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Controlling a random population

v
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O@a,b:l

b:1

Given N identical Markov decision process, make them all reach v with probability 1.

= Product of N MDPs.
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Controlling a random population

Random population control problem
Given an MDP M, is there a winning strategy against N tokens, for all N7

Adapted from [Bertrand Dewaskar Genest Gimbert '15]

There are MDPs of size k for which we can win against 22 tokens and not more.
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Controlling a random population [Colcombet Fijalkow Ohlmann '20]

Given N identical Markov decision processes, make them all reach v with probability 1.

S+ N@ — configurations
C+NexxY — commits
while not fixpoint do
if 3(s,a) € C, s > s/, s’ ¢S then
C—C\{(s;a)} 1
if 3s € S, no path from s to F in C then

S« S\{s}1 C+~CnNnSxX
return / C S
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Controlling a random population [Colcombet Fijalkow Ohlmann '20]

Given N identical Markov decision processes, make them all reach v with probability 1.

Terminates by
well quasi-order

argument

<

S+ N@ — configurations
C+—N?x¥x — commits
[ while not fixpoint do
if 3(s,a) € C, s > s/, s’ ¢S then
CeC\{(s.a)} 7

if 3s € S, no path from s to F in C then

Easy to check

mlear

ST S\{sIT,C+= CNSXx

\ return /| C S
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The remaining problem

C =((w,5,w,8),a) } U ((4,w,w,4),a) L U ((9,6,1,4),b) |

Is there a path in C from every configuration in (w,5,w,8) Jto (0,0,0,w) J?
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The remaining problem

C =((w,5,w,8),a) LU ((4,w,w,4),a) L U ((9,6,1,4),b) |
Is there a path in C from every configuration in (w,0,0,0) | to (0,0,0,w) J?

Put constraints on transitions instead of states!
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Sequential Flow Problem

A tile is a function Q x Q@ — NU {w}
describing capacities.

8/29



Sequential Flow Problem

A tile is a function Q x Q@ — NU {w}
describing capacities.

8/29



Sequential Flow Problem

A tile is a function Q x Q@ — NU {w}
describing capacities.

8/29



Sequential Flow Problem

A tile is a function Q x Q@ — NU {w}
describing capacities.

MaxFlow : Tiles* — N U {w}

8/29



Sequential Flow Problem

A tile is a function Q x Q@ — NU {w}
describing capacities.

MaxFlow : Tiles* — N U {w}

8/29



Sequential Flow Problem

A tile is a function Q x Q@ — NU {w}
describing capacities.

MaxFlow : Tiles* — N U {w}

15} 5] «

/

Problem

Input: A set of tiles Tiles
Output: /s {MaxFlow(w) | w € Tiles"}
unbounded?
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Sequential Flow Problem (SFP)

[Blumensath Colcombet Parys '16] [Blumensath Colcombet Parys '16]
Satisfiability in some extension of MSO SFP is decidable.

reduces to SFP
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Sequential Flow Problem (SFP)

[Blumensath Colcombet Parys "16] [Blumensath Colcombet Parys '16]
Satisfiability in some extension of MSO SEP ts dadidbie.

reduces to SFP

[Ceteomiet Ualkow Ohlann 2 [Colcombet Fijalkow Ohlmann '20]
The Randomised Population Control Problem SFP is PSPACE-hard and in EXPSPACE.
reduces to SFP.

[Gimbert Mascle Totzke '25]

[Gimbert Mascle Totzke '25]

The Randomised Population Control Problem + SEP is PSPACE let
is -complete.

reduces to SFP in exponential time.

Theorem ([GMT '25])
The Randomised Population Control Problem is EXPTIME-complete.
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Summary

~J

Control of
populations of MDPs
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Summary

Asymptotic MSO
fragment

Control of
populations of MDPs
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Sequential Flow Problem

Problem

Input: A set of tiles Tiles
Output: /s {MaxFlow(w) | w € Tiles*} unbounded?
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Sequential Flow Problem

Problem

Input: A set of tiles Tiles
Output: /s {MaxFlow(w) | w € Tiles*} unbounded?

.

Problem

Input: A set of tiles Tiles
Output: Compute sup{MaxFlow(w) | w € Tiles*}.

.

12/29



Abstraction

13/29



Abstraction

Morphism ¢ : Tiles* — {0,1,w}?*? with max-min product.
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Abstraction

o 15}
1 1
1
1
w

Morphism ¢ : Tiles* — {0,1,w}?*? with max-min product.
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Iteration (Inspired by work of Simon, Hashigushi, Leung)
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> ®
W
. w w w
aV = a («is idempotent) but oV has flow N.
Define a new operator f on idempotents:
. 1 .
ﬁ(s ) w if Isg, to, s —> Sp — ty — tin «
[0 =
’ a(s, t) otherwise

If af(s, t) = w then we have unbounded flows between s and t. )

14 /29



Abstraction

Fy the closure of (Tiles) under product and §.

JFy contains some « with a(s, t) = w if and only if there are unbounded flows between s and t.

15 /29



Abstraction

Fy the closure of (Tiles) under product and §.

JFy contains some « with a(s, t) = w if and only if there are unbounded flows between s and t.

Checkable in PSPACE!

15 /29



Abstraction

Fy the closure of (Tiles) under product and §.

JFy contains some « with a(s, t) = w if and only if there are unbounded flows between s and t.

Checkable in PSPACE!
How large can a bounded flow be?
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lteration dichotomy

(0% (0% (07 «

For all idempotent o and s,t € Q,
> either af(s,t) = w

» or there is a cut between s and t in the
first and last «.
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Short-ends factorisation theorem (based on work by [Simon '90], [Colcombet '11])

Y finite alphabet, (M, ) finite monoid, ¢ : £* — M morphism.
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Y finite alphabet, (M, ) finite monoid, ¢ : £* — M morphism.
Factorisation tree: Node labels in ¥* x M.

3 types of nodes:
Idempotent nodes

Leaves Product nodes
(uv,x-y) (uruy -+ - un, €)
(a,¢(a)) / \ / \
(uy,x) (v,y) (u1,e) (un,€)

o(u;) = e for all i.

Example on the board —
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Ramsey bounds

Rm(k) = minimal n such that every word w of length n has a factor u; ... ug with
o(u1) = - = ¢(uk) = e an idempotent of M.
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Ramsey bounds

Rm(k) = minimal n such that every word w of length n has a factor u; ... ug with
o(u1) = - = ¢(uk) = e an idempotent of M.

For all w € ©*, there is a factorization tree of height poly(log(M), log(Rm(3))).

In a transition monoid of dimension n, every word has a factorization tree of height poly(n).

Based on bounds by [Jecker '21].
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Exponential bound

We can show:
» Every word has a factorisation of polynomial height in the flow monoid.

» |f there is a bounded cut between s and t in all w, then there is one that lives within the
factorisation.

If the flow between s and t is bounded then it is at most exponential in |Q)|.
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Summary

<Short-ends Factorisation TheoreD

Asymptotic MSO
fragment

Control of
populations of MDPs

20 /29



Another application: Indexed grammars

Indexed grammar= Context-free grammar where each non-terminal carries a stack.
N set of non-terminals, T set of terminals, I' set of stack symbols.
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Another application: Indexed grammars

Indexed grammar= Context-free grammar where each non-terminal carries a stack.
N set of non-terminals, T set of terminals, I' set of stack symbols.

A-sweT"
A — BC

A push(7) Bry
Ay pop(7) B

21/29



Indexed grammars : Examples

15 push(~yL) Sy,
S push(~a) 1S

Ya

S push(vs) S
S — Ww

W, pop(va) Wa

W pop(7b) Wh

Woy, pop(yL) -
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Indexed grammars : Examples

15 push(7y.) Sy,
S push(~a) 1S

Ya

S push(vs) S
S — Ww

W, pop(va) Wa

W pop(7b) Wh

Woy, pop(yL) -

S
|

Slya]
|

S ['Ya'YJ_]
I

Sypvavil
— ~
WvbvayLl W{vpvayi]
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Indexed grammars : Examples

S
S push(7y.) Sy, 5[’Iy |
1
5 push(~a) S, |
S['Ya'YJ_]
5 push(vs) S |
S — ww S[vevavi]
op(3) — ~
Wy, 2222220 g Wvpvayi] W vpyayi]
v AN 7 AN
op(7b)
WHp POPYE), b Wvavi] b Wyavi] b
/ AN / AN
Woy, pop(v1) - Wil R W] R

| |
€ e
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S
S push(7y.) Sy, 5[’Iy |
1
5 push(~a) S, |
S['Ya'YJ_]
5 push(vs) S |
S — ww S[vevavi]
op(3) — ~
Wy, 2222220 g Wvpvayi] W vpyayi]
v AN 7 AN
op(7b)
WHp POPYE), b Wvavi] b Wyavi] b
/ AN / AN
Woy, pop(v1) - Wil R W] R

{ww | w € {a, b}*} &It e’!:
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Subword-closures

w is a subword of w' (w < w') if we can remove letters of w’ to get w.

Ex: bab is a subword of abbaba.
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w is a subword of w' (w < w') if we can remove letters of w’ to get w.

Ex: bab is a subword of abbaba.

Theorem (Corollary of [Higman '52])

. C
The subword-closure of a language L C ¥* is always a regular lag e‘s\e

Wob

Given a class of languages C, is the subword-closure computable for these languages? How
large is the resulting automaton?

» Verification of thread pools with bounded context switching

> Separation by piecewise-testable languages

P Lossy channel machines
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Subword-closures

[Courcelles '91]

The subword-closure of a context-free grammar is computable and accepted by an automaton
of exponential size.

24 /29



Subword-closures

[Courcelles '91]

The subword-closure of a context-free grammar is computable and accepted by an automaton
of exponential size.

The subword-closure of an indexed grammar is computable. \

24 /29



Subword-closures

[Courcelles '91]

The subword-closure of a context-free grammar is computable and accepted by an automaton
of exponential size.

The subword-closure of an indexed grammar is computable. \

Subword-closure for indexed grammars

Given an indexed grammar Z of size k, how large can an automaton recognising L(Z) | be?
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Production monoid
A stack content z € ['* is mapped to a boolean matrix M(z) € {T, L}NV*N.
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Production monoid

A stack content z € ['* is mapped to a boolean matrix M(z) € {T, L}NV*N.
AlZ]

M(z)(A, B) = T if and only if we can obtain a B from A[z]. /8\
B

M is a morphism: M(z1z2) = M(z1)M(z2) because
Alz125] Alz125] Alz1]

LN LN T LN

\ Blz]
NN A
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Abstraction

Replace stacks with their short-ends factorization in the production monoid!

The short-ends factorization of vz is determined by the one of z.
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Abstraction

Replace stacks with their short-ends factorization in the production monoid!

The short-ends factorization of vz is determined by the one of z.

For each ~y define push,, the function mapping the factorization of z to the factorization of vz

and pop, = push;l.
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Abstraction

Define a context-free grammar with non-terminals A[o],
>» Ae N

» o short-ends factorisation

A-sweT"
A — BC

A push(v) Bry

Ay pop(7) B

Alol =we T*
Alo] — Blo]Clo]
Alo] — B[push, ()]
Alo] = Blpop, ()]

This CFG has the same subword-closure as the indexed grammar.
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Subword-closures

The subword-closure of L(G) is recognised by a context-free grammar of 2-exponential size.
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Subword-closures

The subword-closure of L(G) is recognised by a context-free grammar of 2-exponential size.

The subword-closure of L(G) is recognised by an automaton of 3-exponential size, and this
bound is tight.

Extensions to higher-order pushdown automata...
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Summary

Simon’s theorem Ramsey bounds for

finite monoids

Downward-closure of
indexed languages

Control of Asymptotic MSO

populations of MDPs fragment

Thanks!
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