
The Short-Ends Factorisation Theorem
and applications

Corto Mascle
MPI-SWS Kaiserslautern

Based on joint work with
Hugo Gimbert + Patrick Totzke and Richard Mandel + Georg Zetzsche
LaBRI, Bordeaux University of Liverpool MPI-SWS Kaiserslautern

1 / 29

Controlling a random population

a : 1
2

b : 1

a : 1
2

b : 1
2

b : 1
2

a, b : 1

b : 1

a, b : 1

a : 1
2

a : 1
2

✓

a, b : 1

a : 1
2

a : 1
2

b : 1

a : 1
2

a : 1
2

Given a Markov decision process, make it reach ✓ with probability 1.

2 / 29

Controlling a random population

a : 1
2

b : 1

a : 1
2

b : 1
2

b : 1
2

a, b : 1

b : 1

a, b : 1

a : 1
2

a : 1
2

✓

a, b : 1

a : 1
2

a : 1
2

b : 1

a : 1
2

a : 1
2

Given a Markov decision process, make it reach ✓ with probability 1.

2 / 29

Controlling a random population

a : 1
2

b : 1

a : 1
2

b : 1
2

b : 1
2

a, b : 1

b : 1

a, b : 1

a : 1
2

a : 1
2

✓

a, b : 1

a : 1
2

a : 1
2

b : 1

a : 1
2

a : 1
2

Given a Markov decision process, make it reach ✓ with probability 1.

2 / 29

Controlling a random population

a : 1
2

b : 1

a : 1
2

b : 1
2

b : 1
2

a, b : 1

b : 1

a, b : 1

a : 1
2

a : 1
2

✓

a, b : 1

a : 1
2

a : 1
2

b : 1

a : 1
2

a : 1
2

Given a Markov decision process, make it reach ✓ with probability 1.

2 / 29

Controlling a random population

a : 1
2

b : 1

a : 1
2

b : 1
2

b : 1
2

a, b : 1

b : 1

a, b : 1

a : 1
2

a : 1
2

✓

a, b : 1

a : 1
2

a : 1
2

b : 1

a : 1
2

a : 1
2

Given a Markov decision process, make it reach ✓ with probability 1.

2 / 29

Controlling a random population

a : 1
2

b : 1

a : 1
2

b : 1
2

b : 1
2

a, b : 1

b : 1

a, b : 1

a : 1
2

a : 1
2

✓

a, b : 1

a : 1
2

a : 1
2

b : 1

a : 1
2

a : 1
2

Given a Markov decision process, make it reach ✓ with probability 1.

2 / 29

Controlling a random population

a : 1
2

b : 1

a : 1
2

b : 1
2

b : 1
2

a, b : 1

b : 1

a, b : 1

a : 1
2

a : 1
2

✓

Given N identical Markov decision process, make them all reach ✓ with probability 1.

⇒ Product of N MDPs.

3 / 29

Controlling a random population

a : 1
2

b : 1

a : 1
2

b : 1
2

b : 1
2

a, b : 1

b : 1

a, b : 1

a : 1
2

a : 1
2

✓

Given N identical Markov decision process, make them all reach ✓ with probability 1.

⇒ Product of N MDPs.

3 / 29

Controlling a random population

a : 1
2

b : 1

a : 1
2

b : 1
2

b : 1
2

a, b : 1

b : 1

a, b : 1

a : 1
2

a : 1
2

✓

Given N identical Markov decision process, make them all reach ✓ with probability 1.

⇒ Product of N MDPs.

3 / 29

Controlling a random population

a : 1
2

b : 1

a : 1
2

b : 1
2

b : 1
2

a, b : 1

b : 1

a, b : 1

a : 1
2

a : 1
2

✓

Given N identical Markov decision process, make them all reach ✓ with probability 1.

⇒ Product of N MDPs.

3 / 29

Controlling a random population

✓
a, b, c , d a

a

a

b

b c

d a, b,
c , d

Random population control problem

Given an MDPM, is there a winning strategy against N tokens, for all N?

Adapted from [Bertrand Dewaskar Genest Gimbert ’15]

There are MDPs of size k for which we can win against 22
k
tokens and not more.

4 / 29

Controlling a random population

✓
a, b, c , d a

a

a

b

b c

d a, b,
c , d

Random population control problem

Given an MDPM, is there a winning strategy against N tokens, for all N?

Adapted from [Bertrand Dewaskar Genest Gimbert ’15]

There are MDPs of size k for which we can win against 22
k
tokens and not more.

4 / 29

Controlling a random population

✓
a, b, c , d a

a

a

b

b c

d a, b,
c , d

Random population control problem

Given an MDPM, is there a winning strategy against N tokens, for all N?

Adapted from [Bertrand Dewaskar Genest Gimbert ’15]

There are MDPs of size k for which we can win against 22
k
tokens and not more.

4 / 29

Controlling a random population

✓
a, b, c , d a

a

a

b

b c

d a, b,
c , d

Random population control problem

Given an MDPM, is there a winning strategy against N tokens, for all N?

Adapted from [Bertrand Dewaskar Genest Gimbert ’15]

There are MDPs of size k for which we can win against 22
k
tokens and not more.

4 / 29

Controlling a random population

✓
a, b, c , d a

a

a

b

b c

d a, b,
c , d

Random population control problem

Given an MDPM, is there a winning strategy against N tokens, for all N?

Adapted from [Bertrand Dewaskar Genest Gimbert ’15]

There are MDPs of size k for which we can win against 22
k
tokens and not more.

4 / 29

Controlling a random population

✓
a, b, c , d a

a

a

b

b c

d a, b,
c , d

Random population control problem

Given an MDPM, is there a winning strategy against N tokens, for all N?

Adapted from [Bertrand Dewaskar Genest Gimbert ’15]

There are MDPs of size k for which we can win against 22
k
tokens and not more.

4 / 29

Controlling a random population

✓
a, b, c , d a

a

a

b

b c

d a, b,
c , d

Random population control problem

Given an MDPM, is there a winning strategy against N tokens, for all N?

Adapted from [Bertrand Dewaskar Genest Gimbert ’15]

There are MDPs of size k for which we can win against 22
k
tokens and not more.

4 / 29

Controlling a random population

✓
a, b, c , d a

a

a

b

b c

d a, b,
c , d

Random population control problem

Given an MDPM, is there a winning strategy against N tokens, for all N?

Adapted from [Bertrand Dewaskar Genest Gimbert ’15]

There are MDPs of size k for which we can win against 22
k
tokens and not more.

4 / 29

Controlling a random population

▶ Less tokens is always better ⇝ The set of winning configurations is downward-closed.

▶ The set of configurations from which action a is safe is downward-closed.

▶ Downward-closed sets of configurations can be represented as finite unions of ideals.

(ω, 5, ω, 8) ↓ ∪ (4, ω, ω, 4) ↓ ∪ (9, 6, 1, 4) ↓

ω 1

0

0

ωω 0

ω

0

ω

a, b, c , da, b, c , d

a

a

b

b c

d
a, b,
c , d

5 / 29

Controlling a random population

▶ Less tokens is always better ⇝ The set of winning configurations is downward-closed.

▶ The set of configurations from which action a is safe is downward-closed.

▶ Downward-closed sets of configurations can be represented as finite unions of ideals.

(ω, 5, ω, 8) ↓ ∪ (4, ω, ω, 4) ↓ ∪ (9, 6, 1, 4) ↓

ω 1

0

0

ωω 0

ω

0

ω

a, b, c , da, b, c , d

a

a

b

b c

d
a, b,
c , d

5 / 29

Controlling a random population

▶ Less tokens is always better ⇝ The set of winning configurations is downward-closed.

▶ The set of configurations from which action a is safe is downward-closed.

▶ Downward-closed sets of configurations can be represented as finite unions of ideals.

(ω, 5, ω, 8) ↓ ∪ (4, ω, ω, 4) ↓ ∪ (9, 6, 1, 4) ↓

ω 1

0

0

ωω 0

ω

0

ω

a, b, c , da, b, c , d

a

a

b

b c

d
a, b,
c , d

5 / 29

Controlling a random population

▶ Less tokens is always better ⇝ The set of winning configurations is downward-closed.

▶ The set of configurations from which action a is safe is downward-closed.

▶ Downward-closed sets of configurations can be represented as finite unions of ideals.

(ω, 5, ω, 8) ↓ ∪ (4, ω, ω, 4) ↓ ∪ (9, 6, 1, 4) ↓

ω 1

0

0

ω

ω 0

ω

0

ω

a, b, c , da, b, c , d

a

a

b

b c

d
a, b,
c , d

5 / 29

Controlling a random population

▶ Less tokens is always better ⇝ The set of winning configurations is downward-closed.

▶ The set of configurations from which action a is safe is downward-closed.

▶ Downward-closed sets of configurations can be represented as finite unions of ideals.

(ω, 5, ω, 8) ↓ ∪ (4, ω, ω, 4) ↓ ∪ (9, 6, 1, 4) ↓

ω 1

0

0

ω

ω 0

ω

0

ω

a, b, c , da, b, c , d

a

a

b

b c

d
a, b,
c , d

5 / 29

Controlling a random population [Colcombet Fijalkow Ohlmann ’20]

Given N identical Markov decision processes, make them all reach ✓ with probability 1.

a

Terminates by

well quasi-order

argument

S ← NQ → configurations
C ← NQ × Σ → commits
while not fixpoint do

if ∃(s, a) ∈ C , s
a−→ s ′, s ′ /∈ S then

C ← C \ {(s, a)} ↑
if ∃s ∈ S , no path from s to F in C then

S ← S \ {s} ↑, C ← C ∩ S × Σ
return I ⊆ S

Easy to check

Unclear

6 / 29

Controlling a random population [Colcombet Fijalkow Ohlmann ’20]

Given N identical Markov decision processes, make them all reach ✓ with probability 1.
a

Terminates by

well quasi-order

argument

S ← NQ → configurations
C ← NQ × Σ → commits
while not fixpoint do

if ∃(s, a) ∈ C , s
a−→ s ′, s ′ /∈ S then

C ← C \ {(s, a)} ↑
if ∃s ∈ S , no path from s to F in C then

S ← S \ {s} ↑, C ← C ∩ S × Σ
return I ⊆ S

Easy to check

Unclear

6 / 29

Controlling a random population [Colcombet Fijalkow Ohlmann ’20]

Given N identical Markov decision processes, make them all reach ✓ with probability 1.
a

Terminates by

well quasi-order

argument

S ← NQ → configurations
C ← NQ × Σ → commits
while not fixpoint do

if ∃(s, a) ∈ C , s
a−→ s ′, s ′ /∈ S then

C ← C \ {(s, a)} ↑
if ∃s ∈ S , no path from s to F in C then

S ← S \ {s} ↑, C ← C ∩ S × Σ
return I ⊆ S

Easy to check

Unclear

6 / 29

Controlling a random population [Colcombet Fijalkow Ohlmann ’20]

Given N identical Markov decision processes, make them all reach ✓ with probability 1.
a

Terminates by

well quasi-order

argument

S ← NQ → configurations
C ← NQ × Σ → commits
while not fixpoint do

if ∃(s, a) ∈ C , s
a−→ s ′, s ′ /∈ S then

C ← C \ {(s, a)} ↑
if ∃s ∈ S , no path from s to F in C then

S ← S \ {s} ↑, C ← C ∩ S × Σ
return I ⊆ S

Easy to check

Unclear

6 / 29

Controlling a random population [Colcombet Fijalkow Ohlmann ’20]

Given N identical Markov decision processes, make them all reach ✓ with probability 1.
a

Terminates by

well quasi-order

argument

S ← NQ → configurations
C ← NQ × Σ → commits
while not fixpoint do

if ∃(s, a) ∈ C , s
a−→ s ′, s ′ /∈ S then

C ← C \ {(s, a)} ↑
if ∃s ∈ S , no path from s to F in C then

S ← S \ {s} ↑, C ← C ∩ S × Σ
return I ⊆ S

Easy to check

Unclear

6 / 29

The remaining problem

C = ((ω, 5, ω, 8), a) ↓ ∪ ((4, ω, ω, 4), a) ↓ ∪ ((9, 6, 1, 4), b) ↓

Is there a path in C from every configuration in (ω, 5, ω, 8) ↓

(ω, 0, 0, 0) ↓

to (0, 0, 0, ω) ↓?

Put constraints on transitions instead of states!

7 / 29

The remaining problem

C = ((ω, 5, ω, 8), a) ↓ ∪ ((4, ω, ω, 4), a) ↓ ∪ ((9, 6, 1, 4), b) ↓

Is there a path in C from every configuration in

(ω, 5, ω, 8) ↓

(ω, 0, 0, 0) ↓ to (0, 0, 0, ω) ↓?

Put constraints on transitions instead of states!

7 / 29

Sequential Flow Problem

A tile is a function Q × Q → N ∪ {ω}
describing capacities.

MaxFlow : Tiles∗ → N ∪ {ω}

(s =)q1

q2

q3

(t =)q4

α β

5

ω

1

ω

5

ω

4

7

ωββ α β

5

ω

4

7

ω

5

ω

4

7

ω

5

ω

1

ω

5

ω

4

7

ω

5
7

5

4

ω

ω

Problem

Input: A set of tiles Tiles
Output: Is {MaxFlow(w) | w ∈ Tiles∗}
unbounded?

8 / 29

Sequential Flow Problem

A tile is a function Q × Q → N ∪ {ω}
describing capacities.

MaxFlow : Tiles∗ → N ∪ {ω}

(s =)q1

q2

q3

(t =)q4

α β

5

ω

1

ω

5

ω

4

7

ω

ββ α β

5

ω

4

7

ω

5

ω

4

7

ω

5

ω

1

ω

5

ω

4

7

ω

5
7

5

4

ω

ω

Problem

Input: A set of tiles Tiles
Output: Is {MaxFlow(w) | w ∈ Tiles∗}
unbounded?

8 / 29

Sequential Flow Problem

A tile is a function Q × Q → N ∪ {ω}
describing capacities.

MaxFlow : Tiles∗ → N ∪ {ω}

(s =)q1

q2

q3

(t =)q4

α β

5

ω

1

ω

5

ω

4

7

ωββ α β

5

ω

4

7

ω

5

ω

4

7

ω

5

ω

1

ω

5

ω

4

7

ω

5
7

5

4

ω

ω

Problem

Input: A set of tiles Tiles
Output: Is {MaxFlow(w) | w ∈ Tiles∗}
unbounded?

8 / 29

Sequential Flow Problem

A tile is a function Q × Q → N ∪ {ω}
describing capacities.

MaxFlow : Tiles∗ → N ∪ {ω}

(s =)q1

q2

q3

(t =)q4

α β

5

ω

1

ω

5

ω

4

7

ωββ α β

5

ω

4

7

ω

5

ω

4

7

ω

5

ω

1

ω

5

ω

4

7

ω

5
7

5

4

ω

ω

Problem

Input: A set of tiles Tiles
Output: Is {MaxFlow(w) | w ∈ Tiles∗}
unbounded?

8 / 29

Sequential Flow Problem

A tile is a function Q × Q → N ∪ {ω}
describing capacities.

MaxFlow : Tiles∗ → N ∪ {ω}

(s =)q1

q2

q3

(t =)q4

α β

5

ω

1

ω

5

ω

4

7

ωββ α β

5

ω

4

7

ω

5

ω

4

7

ω

5

ω

1

ω

5

ω

4

7

ω

5
7

5

4

ω

ω

Problem

Input: A set of tiles Tiles
Output: Is {MaxFlow(w) | w ∈ Tiles∗}
unbounded?

8 / 29

Sequential Flow Problem

A tile is a function Q × Q → N ∪ {ω}
describing capacities.

MaxFlow : Tiles∗ → N ∪ {ω}

(s =)q1

q2

q3

(t =)q4

α β

5

ω

1

ω

5

ω

4

7

ωββ α β

5

ω

4

7

ω

5

ω

4

7

ω

5

ω

1

ω

5

ω

4

7

ω

5
7

5

4

ω

ω

Problem

Input: A set of tiles Tiles
Output: Is {MaxFlow(w) | w ∈ Tiles∗}
unbounded?

8 / 29

Sequential Flow Problem (SFP)

[Blumensath Colcombet Parys ’16]

Satisfiability in some extension of MSO
reduces to SFP

[Colcombet Fijalkow Ohlmann ’20]

The Randomised Population Control Problem
reduces to SFP.

[Gimbert Mascle Totzke ’25]

The Randomised Population Control Problem
reduces to SFP in exponential time.

[Blumensath Colcombet Parys ’16]

SFP is decidable.

[Colcombet Fijalkow Ohlmann ’20]

SFP is PSPACE-hard and in EXPSPACE.

[Gimbert Mascle Totzke ’25]

SFP is PSPACE-complete.+

Theorem ([GMT ’25])

The Randomised Population Control Problem is EXPTIME-complete.

9 / 29

Sequential Flow Problem (SFP)

[Blumensath Colcombet Parys ’16]

Satisfiability in some extension of MSO
reduces to SFP

[Colcombet Fijalkow Ohlmann ’20]

The Randomised Population Control Problem
reduces to SFP.

[Gimbert Mascle Totzke ’25]

The Randomised Population Control Problem
reduces to SFP in exponential time.

[Blumensath Colcombet Parys ’16]

SFP is decidable.

[Colcombet Fijalkow Ohlmann ’20]

SFP is PSPACE-hard and in EXPSPACE.

[Gimbert Mascle Totzke ’25]

SFP is PSPACE-complete.+

Theorem ([GMT ’25])

The Randomised Population Control Problem is EXPTIME-complete.

9 / 29

Sequential Flow Problem (SFP)

[Blumensath Colcombet Parys ’16]

Satisfiability in some extension of MSO
reduces to SFP

[Colcombet Fijalkow Ohlmann ’20]

The Randomised Population Control Problem
reduces to SFP.

[Gimbert Mascle Totzke ’25]

The Randomised Population Control Problem
reduces to SFP in exponential time.

[Blumensath Colcombet Parys ’16]

SFP is decidable.

[Colcombet Fijalkow Ohlmann ’20]

SFP is PSPACE-hard and in EXPSPACE.

[Gimbert Mascle Totzke ’25]

SFP is PSPACE-complete.

+

Theorem ([GMT ’25])

The Randomised Population Control Problem is EXPTIME-complete.

9 / 29

Sequential Flow Problem (SFP)

[Blumensath Colcombet Parys ’16]

Satisfiability in some extension of MSO
reduces to SFP

[Colcombet Fijalkow Ohlmann ’20]

The Randomised Population Control Problem
reduces to SFP.

[Gimbert Mascle Totzke ’25]

The Randomised Population Control Problem
reduces to SFP in exponential time.

[Blumensath Colcombet Parys ’16]

SFP is decidable.

[Colcombet Fijalkow Ohlmann ’20]

SFP is PSPACE-hard and in EXPSPACE.

[Gimbert Mascle Totzke ’25]

SFP is PSPACE-complete.+

Theorem ([GMT ’25])

The Randomised Population Control Problem is EXPTIME-complete.

9 / 29

Summary

Short-ends Factorisation Theorem

Downward-closure of
indexed languages

Sequential flow problem

Asymptotic MSO
fragment

Control of
populations of MDPs

10 / 29

Summary

Short-ends Factorisation Theorem

Downward-closure of
indexed languages

Sequential flow problem

Asymptotic MSO
fragment

Control of
populations of MDPs

11 / 29

Sequential Flow Problem

Problem

Input: A set of tiles Tiles
Output: Is {MaxFlow(w) | w ∈ Tiles∗} unbounded?

Problem

Input: A set of tiles Tiles
Output: Compute sup{MaxFlow(w) | w ∈ Tiles∗}.

12 / 29

Sequential Flow Problem

Problem

Input: A set of tiles Tiles
Output: Is {MaxFlow(w) | w ∈ Tiles∗} unbounded?

Problem

Input: A set of tiles Tiles
Output: Compute sup{MaxFlow(w) | w ∈ Tiles∗}.

12 / 29

Abstraction

α β

5

ω

1

ω

5

ω

4

7

ω

α β

1

ω

1

ω

1

ω

1

1

ω

αβ

1
1

ω

1

1

βα

1

1

1

ω

1

Morphism φ : Tiles∗ → {0, 1, ω}Q×Q with max-min product.

13 / 29

Abstraction

α β

5

ω

1

ω

5

ω

4

7

ω

α β

1

ω

1

ω

1

ω

1

1

ω

αβ

1
1

ω

1

1

βα

1

1

1

ω

1

Morphism φ : Tiles∗ → {0, 1, ω}Q×Q with max-min product.

13 / 29

Abstraction

α β

5

ω

1

ω

5

ω

4

7

ω

α β

1

ω

1

ω

1

ω

1

1

ω

αβ

1
1

ω

1

1

βα

1

1

1

ω

1

Morphism φ : Tiles∗ → {0, 1, ω}Q×Q with max-min product.

13 / 29

Iteration (Inspired by work of Simon, Hashigushi, Leung)

α

ω

1

ω

ω

1

ω

α

ω

1

ω

α

ω

1

ω

α

· · ·

α♯

ω

ω

ω

αN = α (α is idempotent) but αN has flow N.

Define a new operator ♯ on idempotents:

α♯(s, t) =

{
ω if ∃s0, t0, s

ω−→ s0
1−→ t0

ω−→ t in α

α(s, t) otherwise

If α♯(s, t) = ω then we have unbounded flows between s and t.

14 / 29

Iteration (Inspired by work of Simon, Hashigushi, Leung)

α

ω

1

ω

ω

1

ω

α

ω

1

ω

α

ω

1

ω

α

· · ·

α♯

ω

ω

ω

αN = α (α is idempotent) but αN has flow N.

Define a new operator ♯ on idempotents:

α♯(s, t) =

{
ω if ∃s0, t0, s

ω−→ s0
1−→ t0

ω−→ t in α

α(s, t) otherwise

If α♯(s, t) = ω then we have unbounded flows between s and t.

14 / 29

Iteration (Inspired by work of Simon, Hashigushi, Leung)

α

ω

1

ω

ω

1

ω

α

ω

1

ω

α

ω

1

ω

α

· · ·

α♯

ω

ω

ω

αN = α (α is idempotent) but αN has flow N.

Define a new operator ♯ on idempotents:

α♯(s, t) =

{
ω if ∃s0, t0, s

ω−→ s0
1−→ t0

ω−→ t in α

α(s, t) otherwise

If α♯(s, t) = ω then we have unbounded flows between s and t.

14 / 29

Iteration (Inspired by work of Simon, Hashigushi, Leung)

α

ω

1

ω

ω

1

ω

α

ω

1

ω

α

ω

1

ω

α

· · ·

α♯

ω

ω

ω

αN = α (α is idempotent) but αN has flow N.

Define a new operator ♯ on idempotents:

α♯(s, t) =

{
ω if ∃s0, t0, s

ω−→ s0
1−→ t0

ω−→ t in α

α(s, t) otherwise

If α♯(s, t) = ω then we have unbounded flows between s and t.

14 / 29

Iteration (Inspired by work of Simon, Hashigushi, Leung)

α

ω

1

ω

ω

1

ω

α

ω

1

ω

α

ω

1

ω

α

· · ·

α♯

ω

ω

ω

αN = α (α is idempotent) but αN has flow N.

Define a new operator ♯ on idempotents:

α♯(s, t) =

{
ω if ∃s0, t0, s

ω−→ s0
1−→ t0

ω−→ t in α

α(s, t) otherwise

If α♯(s, t) = ω then we have unbounded flows between s and t.

14 / 29

Abstraction

F♯ the closure of φ(Tiles) under product and ♯.

Lemma

F♯ contains some α with α(s, t) = ω if and only if there are unbounded flows between s and t.

Checkable in PSPACE!
How large can a bounded flow be?

15 / 29

Abstraction

F♯ the closure of φ(Tiles) under product and ♯.

Lemma

F♯ contains some α with α(s, t) = ω if and only if there are unbounded flows between s and t.

Checkable in PSPACE!

How large can a bounded flow be?

15 / 29

Abstraction

F♯ the closure of φ(Tiles) under product and ♯.

Lemma

F♯ contains some α with α(s, t) = ω if and only if there are unbounded flows between s and t.

Checkable in PSPACE!
How large can a bounded flow be?

15 / 29

Iteration dichotomy

α

ω

1

1

ω

ω

1

1

ω

α

ω

1

1

ω

α

ω

1

1

ω

α α

1X

1X

1X

1X

For all idempotent α and s, t ∈ Q,

▶ either α♯(s, t) = ω

▶ or there is a cut between s and t in the
first and last α.

16 / 29

Iteration dichotomy

α

ω

1

1

ω

ω

1

1

ω

α

ω

1

1

ω

α

ω

1

1

ω

α α

1X

1X

1X

1X

For all idempotent α and s, t ∈ Q,

▶ either α♯(s, t) = ω

▶ or there is a cut between s and t in the
first and last α.

16 / 29

Iteration dichotomy

α

ω

1

1

ω

ω

1

1

ω

α

ω

1

1

ω

α

ω

1

1

ω

α α

1X

1X

1X

1X

For all idempotent α and s, t ∈ Q,

▶ either α♯(s, t) = ω

▶ or there is a cut between s and t in the
first and last α.

16 / 29

Short-ends factorisation theorem (based on work by [Simon ’90], [Colcombet ’11])

Σ finite alphabet, (M , ·) finite monoid, φ : Σ∗ →M morphism.

Factorisation tree: Node labels in Σ∗ ×M .

3 types of nodes:

Leaves

(a, φ(a))

Product nodes
(uv , x · y)

(u, x) (v , y)

Idempotent nodes
(u1u2 · · · un, e)

(u1, e) (un, e)

φ(ui) = e for all i .

Example on the board

17 / 29

Short-ends factorisation theorem (based on work by [Simon ’90], [Colcombet ’11])

Σ finite alphabet, (M , ·) finite monoid, φ : Σ∗ →M morphism.
Factorisation tree: Node labels in Σ∗ ×M .

3 types of nodes:

Leaves

(a, φ(a))

Product nodes
(uv , x · y)

(u, x) (v , y)

Idempotent nodes
(u1u2 · · · un, e)

(u1, e) (un, e)

φ(ui) = e for all i .

Example on the board

17 / 29

Short-ends factorisation theorem (based on work by [Simon ’90], [Colcombet ’11])

Σ finite alphabet, (M , ·) finite monoid, φ : Σ∗ →M morphism.
Factorisation tree: Node labels in Σ∗ ×M .

3 types of nodes:

Leaves

(a, φ(a))

Product nodes
(uv , x · y)

(u, x) (v , y)

Idempotent nodes
(u1u2 · · · un, e)

(u1, e) (un, e)

φ(ui) = e for all i .

Example on the board

17 / 29

Ramsey bounds

RM(k) = minimal n such that every word w of length n has a factor u1 . . . uk with
φ(u1) = · · · = φ(uk) = e an idempotent of M.

Theorem

For all w ∈ Σ∗, there is a factorization tree of height poly(log(M), log(RM(3))).

Corollary

In a transition monoid of dimension n, every word has a factorization tree of height poly(n).

Based on bounds by [Jecker ’21].

18 / 29

Ramsey bounds

RM(k) = minimal n such that every word w of length n has a factor u1 . . . uk with
φ(u1) = · · · = φ(uk) = e an idempotent of M.

Theorem

For all w ∈ Σ∗, there is a factorization tree of height poly(log(M), log(RM(3))).

Corollary

In a transition monoid of dimension n, every word has a factorization tree of height poly(n).

Based on bounds by [Jecker ’21].

18 / 29

Exponential bound

We can show:

▶ Every word has a factorisation of polynomial height in the flow monoid.

▶ If there is a bounded cut between s and t in all w , then there is one that lives within the
factorisation.

Theorem

If the flow between s and t is bounded then it is at most exponential in |Q|.

19 / 29

Summary

Short-ends Factorisation Theorem

Downward-closure of
indexed languages

Sequential flow problem

Asymptotic MSO
fragment

Control of
populations of MDPs

20 / 29

Another application: Indexed grammars

Indexed grammar= Context-free grammar where each non-terminal carries a stack.
N set of non-terminals, T set of terminals, Γ set of stack symbols.

A→ w ∈ T ∗

A→ BC

A
push(γ)−−−−→ Bγ

Aγ
pop(γ)−−−−→ B

21 / 29

Another application: Indexed grammars

Indexed grammar= Context-free grammar where each non-terminal carries a stack.
N set of non-terminals, T set of terminals, Γ set of stack symbols.

A→ w ∈ T ∗

A→ BC

A
push(γ)−−−−→ Bγ

Aγ
pop(γ)−−−−→ B

21 / 29

Indexed grammars : Examples

S
push(γ⊥)−−−−−→ Sγ⊥

S
push(γa)−−−−−→ Sγa

S
push(γb)−−−−−→ Sγb

S →WW

W γa
pop(γa)−−−−→Wa

W γb
pop(γb)−−−−→Wb

W γ⊥
pop(γ⊥)−−−−−→ ε

{ww | w ∈ {a, b}∗}

S [γ⊥]

S [γaγ⊥]

S [γbγaγ⊥]

S

W [γbγaγ⊥]W [γbγaγ⊥]

W [γaγ⊥]W [γaγ⊥]

W [γ⊥]W [γ⊥]

εε

b

a

b

a

22 / 29

Indexed grammars : Examples

S
push(γ⊥)−−−−−→ Sγ⊥

S
push(γa)−−−−−→ Sγa

S
push(γb)−−−−−→ Sγb

S →WW

W γa
pop(γa)−−−−→Wa

W γb
pop(γb)−−−−→Wb

W γ⊥
pop(γ⊥)−−−−−→ ε

{ww | w ∈ {a, b}∗}

S [γ⊥]

S [γaγ⊥]

S [γbγaγ⊥]

S

W [γbγaγ⊥]W [γbγaγ⊥]

W [γaγ⊥]W [γaγ⊥]

W [γ⊥]W [γ⊥]

εε

b

a

b

a

22 / 29

Indexed grammars : Examples

S
push(γ⊥)−−−−−→ Sγ⊥

S
push(γa)−−−−−→ Sγa

S
push(γb)−−−−−→ Sγb

S →WW

W γa
pop(γa)−−−−→Wa

W γb
pop(γb)−−−−→Wb

W γ⊥
pop(γ⊥)−−−−−→ ε

{ww | w ∈ {a, b}∗}

S [γ⊥]

S [γaγ⊥]

S [γbγaγ⊥]

S

W [γbγaγ⊥]W [γbγaγ⊥]

W [γaγ⊥]W [γaγ⊥]

W [γ⊥]W [γ⊥]

εε

b

a

b

a

22 / 29

Indexed grammars : Examples

S
push(γ⊥)−−−−−→ Sγ⊥

S
push(γa)−−−−−→ Sγa

S
push(γb)−−−−−→ Sγb

S →WW

W γa
pop(γa)−−−−→Wa

W γb
pop(γb)−−−−→Wb

W γ⊥
pop(γ⊥)−−−−−→ ε

{ww | w ∈ {a, b}∗}

S [γ⊥]

S [γaγ⊥]

S [γbγaγ⊥]

S

W [γbγaγ⊥]W [γbγaγ⊥]

W [γaγ⊥]W [γaγ⊥]

W [γ⊥]W [γ⊥]

εε

b

a

b

a

22 / 29

Indexed grammars : Examples

S
push(γ⊥)−−−−−→ Sγ⊥

S
push(γa)−−−−−→ Sγa

S
push(γb)−−−−−→ Sγb

S →WW

W γa
pop(γa)−−−−→Wa

W γb
pop(γb)−−−−→Wb

W γ⊥
pop(γ⊥)−−−−−→ ε

{ww | w ∈ {a, b}∗}

S [γ⊥]

S [γaγ⊥]

S [γbγaγ⊥]

S

W [γbγaγ⊥]W [γbγaγ⊥]

W [γaγ⊥]W [γaγ⊥]

W [γ⊥]W [γ⊥]

εε

b

a

b

a

22 / 29

Indexed grammars : Examples

S
push(γ⊥)−−−−−→ Sγ⊥

S
push(γa)−−−−−→ Sγa

S
push(γb)−−−−−→ Sγb

S →WW

W γa
pop(γa)−−−−→Wa

W γb
pop(γb)−−−−→Wb

W γ⊥
pop(γ⊥)−−−−−→ ε

{ww | w ∈ {a, b}∗}

S [γ⊥]

S [γaγ⊥]

S [γbγaγ⊥]

S

W [γbγaγ⊥]W [γbγaγ⊥]

W [γaγ⊥]W [γaγ⊥]

W [γ⊥]W [γ⊥]

εε

b

a

b

a

22 / 29

Subword-closures

Subword

w is a subword of w ′ (w ⪯ w ′) if we can remove letters of w ′ to get w .

Ex: bab is a subword of abbaba.

Theorem (Corollary of [Higman ’52])

The subword-closure of a language L ⊆ Σ∗ is always a regular language.

No
t e

ffe
cti
ve!

Given a class of languages C, is the subword-closure computable for these languages? How
large is the resulting automaton?

▶ Verification of thread pools with bounded context switching

▶ Separation by piecewise-testable languages

▶ Lossy channel machines

23 / 29

Subword-closures

Subword

w is a subword of w ′ (w ⪯ w ′) if we can remove letters of w ′ to get w .

Ex: bab is a subword of abbaba.

Theorem (Corollary of [Higman ’52])

The subword-closure of a language L ⊆ Σ∗ is always a regular language.

No
t e

ffe
cti
ve!

Given a class of languages C, is the subword-closure computable for these languages? How
large is the resulting automaton?

▶ Verification of thread pools with bounded context switching

▶ Separation by piecewise-testable languages

▶ Lossy channel machines

23 / 29

Subword-closures

Subword

w is a subword of w ′ (w ⪯ w ′) if we can remove letters of w ′ to get w .

Ex: bab is a subword of abbaba.

Theorem (Corollary of [Higman ’52])

The subword-closure of a language L ⊆ Σ∗ is always a regular language.

No
t e

ffe
cti
ve!

Given a class of languages C, is the subword-closure computable for these languages? How
large is the resulting automaton?

▶ Verification of thread pools with bounded context switching

▶ Separation by piecewise-testable languages

▶ Lossy channel machines

23 / 29

Subword-closures

Subword

w is a subword of w ′ (w ⪯ w ′) if we can remove letters of w ′ to get w .

Ex: bab is a subword of abbaba.

Theorem (Corollary of [Higman ’52])

The subword-closure of a language L ⊆ Σ∗ is always a regular language.

No
t e

ffe
cti
ve!

Given a class of languages C, is the subword-closure computable for these languages? How
large is the resulting automaton?

▶ Verification of thread pools with bounded context switching

▶ Separation by piecewise-testable languages

▶ Lossy channel machines

23 / 29

Subword-closures

Subword

w is a subword of w ′ (w ⪯ w ′) if we can remove letters of w ′ to get w .

Ex: bab is a subword of abbaba.

Theorem (Corollary of [Higman ’52])

The subword-closure of a language L ⊆ Σ∗ is always a regular language.

No
t e

ffe
cti
ve!

Given a class of languages C, is the subword-closure computable for these languages? How
large is the resulting automaton?

▶ Verification of thread pools with bounded context switching

▶ Separation by piecewise-testable languages

▶ Lossy channel machines

23 / 29

Subword-closures

[Courcelles ’91]

The subword-closure of a context-free grammar is computable and accepted by an automaton
of exponential size.

[Zetzsche ’15]

The subword-closure of an indexed grammar is computable.

Subword-closure for indexed grammars

Given an indexed grammar I of size k , how large can an automaton recognising L(I) ↓ be?

24 / 29

Subword-closures

[Courcelles ’91]

The subword-closure of a context-free grammar is computable and accepted by an automaton
of exponential size.

[Zetzsche ’15]

The subword-closure of an indexed grammar is computable.

Subword-closure for indexed grammars

Given an indexed grammar I of size k , how large can an automaton recognising L(I) ↓ be?

24 / 29

Subword-closures

[Courcelles ’91]

The subword-closure of a context-free grammar is computable and accepted by an automaton
of exponential size.

[Zetzsche ’15]

The subword-closure of an indexed grammar is computable.

Subword-closure for indexed grammars

Given an indexed grammar I of size k , how large can an automaton recognising L(I) ↓ be?

24 / 29

Production monoid
A stack content z ∈ Γ∗ is mapped to a boolean matrix M(z) ∈ {⊤,⊥}N×N .

M(z)(A,B) = ⊤ if and only if we can obtain a B from A[z].
A[z]

B

M is a morphism: M(z1z2) = M(z1)M(z2) because

A[z1z2]

C

⇔ ∃B,
A[z1z2]

B[z2]

C

⇔ ∃B,
A[z1]

B

B[z2]

C

25 / 29

Production monoid
A stack content z ∈ Γ∗ is mapped to a boolean matrix M(z) ∈ {⊤,⊥}N×N .

M(z)(A,B) = ⊤ if and only if we can obtain a B from A[z].
A[z]

B

M is a morphism: M(z1z2) = M(z1)M(z2) because

A[z1z2]

C

⇔ ∃B,
A[z1z2]

B[z2]

C

⇔ ∃B,
A[z1]

B

B[z2]

C

25 / 29

Production monoid
A stack content z ∈ Γ∗ is mapped to a boolean matrix M(z) ∈ {⊤,⊥}N×N .

M(z)(A,B) = ⊤ if and only if we can obtain a B from A[z].
A[z]

B

M is a morphism: M(z1z2) = M(z1)M(z2) because

A[z1z2]

C

⇔ ∃B,
A[z1z2]

B[z2]

C

⇔ ∃B,
A[z1]

B

B[z2]

C 25 / 29

Abstraction

Replace stacks with their short-ends factorization in the production monoid!

Lemma

The short-ends factorization of γz is determined by the one of z.

For each γ define pushγ the function mapping the factorization of z to the factorization of γz

and popγ = push−1
γ .

26 / 29

Abstraction

Replace stacks with their short-ends factorization in the production monoid!

Lemma

The short-ends factorization of γz is determined by the one of z.

For each γ define pushγ the function mapping the factorization of z to the factorization of γz

and popγ = push−1
γ .

26 / 29

Abstraction

Define a context-free grammar with non-terminals A[σ],

▶ A ∈ N

▶ σ short-ends factorisation

A→ w ∈ T ∗

A→ BC

A
push(γ)−−−−→ Bγ

Aγ
pop(γ)−−−−→ B

⇒
A[σ]→ w ∈ T ∗

A[σ]→ B[σ]C [σ]

A[σ]→ B[pushγ(σ)]

A[σ]→ B[popγ(σ)]

Theorem

This CFG has the same subword-closure as the indexed grammar.

27 / 29

Subword-closures

Theorem

The subword-closure of L(G) is recognised by a context-free grammar of 2-exponential size.

Theorem

The subword-closure of L(G) is recognised by an automaton of 3-exponential size, and this
bound is tight.

Extensions to higher-order pushdown automata...

28 / 29

Subword-closures

Theorem

The subword-closure of L(G) is recognised by a context-free grammar of 2-exponential size.

Theorem

The subword-closure of L(G) is recognised by an automaton of 3-exponential size, and this
bound is tight.

Extensions to higher-order pushdown automata...

28 / 29

Subword-closures

Theorem

The subword-closure of L(G) is recognised by a context-free grammar of 2-exponential size.

Theorem

The subword-closure of L(G) is recognised by an automaton of 3-exponential size, and this
bound is tight.

Extensions to higher-order pushdown automata...

28 / 29

Summary

Short-ends Factorisation Theorem

Simon’s theorem Ramsey bounds for

finite monoids

Sequential flow problem

Asymptotic MSO

fragment

Control of

populations of MDPs

Downward-closure of

indexed languages

Op
tim

al
bo
un
ds

Op
tim

al
bo
un
ds

Optimal bounds

Thanks!

29 / 29

Summary

Short-ends Factorisation Theorem

Simon’s theorem Ramsey bounds for

finite monoids

Sequential flow problem

Asymptotic MSO

fragment

Control of

populations of MDPs

Downward-closure of

indexed languages

Op
tim

al
bo
un
ds

Op
tim

al
bo
un
ds

Optimal bounds

Thanks!

29 / 29

Summary

Short-ends Factorisation Theorem

Simon’s theorem Ramsey bounds for

finite monoids

Sequential flow problem

Asymptotic MSO

fragment

Control of

populations of MDPs

Downward-closure of

indexed languages

Op
tim

al
bo
un
ds

Op
tim

al
bo
un
ds

Optimal bounds

Thanks!

29 / 29

Summary

Short-ends Factorisation Theorem

Simon’s theorem Ramsey bounds for

finite monoids

Sequential flow problem

Asymptotic MSO

fragment

Control of

populations of MDPs

Downward-closure of

indexed languages

Op
tim

al
bo
un
ds

Op
tim

al
bo
un
ds

Optimal bounds

Thanks!

29 / 29

Summary

Short-ends Factorisation Theorem

Simon’s theorem Ramsey bounds for

finite monoids

Sequential flow problem

Asymptotic MSO

fragment

Control of

populations of MDPs

Downward-closure of

indexed languages

Op
tim

al
bo
un
ds

Op
tim

al
bo
un
ds

Optimal bounds

Thanks!

29 / 29

Summary

Short-ends Factorisation Theorem

Simon’s theorem Ramsey bounds for

finite monoids

Sequential flow problem

Asymptotic MSO

fragment

Control of

populations of MDPs

Downward-closure of

indexed languages

Op
tim

al
bo
un
ds

Op
tim

al
bo
un
ds

Optimal bounds

Thanks!

29 / 29

Summary

Short-ends Factorisation Theorem

Simon’s theorem Ramsey bounds for

finite monoids

Sequential flow problem

Asymptotic MSO

fragment

Control of

populations of MDPs

Downward-closure of

indexed languages

Op
tim

al
bo
un
ds

Op
tim

al
bo
un
ds

Optimal bounds

Thanks!
29 / 29

