability 1.

3/29

Controlling a random population

v

Q1 dO—0ab:1

-1
)

O@a,b:l

b:1

Given N identical Markov decision process, make them all reach v with probability 1.

= Product of N MDPs.

3/29

Controlling a random population

Random population control problem
Given an MDP M, is there a winning strategy against N tokens, for all N7

4/29

Controlling a random population

Random population control problem
Given an MDP M, is there a winning strategy against N tokens, for all N7

4/29

Controlling a random population

Random population control problem
Given an MDP M, is there a winning strategy against N tokens, for all N7

4/29

Controlling a random population

Random population control problem
Given an MDP M, is there a winning strategy against N tokens, for all N7

4/29

Controlling a random population

Random population control problem
Given an MDP M, is there a winning strategy against N tokens, for all N7

4/29

Controlling a random population

Random population control problem
Given an MDP M, is there a winning strategy against N tokens, for all N7

4/29

Controlling a random population

Random population control problem
Given an MDP M, is there a winning strategy against N tokens, for all N7

4/29

Controlling a random population

Random population control problem
Given an MDP M, is there a winning strategy against N tokens, for all N7

Adapted from [Bertrand Dewaskar Genest Gimbert '15]

There are MDPs of size k for which we can win against 22 tokens and not more.

4/29

Controlling a random population

> Less tokens is always better ~» The set of winning configurations is downward-closed.

5/29

Controlling a random population

> Less tokens is always better ~» The set of winning configurations is downward-closed.

P> The set of configurations from which action a is safe is downward-closed.

5/29

Controlling a random population

> Less tokens is always better ~» The set of winning configurations is downward-closed.
P> The set of configurations from which action a is safe is downward-closed.

» Downward-closed sets of configurations can be represented as finite unions of ideals.

(w,5,w,8) LU (4,w,w,4) L U(9,6,1,4) |

5/29

Controlling a random population

> Less tokens is always better ~» The set of winning configurations is downward-closed.
P> The set of configurations from which action a is safe is downward-closed.

» Downward-closed sets of configurations can be represented as finite unions of ideals.

(w,5,w,8) LU (4,w,w,4) L U(9,6,1,4) |

5/29

Controlling a random population

> Less tokens is always better ~» The set of winning configurations is downward-closed.
P> The set of configurations from which action a is safe is downward-closed.

» Downward-closed sets of configurations can be represented as finite unions of ideals.

(w,5,w,8) LU (4,w,w,4) L U(9,6,1,4) |

5/29

Controlling a random population [Colcombet Fijalkow Ohlmann '20]

Given N identical Markov decision processes, make them all reach v with probability 1.

S+ N@ — configurations
C+NexxY — commits
while not fixpoint do
if 3(s,a) € C, s > s/, s’ ¢S then
C—C\{(s;a)} 1
if 3s € S, no path from s to F in C then

S« S\{s}1 C+~CnNnSxX
return / C S

6/29

Controlling a random population [Colcombet Fijalkow Ohlmann '20]

Given N identical Markov decision processes, make them all reach v with probability 1.

Terminates by
well quasi-order

argument

<

S+ N@ — configurations
C+NexxY — commits
[while not fixpoint do
if 3(s,a) € C, s > s/, s’ ¢S then
C—C\{(s;a)} 1
if 3s € S, no path from s to F in C then

S« S\{s}1 C+~CnNnSxX
\ return /| C S

6/29

Controlling a random population [Colcombet Fijalkow Ohlmann '20]

Given N identical Markov decision processes, make them all reach v with probability 1.

Terminates by
well quasi-order

argument

<

S+ N@ — configurations
C+NexxY — commits
[while not fixpoint do
if 3(s,a) € C, s > s/, s’ ¢S then
C—C\{(s;a)} 1
if 3s € S, no path from s to F in C then
S« S\{s}1 C+~CnNnSxX

Easy to check

\ return /| C S

6/29

Controlling a random population [Colcombet Fijalkow Ohlmann '20]

Given N identical Markov decision processes, make them all reach v with probability 1.

Terminates by
well quasi-order

argument

<

S+ N@ — configurations
C+NexxY — commits
[while not fixpoint do
if 3(s,a) € C, s > s/, s’ ¢S then
C—C\{(s;a)} 1
if 3s € S, no path fromsto Fin C then/_}nclear
S« S\{s}1 C+~CnNnSxX

Easy to check

\ return /| C S

6/29

Controlling a random population [Colcombet Fijalkow Ohlmann '20]

Given N identical Markov decision processes, make them all reach v with probability 1.

Terminates by
well quasi-order

argument

<

S+ N@ — configurations
C+—N?x¥x — commits
[while not fixpoint do
if 3(s,a) € C, s > s/, s’ ¢S then
CeC\{(s.a)} 7

if 3s € S, no path from s to F in C then

Easy to check

mlear

ST S\{sIT,C+= CNSXx

\ return /| C S

6/29

The remaining problem

C =((w,5,w,8),a) } U ((4,w,w,4),a) L U ((9,6,1,4),b) |

Is there a path in C from every configuration in (w,5,w,8) Jto (0,0,0,w) J?

7/29

The remaining problem

C =((w,5,w,8),a) LU ((4,w,w,4),a) L U ((9,6,1,4),b) |
Is there a path in C from every configuration in (w,0,0,0) | to (0,0,0,w) J?

Put constraints on transitions instead of states!

7/29

Sequential Flow Problem

A tile is a function Q x Q@ — NU {w}
describing capacities.

8/29

Sequential Flow Problem

A tile is a function Q x Q@ — NU {w}
describing capacities.

8/29

Sequential Flow Problem

A tile is a function Q x Q@ — NU {w}
describing capacities.

8/29

Sequential Flow Problem

A tile is a function Q x Q@ — NU {w}
describing capacities.

MaxFlow : Tiles* — N U {w}

8/29

Sequential Flow Problem

A tile is a function Q x Q@ — NU {w}
describing capacities.

MaxFlow : Tiles* — N U {w}

8/29

Sequential Flow Problem

A tile is a function Q x Q@ — NU {w}
describing capacities.

MaxFlow : Tiles* — N U {w}

15} 5] «

/

Problem

Input: A set of tiles Tiles
Output: /s {MaxFlow(w) | w € Tiles"}
unbounded?

8/29

Sequential Flow Problem (SFP)

[Blumensath Colcombet Parys '16] [Blumensath Colcombet Parys '16]
Satisfiability in some extension of MSO SFP is decidable.

reduces to SFP

9/29

Sequential Flow Problem (SFP)

[Blumensath Colcombet Parys '16] [Blumensath Colcombet Parys '16]
Satisfiability in some extension of MSO SFP is decidable.

reduces to SFP

[Colasmibet Ualkow Ohlann 2 [Colcombet Fijalkow Ohlmann '20]
The Randomised Population Control Problem SFP is PSPACE-hard and in EXPSPACE.
reduces to SFP.

9/29

Sequential Flow Problem (SFP)
[Blumensath Colcombet Parys "16] [Blumensath Colcombet Parys '16]

Satisfiability in some extension of MSO SFP is decidable.
reduces to SFP

[Ceteomiet Ualkow Ohlann 2 [Colcombet Fijalkow Ohlmann '20]
The Randomised Population Control Problem SFP is PSPACE-hard and in EXPSPACE.
reduces to SFP.

A\,

\,

[Gimbert Mascle Totzke '25]
[Gimbert Mascle Totzke '25]

SFP is PSPACE-complete.

The Randomised Population Control Problem
reduces to SFP in exponential time.

9/29

Sequential Flow Problem (SFP)

[Blumensath Colcombet Parys "16] [Blumensath Colcombet Parys '16]
Satisfiability in some extension of MSO SEP ts dadidbie.

reduces to SFP

[Ceteomiet Ualkow Ohlann 2 [Colcombet Fijalkow Ohlmann '20]
The Randomised Population Control Problem SFP is PSPACE-hard and in EXPSPACE.
reduces to SFP.

[Gimbert Mascle Totzke '25]

[Gimbert Mascle Totzke '25]

The Randomised Population Control Problem + SEP is PSPACE let
is -complete.

reduces to SFP in exponential time.

Theorem ([GMT '25])
The Randomised Population Control Problem is EXPTIME-complete.

9/29

Summary

~J

Control of
populations of MDPs

10/29

Summary

Asymptotic MSO
fragment

Control of
populations of MDPs

11/29

Sequential Flow Problem

Problem

Input: A set of tiles Tiles
Output: /s {MaxFlow(w) | w € Tiles*} unbounded?

12/29

Sequential Flow Problem

Problem

Input: A set of tiles Tiles
Output: /s {MaxFlow(w) | w € Tiles*} unbounded?

.

Problem

Input: A set of tiles Tiles
Output: Compute sup{MaxFlow(w) | w € Tiles*}.

.

12/29

Abstraction

13/29

Abstraction

Morphism ¢ : Tiles* — {0,1,w}?*? with max-min product.

13/29

Abstraction

o 15}
1 1
1
1
w

Morphism ¢ : Tiles* — {0,1,w}?*? with max-min product.

13/29

Iteration (Inspired by work of Simon, Hashigushi, Leung)
(0}

14 /29

Iteration (Inspired by work of Simon, Hashigushi, Leung)
(0} (0]

14 /29

lteration (Inspired by work of Simon, Hashigushi, Leung)
(0} (0] (8 «

aV = a («is idempotent) but oV has flow N.

14 /29

lteration (Inspired by work of Simon, Hashigushi, Leung)

o o o o) ot
w w w w
> @
w
w w w
@ >
aV = a («is idempotent) but oV has flow N.

Define a new operator f on idempotents:

: 1 .

ﬁ(s) w if Isg, to, s —> Sp — ty — tin «

[0 =
’ a(s, t) otherwise

14 /29

Iteration (Inspired by work of Simon, Hashigushi, Leung)

o o) o o) ot

w w w w

> ®
W
. w w w
aV = a («is idempotent) but oV has flow N.
Define a new operator f on idempotents:
. 1 .
ﬁ(s) w if Isg, to, s —> Sp — ty — tin «
[0 =
’ a(s, t) otherwise

If af(s, t) = w then we have unbounded flows between s and t.)

14 /29

Abstraction

Fy the closure of (Tiles) under product and §.

JFy contains some « with a(s, t) = w if and only if there are unbounded flows between s and t.

15 /29

Abstraction

Fy the closure of (Tiles) under product and §.

JFy contains some « with a(s, t) = w if and only if there are unbounded flows between s and t.

Checkable in PSPACE!

15 /29

Abstraction

Fy the closure of (Tiles) under product and §.

JFy contains some « with a(s, t) = w if and only if there are unbounded flows between s and t.

Checkable in PSPACE!
How large can a bounded flow be?

15 /29

lteration dichotomy

«

16 /29

lteration dichotomy

16 /29

lteration dichotomy

(0% (0% (07 «

For all idempotent o and s,t € Q,
> either af(s,t) = w

» or there is a cut between s and t in the
first and last «.

16 /29

Short-ends factorisation theorem (based on work by [Simon '90], [Colcombet '11])

Y finite alphabet, (M,) finite monoid, ¢ : £* — M morphism.

17 /29

Short-ends factorisation theorem (based on work by [Simon '90], [Colcombet '11])

Y finite alphabet, (M,) finite monoid, ¢ : £* — M morphism.
Factorisation tree: Node labels in ¥* x M.

3 types of nodes:
Idempotent nodes

Leaves Product nodes
(uv,x-y) (uruy -+ - un, €)
(a,¢(a)) / \ / \
(uy,x) (v,y) (u1,e) (un,€)

o(u;) = e for all i.

17 /29

Short-ends factorisation theorem (based on work by [Simon '90], [Colcombet '11])

Y finite alphabet, (M,) finite monoid, ¢ : £* — M morphism.
Factorisation tree: Node labels in ¥* x M.

3 types of nodes:
Idempotent nodes

Leaves Product nodes
(uv,x-y) (uruy -+ - un, €)
(a,¢(a)) / \ / \
(uy,x) (v,y) (u1,e) (un,€)

o(u;) = e for all i.

Example on the board —

17 /29

Ramsey bounds

Rm(k) = minimal n such that every word w of length n has a factor u; ... ug with
o(u1) = - = ¢(uk) = e an idempotent of M.

18/29

Ramsey bounds

Rm(k) = minimal n such that every word w of length n has a factor u; ... ug with
o(u1) = - = ¢(uk) = e an idempotent of M.

For all w € ©*, there is a factorization tree of height poly(log(M), log(Rm(3))).

In a transition monoid of dimension n, every word has a factorization tree of height poly(n).

Based on bounds by [Jecker '21].

18/29

Exponential bound

We can show:
» Every word has a factorisation of polynomial height in the flow monoid.

» |f there is a bounded cut between s and t in all w, then there is one that lives within the
factorisation.

If the flow between s and t is bounded then it is at most exponential in |Q)|.

19/29

Summary

<Short-ends Factorisation TheoreD

Asymptotic MSO
fragment

Control of
populations of MDPs

20 /29

Another application: Indexed grammars

Indexed grammar= Context-free grammar where each non-terminal carries a stack.
N set of non-terminals, T set of terminals, I' set of stack symbols.

21/29

Another application: Indexed grammars

Indexed grammar= Context-free grammar where each non-terminal carries a stack.
N set of non-terminals, T set of terminals, I' set of stack symbols.

A-sweT"
A — BC

A push(7) Bry
Ay pop(7) B

21/29

Indexed grammars : Examples

15 push(~yL) Sy,
S push(~a) 1S

Ya

S push(vs) S
S — Ww

W, pop(va) Wa

W pop(7b) Wh

Woy, pop(yL) -

22/29

Indexed grammars : Examples

15 push(~yL) Sy,
S push(~a) 1S

Ya

S push(vs) S
S — Ww

W, pop(va) Wa

W pop(7b) Wh

Woy, pop(yL) -

22/29

Indexed grammars : Examples

S
15 push(7y.) Sy, S[’Iy]
1
5 pUSh(’YB) S'}/a S |
S push(~yp) Sfo ['YT’VJ_]
S — Www Slypvavil

W, pop(va) Wa

W pop(7b) Wh

Woy, pop(yL) -

22/29

Indexed grammars : Examples

15 push(7y.) Sy,
S push(~a) 1S

Ya

S push(vs) S
S — Ww

W, pop(va) Wa

W pop(7b) Wh

Woy, pop(yL) -

S
|

Slya]
|

S ['Ya'YJ_]
I

Sypvavil
— ~
WvbvayLl W{vpvayi]

22/29

Indexed grammars : Examples

S
S push(7y.) Sy, 5[’Iy |
1
5 push(~a) S, |
S['Ya'YJ_]
5 push(vs) S |
S — ww S[vevavi]
op(3) — ~
Wy, 2222220 g Wvpvayi] W vpyayi]
v AN 7 AN
op(7b)
WHp POPYE), b Wvavi] b Wyavi] b
/ AN / AN
Woy, pop(v1) - Wil R W] R

| |
€ e

22/29

Indexed grammars : Examples

S
S push(7y.) Sy, 5[’Iy |
1
5 push(~a) S, |
S['Ya'YJ_]
5 push(vs) S |
S — ww S[vevavi]
op(3) — ~
Wy, 2222220 g Wvpvayi] W vpyayi]
v AN 7 AN
op(7b)
WHp POPYE), b Wvavi] b Wyavi] b
/ AN / AN
Woy, pop(v1) - Wil R W] R

{ww | w € {a, b}*} &It e’!:

22/29

Subword-closures

w is a subword of w' (w < w') if we can remove letters of w’ to get w.

Ex: bab is a subword of abbaba.

23 /29

Subword-closures

w is a subword of w' (w < w') if we can remove letters of w’ to get w.

Ex: bab is a subword of abbaba.
Theorem (Corollary of [Higman '52])

The subword-closure of a language L C ¥* is always a regular language.

23 /29

Subword-closures

w is a subword of w' (w < w') if we can remove letters of w’ to get w.

Ex: bab is a subword of abbaba.

Theorem (Corollary of [Higman '52])

The subword-closure of a language L C ¥* is always a regular lag e‘s\e

Wob

23 /29

Subword-closures

w is a subword of w' (w < w') if we can remove letters of w’ to get w.

Ex: bab is a subword of abbaba.

Theorem (Corollary of [Higman '52])

. C
The subword-closure of a language L C ¥* is always a regular lag e‘s\e

Wob

Given a class of languages C, is the subword-closure computable for these languages? How
large is the resulting automaton?

23 /29

Subword-closures

w is a subword of w' (w < w') if we can remove letters of w’ to get w.

Ex: bab is a subword of abbaba.

Theorem (Corollary of [Higman '52])

. C
The subword-closure of a language L C ¥* is always a regular lag e‘s\e

Wob

Given a class of languages C, is the subword-closure computable for these languages? How
large is the resulting automaton?

» Verification of thread pools with bounded context switching

> Separation by piecewise-testable languages

P Lossy channel machines

23 /29

Subword-closures

[Courcelles '91]

The subword-closure of a context-free grammar is computable and accepted by an automaton
of exponential size.

24 /29

Subword-closures

[Courcelles '91]

The subword-closure of a context-free grammar is computable and accepted by an automaton
of exponential size.

The subword-closure of an indexed grammar is computable. \

24 /29

Subword-closures

[Courcelles '91]

The subword-closure of a context-free grammar is computable and accepted by an automaton
of exponential size.

The subword-closure of an indexed grammar is computable. \

Subword-closure for indexed grammars

Given an indexed grammar Z of size k, how large can an automaton recognising L(Z) | be?

24 /29

Production monoid
A stack content z € ['* is mapped to a boolean matrix M(z) € {T, L}NV*N.

25 /29

Production monoid

A stack content z € ['* is mapped to a boolean matrix M(z) € {T, L}NV*N.
AlZ]

M(z)(A, B) = T if and only if we can obtain a B from A[z]. /8\
B

25 /29

Production monoid

A stack content z € ['* is mapped to a boolean matrix M(z) € {T, L}NV*N.
AlZ]

M(z)(A, B) = T if and only if we can obtain a B from A[z]. /8\
B

M is a morphism: M(z1z2) = M(z1)M(z2) because
Alz125] Alz125] Alz1]

LN LN T LN

\ Blz]
NN A

25 /29

Abstraction

Replace stacks with their short-ends factorization in the production monoid!

The short-ends factorization of vz is determined by the one of z.

26 /29

Abstraction

Replace stacks with their short-ends factorization in the production monoid!

The short-ends factorization of vz is determined by the one of z.

For each ~y define push,, the function mapping the factorization of z to the factorization of vz

and pop, = push;l.

26 /29

Abstraction

Define a context-free grammar with non-terminals A[o],
>» Ae N

» o short-ends factorisation

A-sweT"
A — BC

A push(v) Bry

Ay pop(7) B

Alol =we T*
Alo] — Blo]Clo]
Alo] — B[push, ()]
Alo] = Blpop, ()]

This CFG has the same subword-closure as the indexed grammar.

27 /29

Subword-closures

The subword-closure of L(G) is recognised by a context-free grammar of 2-exponential size.

28 /29

Subword-closures

The subword-closure of L(G) is recognised by a context-free grammar of 2-exponential size.

The subword-closure of L(G) is recognised by an automaton of 3-exponential size, and this
bound is tight.

28 /29

Subword-closures

The subword-closure of L(G) is recognised by a context-free grammar of 2-exponential size.

The subword-closure of L(G) is recognised by an automaton of 3-exponential size, and this
bound is tight.

Extensions to higher-order pushdown automata...

28 /29

Summary

Qort—ends Factorisation TheoreD

29 /29

Summary

Simon’s theorem Ramsey bounds for

\/} N
Qort—ends Factorisation TheoreD

finite monoids

29 /29

Summary

Simon’s theorem Ramsey bounds for

\/}

R
Qort—ends Factorisation TheoreD

@ential flow pr@

finite monoids

29 /29

Summary

Simon’s theorem Ramsey bounds for

\/} N
Qort—ends Factorisation TheoreD
unential flow pr@

Asymptotic MSO

fragment

finite monoids

Control of
populations of MDPs

29 /29

Summary

Simon’s theorem

\/} N
Qort—ends Factorisation TheoreD
@ential flow pr@

Asymptotic MSO

fragment

Ramsey bounds for

finite monoids

Downward-closure of

indexed languages

Control of
populations of MDPs

29 /29

Summary

Simon’s theorem Ramsey bounds for

finite monoids

Downward-closure of
indexed languages

Control of Asymptotic MSO

populations of MDPs fragment

29 /29

Summary

Simon’s theorem Ramsey bounds for

finite monoids

Downward-closure of
indexed languages

Control of Asymptotic MSO

populations of MDPs fragment

Thanks!

29 /29

